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Abstract: With increasing technological demand for portable electronic and photovoltaic devices, it
has become critical to ensure the electrical and mechano-electric reliability of electrodes in such devices.
However, the limited flexibility and high processing costs of traditional electrodes based on indium
tin oxide undermine their application in flexible devices. Among various alternative materials for
flexible electrodes, such as metallic/carbon nanowires or meshes, silver nanowire (Ag NW) networks
are regarded as promising candidates owing to their excellent electrical, optical, and mechano-electric
properties. In this context, there have been tremendous studies on the physico-chemical and
mechano-electric properties of Ag NW networks. At the same time, it has been a crucial job to
maximize the device performance (or their mechano-electric performance) by reconciliation of various
properties. This review discusses the properties and device applications of Ag NW networks under
dynamic motion by focusing on notable findings and cases in the recent literature. Initially, we
introduce the fabrication (deposition process) of Ag NW network-based electrodes from solution-based
coating processes (drop casting, spray coating, spin coating, etc.) to commercial processes (slot-die
and roll-to-roll coating). We also discuss the electrical/optical properties of Ag NW networks, which
are governed by percolation, and their electrical contacts. Second, the mechano-electric properties of
Ag NW networks are reviewed by describing individual and combined properties of NW networks
with dynamic motion under cyclic loading. The improved mechano-electric properties of Ag NW
network-based flexible electrodes are also discussed by presenting various approaches, including
post-treatment and hybridization. Third, various Ag NW-based flexible devices (electronic and
optoelectronic devices) are introduced by discussing their operation principles, performance, and
challenges. Finally, we offer remarks on the challenges facing the current studies and discuss the
direction of research in this field, as well as forthcoming issues to be overcome to achieve integration
into commercial devices.

Keywords: Ag nanowire networks; mechano-electric properties; flexible conductive electrodes

1. Introduction

With the increasing demand for flexible optoelectronic and photovoltaic devices (e.g., wearable
health-care devices and motion-recognition for AR (Augment Reality)/VR (Virtual Reality) devices),
it has become critical to ensure the mechano-electric reliability of all components in such devices.
However, traditional transparent conductive electrodes (TCEs) based on indium tin oxide (ITO) or
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metal thin films have limited flexibility and suffer from high processing costs, which undermine
their application in flexible devices. The flexibility and stretchability of conventional ITO or metal
thin-film electrodes can be achieved by modifying their structure into complicated (serpentine, wavy,
or wrinkled) patterns or by the deposition of a very thin oxide layer on the flexible substrate [1–10].
Such modifications require lithography or patterning techniques, which introduce high costs and cause
inconvenience [1–10].

In this context, there has been much interest in the application of nanostructured materials to
flexible electronic and optoelectronic devices by convenient processes to overcome the shortcomings of
conventional electrode materials (e.g., ITO and other oxides) [1–10]. As shown in Table 1, there are
several proposed solutions of nanostructured materials, including carbon-based materials (carbon
nanotubes (CNTs) and graphene), conductive polymer thin films, networks of metallic (gold, silver,
copper, etc.) nanowires and patterned metal nanogrids [1–10]. Among them, silver nanowire (Ag NW)
networks and Ag NW-related devices have been the focus of intensive research and development,
owing to their good electrical, optical, chemical, thermal, and mechanical properties [1–10].

Table 1. Comparison of performance of TCE materials for electro-optical devices [1–5].

Materials ITO TCO* Ag NW Graphene CNT Conducting
Polymer

Metal
Mesh

Application Flat From Flat to Flexible

Player Nitto Denko &
GUNZE

Cambrios
and Others

Graphene
Square and

Others

Eikos and
Others Heraeus 3M

Specification

Sheet resistance
(Ω/sq.) ∆ (~150) ∆ (~150) O (~40) ∆ (~500) ∆ (~200) ∆ (>200) O (~30)

Transmittance (%) O (~90) O (~90) O (~90) O (>90,
monolayer) ∆ (<90) ∆ (<90) ∆ (~90)

Stability** O O ∆ O <90 O ∆
Bending stability X X ∆ (<5R) O (<5R) O (<5R) O (<5R) ∆ (<10R)

Commercialization O O O ∆ ∆ O O

* TCO (transparent conducting oxide): ZnO, AZO (Al-doped ZnO), GZO (Ga-doped ZnO), etc. ** Stability: chemical
stability against corrosion and oxidation.

More specifically, as shown in Figure 1, Ag NW percolation networks are considered as promising
alternative TCE materials because of their unique network geometry (one-dimensional (1D) structures),
lack of dislocation activity, and high strength of metal NWs. Figure 1a displays the electro-optical
properties of various electrode materials, where the electrical property was the contact resistivity, as
measured by a four-point probe, and the optical property was the light transmittance, as measured by a
haze meter. Despite the reciprocal relation between the electrical conductivity and optical transparency,
Ag NW networks exhibit the closest values to those of a desirable transparent electrode. In addition,
as shown in Figure 1b, Ag NW networks show the lowest electrical resistance under the smallest
bending radius, suggesting excellent mechano-electric properties of Ag NW networks. Thus, such
unique characteristics of Ag NWs render them an excellent choice for use in advanced flexible/wearable
devices, which accommodate bending and stretching deformations [1–10]. Despite the superior
electrical and optical properties of Ag NW networks to those of other conductive materials, the practical
application of Ag NWs in electronic devices is limited owing to their poor mechano-electric stability
under extended operation. Moreover, despite extensive studies on the electrical and mechanical
performance of Ag NW networks, there has been no comprehensive review of the mechano-electric
properties and the applications of Ag NW networks.

This review presents the recent developments in the mechano-electric properties of Ag NW
networks toward various flexible devices by summarizing the strategies and notable cases in the recent
literature. In addition, the challenges (e.g., Ag NW reflectivity, NW junction instability, chemical
instability, nonuniform electron density, and pattern properties) in the current studies, the research
direction, and future issues in the field are discussed. More specifically, as the key properties required
for flexible conductive electrode materials are mechano-electric and electrical/optical robustness under
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repeated deformation, we focus on the mechano-electric property of Ag NW networks from the
viewpoint of their application in various practical electronic devices.Materials 2019, 12, x FOR PEER REVIEW 3 of 35 
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Figure 1. Summarized plot for transparent conductive electrodes: (a) Electro-optical properties
(Electrical property measurement: four-point probe, contact resistivity, Optical property measurement:
haze meter, light transmittance), (b) mechano-electric properties [1–10].

In Section 2, we discuss Ag NW networks by presenting (1) the synthesis of NWs in solution
processes, (2) the arrangement of Ag NWs into percolation networks through various coating processes,
and (3) their characteristics including chemical, electrical, and optical properties. Specifically, we
not only present the synthesis of Ag NWs through various synthetic methods, but cover deposition
processes used to form Ag NW networks from lab-scale coating processes (drop casting, spray and spin
coating, etc.) to commercialized processes (slot-die and roll-to-roll (R2R) coating). The individual and
network characteristics of Ag NWs also discussed by focusing on their electrical and optical properties,
which are governed by the percolation and electrical contacts of the Ag NW networks.

In the Section 3, we review the mechano-electric properties of individual and integrated Ag NW
networks by demonstrating reliable electronic systems with mechanical flexibility. Note that while
mechanical characteristics such as the flexibility of Ag NW networks are primarily governed by the
mechanical robustness of individual NWs, the mechano-electric properties of NW networks are affected
by the static mechanical properties, as well as the electrical percolation and connections of the networks.
Next, we discuss the extended mechanical stability (bending fatigue stability) of Ag NW networks
under long-term cycles. As the bending fatigue resistance is the commonly encountered failure mode,
the stability, integrity, and lifetime of NW-based devices can be affected by the mechanical fatigue
behavior of the electrode. The improved mechano-electric properties of Ag NW networks are discussed
by presenting the efforts made to enhance the performance of Ag NW network-based flexible electrodes
through post-treatment and secondary structural hybridization [1–10].

In the Section 4, we provide an overview of various Ag NW network-based flexible devices under
dynamic cyclic loading, as Ag NWs are expected to be suitable for versatile wearable applications based
on their superior mechanical, electrical, and optical properties. Specifically, we cover various Ag NW
network-based flexible devices (optoelectronic and electronic devices) requiring stable fatigue resistance
to failure after extended cyclic deformation. Although the demonstrated devices are prototypes, it is
still meaningful to introduce such devices before integration into commercial products, because of
their high potential toward real applications.

We believe that this review provides a design guide to construct flexible electronic devices based
on Ag NW networks and their composites with high mechano-electric reliability.
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2. Silver Nanowire (Ag NW) Networks

In this section, we discuss the fabrication methods and the characteristics of Ag NW networks.
It should be noted that successfully fabricating flexible transparent conductors requires materials with
superior optical transparency, electrical conductivity, and mechanical flexibility. In these respects,
Ag NW networks have been prepared that exhibit suitable properties as electrode materials for the
flexible devices [5–23].

2.1. Formation of Ag NW Networks

The formation of a network structure of Ag NWs on flexible plastic substrates is essential for the
successful integration of Ag NWs into various applications of flexible TCEs, as an optimized percolation
network of Ag NWs is crucial to achieving the target mechano-electric properties of flexible TCEs [1–7].
It should be noted that Ag NW networks can demonstrate higher electrical conductivity at large
strains than can a single NW, without deformation induced electrical conductivity decrement [1–10].
Such Ag NW networks enable the achievement of desired electrical and optical properties of TCEs
constructed by coating the Ag NWs on flexible substrates.

Considering the dependence of the conductive electrode performance upon the coating technique,
it is required to develop simple, reliable, and cost-efficient fabrication techniques (deposition processes)
to form Ag NW-based conductors with high flexibility and conductivity [1–7,9,10]. Specifically, a
large-area Ag NW network enables highly transparent (~90%) and conductive conductors, where the
properties are dependent on the deposition technique and wire geometry [1–7,9,10]. The networks
of Ag NWs should be readily and cheaply prepared, as well as scalable to large are through solution
processing techniques. Nevertheless, it is often difficult to achieve thin films prepared through colloidal
solutions or precursor deposition with highly reproducible opto-electrical and mechanical properties.

As typical solution coating processes are to be compatible with low-temperature processes
(<200 ◦C), they do not require expensive equipment [1–7,9,10]. Hence, there have been many studies on
the production of Ag NW electrodes through simple, reliable, and cost-efficient deposition techniques.

As summarized in Scheme 1, several fabrication methods are available for Ag NW network-based
TCEs for flexible devices. Most fabrication techniques are compatible with solution deposition processes
such as spray coating, drop casting, spin coating, rod-coating, dip coating, vacuum filtration, slot-die
coating, and R2R coating, as solution-processed electrodes have already demonstrated their ability to
be integrated into optoelectronic devices [8–23].
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2.1.1. Drop Casting

Drop casting is the simplest method to produce an Ag NW network, which consists of dropping a
NW-dispersed solution on a target substrate followed by drying the residual solvent. For the solution
precursor preparation, water or alcohols (ethanol, methanol, or isopropanol) are employed as the
dispersion solvent [11]. The drop-casting procedure, as illustrated in Figure 2A, can be applied to
prepare Ag NW network-based electrodes with unique physical properties using regulated precursor
solutions. For instance, the optical transmittance of the drop-casted Ag NW network largely depends
on the Ag NW solution’s concentration or its evaporation rate after coating [11]. In addition, the
Ag NW network (Figure 2B(a) formed by drop casting exhibits similar surface roughness for both glass
(Figure 2B(b) and polyimide (PI) (Figure 2B(b) substrates.
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Figure 2. (A) Fabrication of a flexible polymer solar cell (PSC) based on a PI/Ag NW composite film.
(B) (a) SEM images of a flexible PI/Ag NW composite film. AFM height images of (b) glass/Ag NWs
and (c) PI/Ag NW composite film. Reproduced with permission from [11]. Copyright 2015 Royal
Society of Chemistry.

Despite the facile fabrication process of drop casting, the electrodes prepared by this method
exhibit limitations for practical electro-optical device applications. For instance, the active process
area/range is highly restricted. In addition, the drop-casted film thickness is uncontrollable because of
spatial inhomogeneities (or uneven distribution of Ag NWs) of drop-casted NW networks caused by
the surface tension of the solution and the self-aggregation of NWs by the “coffee ring effect” on the
substrates [11]. What is more, as shown in Figure 2B(b,c), re-deposition of Ag NW by drop casting
further aggravates their surface morphology (or makes uneven vertical distribution of NWs), leading
to non-uniform electrical and optical property of Ag NWs network [11].

In order to address the current challenges, several modified drop-casting processes have been
proposed. For instance, the hybrid structure of a drop-casted Ag NW network in a UV-curable polymer
(poly-acrylate resin) can be prepared by the sequential deposition, curing, and peeling-off of the
UV-curable polymer [11]. The properties of the composite will be discussed in Section 3.

2.1.2. Spin Coating

Spin coating is a reproducible and scalable process to form Ag NW network films with uniform
thickness and radial anisotropy. Typically, as shown in Figure 3A, spin-coated Ag NWs film can be
formed by consecutive processes of applying coating solutions onto a substrate, followed by spin
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coating at a certain rotating speed (rpm) and time to achieve the desired thickness or film quality. After
spin coating, the Ag NW network is formed on the target substrate after the removal of most of the
coating solution [12,13]. The properties of Ag NW network films can be regulated by judicious control
of the coating solution (viscosity, volatility, and concentration), substrate, and rotational speed. As
shown in the schematic illustration (Figure 3B(a), a composite film of Ag NWs (ZnO/ITO/AgNW/ITO)
also can be constructed through successive spin coating processes. Figure 3B(b) displays FE-SEM
images of composite electrodes, showing good dispersion of Ag NWs sandwiched between oxides
(ZnO and ITO) [12,13].
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Figure 3. Scheme and electronic images of Ag NW networks prepared by spin coating. (A) Single
deposition of Ag NW network. Reproduced with permission from [12]. Copyright 2018 Elsevier B.V.
(B) Serial deposition to form a composite of Ag NW and ZnO: (a) Schematic illustrating successive
spin-coating processes used to fabricate ZnO/ITO/Ag NW/ITO composite structure. (b) FE-SEM
images of composite electrodes. Reproduced with permission from [13]. Copyright 2016 Royal Society
of Chemistry.

2.1.3. Bar Coating

Bar coating is the most widely used method to prepare Ag NW networks, in which a precursor
solution is directly applied to a target substrate with a Mayer-rod bar. As shown in the process
schematic (Figure 4a), Ag NW networks are formed by sweeping and spreading out an Ag NW solution
with a Mayer-rod across the substrate [14–16]. The thickness of the Ag NW networks is determined by
the initial wet-thickness applied with the Mayer-rod and the concentration of the Ag NW solution
layer on the substrate. A relatively fast solvent evaporation rate (compared with drop casting) can
effectively prevent the uneven thickness and local agglomeration of Ag NWs caused by the coffee ring
effect [14]. As demonstrated by Lee et al., scalable and flexible TCEs can be produced by optimizing
coating parameters (slit size of the rod, solvent), precursor solution (concentrations, additives), and
other aspects [14]. As shown in Figure 4b, Ag-NW TCEs without TiO2 deposition were prepared with
different coating cycles. The density of NWs on the film increases in proportion to the coating cycle.
As shown in Figure 4c, the sheet resistance decreases with additional bar coating cycles (1000, 250, 100,
and 20 Ω/sq. for the 3rd, 4th, 5th, and 6th cycles, respectively).

Furthermore, the Ag NW network produced by bar coating can be post-treated with a peel-off

process to obtain a free-standing film. As demonstrated by Ji et al., Ag NW network-based flexible
TCEs were deposited by bar coating, followed by subsequent curing and peel-off processes, which
led to the formation of a partially embedded hybrid structure of Ag NW on the target substrate [15].
In addition, as the bar coating yields alignment of the Ag NW networks along the dragging direction of
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the rod, the aligned Ag NW network structure can show improved conductivity and surface uniformity
through NW disentanglement and the reduction of NW–NW junction resistance [15].
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Figure 4. Schematic diagram of Ag NW network fabrication by bar-coating process. (a) Solution
bar-coating of Ag NW network on a plastic (PET) substrate followed by a drying process. (b) SEM images
of Ag NW network deposited at different cycle numbers. (c) Sheet resistance (Rs) of Ag NW film as a
function of coating cycle number [14].

2.1.4. Vacuum Filtration and Transfer (VFT)

Since the pioneering work by De et al., the vacuum filtration and transfer (VFT) process has
enabled the fabrication of free-standing Ag NW-based flexible TCEs [17]. As the losses of Ag NWs to
form NW networks are much smaller than those of other processes, they are actively used to prepare
flexible TCEs. As shown in Figure 5A(a), Ag NW networks can be prepared by VFT by the following
steps: (1) filtration of Ag NW solution onto a filter, (2) formation of a NW network layer on the filter,
and (3) transferring the network layer to the target substrate (polydimethylsiloxane (PDMS), PET, or
paper). Afterwards, as shown in a photograph and SEM images of Ag NW felt after annealing and
PDMS infiltration (Figure 5A(b)), it was found that a thick layer of free-standing Ag NW networks was
formed without deterioration after the thermal and pressured processes. It should be noted that the
film quality (areal density) of the Ag NW network can be easily controlled by judicious adjustment of
the concentration and amount of the NW precursor solution. The final product (Ag NW network-based
TCE) can be obtained by transferring the as-formed NW network layer onto the target substrate.
In a similar method to VFT (Figure 5B(a)), Ko et al. demonstrated Ag NW network-based TCEs on
PDMS by a successive multistep growth (SMG) process, which exhibited good optical properties
(Figure 5B(b)), flexibility, and excellent stretchability [18]. The excellent adhesion and mechanical
stability of the Ag NW TCE can be attributed to the unique composite structure of Ag NWs networks
partially embedded in the PDMS (Figure 5B(c)). However, despite many advantages of VFT techniques
to prepare a uniform thin film of Ag NWs, the process is not compatible with large-area films, as the
transferring areas are limited by the membrane filter size.
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Figure 5. (A) Stretchable conductive composites of Cu−Ag NW felt. (a) Cu−Ag NWs filtered through a
silicon gasket onto a metal cloth to create a NW felt in the shape of the hole in the gasket. (b) Photograph
and SEM image of Ag NW felt after annealing and PDMS infiltration. Reproduced with permission
from [17]. Copyright 2018 American Chemical Society. (B) (a) Scheme of Ag NW flexible TCE by successive
multistep growth (SMG) process. (b) Photograph of Ag NW electrode on a glass substrate. (c) Ag NW
length distribution and corresponding SEM images of Ag NWs of different lengths. Reproduced with
permission from [18]. Copyright 2012 Royal Society of Chemistry.

2.1.5. Spray Coating

Spray coating allows uniform, large-area deposition of Ag NWs on various substrates, owing to
its simple and scalable processes of depositing multiple layers of material [19–21]. The films obtained
by spraying coating are usually more homogeneous and tend to form much more uniform networks
than those produced by other methods. As shown in Figure 6a, Ag NW networks are formed by
spray coating an Ag NW solution of onto a target substrate (PET). As shown in Figure 6b–e, the
as-formed Ag NW network exhibits good electrical (sheet resistance: 11.3 Ω/sq.) and optical properties
(transmittance: 81.7%) (Figure 6b,d), as well as uniformly distributed NWs (Figure 6c,e). The simplicity
of the spray-coating process enables the formation of large-area NW network layers and it may be
combined with mass-production processes such as R2R [19–21]. For instance, a combined spray
coating of Ag NW and other layers (e.g., PEDOT:PSS) enables the achievement of hybrid-structure
high-performance TCEs [19]. Akter et al. reported a high-performance flexible conductor prepared by
spray coating, in which the adhesion force between the Ag NW and PDMS was effectively enhanced
by the surface treatment with polydopamine on the PDMS substrate [20]. Madaria et al. further
demonstrated soft-patterned Ag NW electrodes by spray-coating-assisted transfer using PDMS as a
stamp. Specifically, the spray-coated Ag NW layer on a PDMS substrate was transferred to a PET
substrate through simple press contact, owing to the weak adhesion force between the PDMS and
Ag NWs [21].

2.1.6. Slot-Die Coating

Scalable and large-area deposition processes are required for the commercial production of Ag NW
networks. In this context, slot-die coating is an appropriate approach to deposit a thin film of Ag NW
on the target substrate, and it can be easily integrated into scalable processes such as R2R coating.
Slot-die coating offers excellent coating uniformity across the coating surface, and it can deposit thin
films with various thickness ranges (from nanometers to micrometers). Moreover, this method can
deposit a wide range of coating solutions with various concentrations and viscosities by controlling
the deposit rates in the range of ~cm/s to ~m/s [22].
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Figure 6. (a) Fabrication scheme for Ag NW–PEDOT:PSS composite electrodes. (b) Photograph of
Ag NW mesh deposited on a PET substrate. (c) SEM image of Ag NW mesh with homogenous NW
density. (Inset: cross-section view). (d) Digital photograph of Ag NW–PEDOT:PSS composite film.
(e) SEM image of Ag NW mesh embedded in the PEDOT:PSS film. Reproduced with permission
from [19]. Copyright 2013 Royal Society of Chemistry.

As shown in Figure 7, Ag NW network films can be prepared using a continuous R2R slot-die
coater under atmospheric conditions. The flow of Ag NW precursor solution at the slot die lip is fed
to the target substrate to control the density of Ag NWs on the substrate (Figure 7a). As a result, the
continuous R2R-compatible slot-die coating process combined with over-coating layer deposition
allows the production of high-performance TCEs based on Ag NW network films (Figure 7b) [23].
Owing to the excellent processability offered by slot-die coating, this method has been employed as a
transitioning process from lab-scale to scaled-up production of thin films [23]. In particular, this method
is employed to determine the feasibility of transferring NW solutions for scalable device fabrication.
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Figure 7. (a) Schematic of slot-die coating of Ag NW network [22]. (b) Schematic of slot-die coating of
Ag NWs and the over-coating layer. (c) Schematic of continuous R2R slot-die coating system required
to coat Ag NWs and over-coating layer on the PET substrate [23].

Slot-die coating is further scalable for large-area Ag NW film production through R2R-based
continuous processing by using the mechanical flexibility of Ag NW films (Figure 7b) [22,23]. During
coating, the film substrate initially unwound from a roll passes through the coating machine, followed
by rewinding onto another roll after film coating. The quality of film produced by R2R processes
can be affected by many factors such as tension, speed, substrate cleanness, and static electricity.
To improve the commercial compatibility, there have been many studies on the development of novel
R2R systems to scale up the Ag NW films produced in the lab. For instance, as reported by Hösel et al.,
the performance of flexible electronic devices is highly dependent on the R2R coating systems, because
the systems are difficult to unify into universal process [22,23].

2.1.7. Printing

Conventional patterning techniques (direct laser ablation, shadow mask, chemical etching) based
on the photolithographic processes are not compatible with the preparation of Ag NW-based flexible
TCEs [24–27]. As an alternative, various printing approaches have been introduced, such as spray
coating and drop-on-demand systems. However, as these processes are not appropriate for commercial
production, a scalable method to fabricate Ag NW network films is needed.

In this context, direct printing techniques allow the production of flexible conductive electrodes without
masks and templates (Figure 8) [24–27]. In particular, as illustrated in Figure 8a, electro-hydrodynamic jet
(EHD) printing provides an improved resolution and finer patterning compared to that of conventional
printing [24,25]. As reported by Park et al., the electrical conductivity of the TCE could be improved
while retaining the optical transmittance of the pre-patterned Ag grids. Moreover, the flexible TCE can be
formed by Ag grids with various line widths and spacings on the target substrates by EHD printing [24].
For instance, as shown Figure 8b,c, Cui et al. reported large-scale Ag NW pattern printing on PDMS by
EHD printing [25]. However, despite the direct and facile patterning by the printing technique, the process
requires several complicated procedures to obtain the desired patterning through judicious control of the
nozzle diameter, working distance, applied voltage, and stage movement [24,25].
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Figure 8. (a) Schematic of electrohydrodynamic (EHD) printing instrument. (b) Photographs of EHD
nozzle with voltage on (top) and off (bottom) (scale bar: 100 µm). (c) Large-scale Ag NW pattern
printed by EHD printing (scale bar: 1 cm). Reproduced with permission from [25]. Copyright 2018
Royal Society of Chemistry.

Apart from EHD printing, there are other printing techniques by which it has been attempted
to produce high-quality Ag NW networks. These include PDMS stamp-assisted dry transfer
printing, blown-bubble film coating, microfluidic assembly, electronic/magnetic field-assisted assembly,
convective force assembly, layer-by-layer self-assembly, gravure coating, and electrospinning [24–28].

2.1.8. Post-Processing

In addition to deposition processes of Ag NW, post-treatments (compression, thermal treatment,
UV curing, chemical welding, and drying) have a great impact on the performance of Ag NW
films [29–32]. Specifically, such post-treatments can be carried out on produced films to further improve
the physical properties or functions of the Ag NW films by controlling the ordering and arrangement of
the NWs. These additional treatments are conducive to improving the device performance of Ag NW
by reducing the surface roughness and NW contact resistances. For instance, Lai et al. reported
Ag NW-based TCEs with moth-eye nanostructures, whose optical transmittance was greatly enhanced
by combining the R2R process with a post-treatment [29]. Bai et al. presented a lamination process
by embedding NWs within a polymer or by sandwiching NW networks between ZnO layers [24].
Recently, Chung et al. and Kim et al. demonstrated that embedding NWs into a polymer yields reduced
junction resistances and smoothed surface morphology, leading to improved mechanical substrate
adhesion and retained mechanical flexibility [31,32]. The junction resistances of Ag NW networks can
be further reduced by annealing with spatially selective plasmonic welding or thermal treatment under
vacuum [33–35]. For the wide application of flexible devices, the deposition techniques for Ag NW
networks introduced in this section should be further commercialized to industrial production levels.

2.2. Characteristics of Ag NW Networks

Ag NW-based flexible TCEs require several parameters (chemical composition, morphology,
density of NW network) for the efficient incorporation of NWs into various flexible devices. In this
section, we discuss certain important fundamental properties (other than mechano-electric properties)
of Ag NWs, such as the electro-optical properties and electrical stability.

2.2.1. Electro-Optical Properties

Research on Ag NWs has been focused on the enhancing the optical and electrical properties
of Ag NW network-based TCEs by optimizing the NW networks [1–8,36,37]. As the Ag NWs are
connected in various ways to form a network, the electrical and optical properties of network film
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can be estimated based on the assumption of open or closed paths in the object film [1–8,36,37].
A percolating system of an Ag NW network can determine the density of open pathways where a
phase transition occurs. The association of connected pathways from one side to the other results in
the phase transitions in percolating media of NW networks.

As the optical and electrical properties mainly determine the performance of optoelectronic
devices, the optical transparency and conductivity of Ag NW networks are two major characteristic
parameters for NW-based TCEs. Typically, the transparency of the film can be quantitatively expressed
as a function of the transmittance (T) and the sheet resistance (Rs) of the film (T = e−α/σDC,BRs , α:
absorption coefficient, σDC,B: bulk DC conductivity of the film) [36–39].

However, the optical transmittance of metallic NW-based TCEs can be defined in different
way, where the free space among NWs plays an important role determining the transparency of
Ag NW-based TCEs [36–39]. As the free space is related to the density of the NWs in the film, the
transparency of the TCEs can be described in terms of the free space. As represented by the relation
between the transmittance and Rs in Equation (1), the transmittance of TCEs depends on the density of
the Ag NWs [36–39].

In the bulk-like regime, the transmittance of Ag NWs can be expressed as follows:

T = (1 +
Z0

2
σOP t)

−2
(1)

(σOp: optical conductivity (σOp = α/Z0), Z0: impedance of free space)
It is essential to determine the critical density nc in the Ag NW network percolating system. nc

is defined as the density at which the probability of finding over 50% in a given percolating system,
where nc is heavily dependent on the system geometry, lattice type, and object type [36–39]. The DC
conductivity of a NW network film is nonlinearly related to the difference between the density of the
NWs per unit area (n) and the percolation threshold (nc), as shown in Equation (2):

σDC ∝ (n− nc)
m(m : 4/3) (2)

In addition, the percolation threshold (nc) can be determined by the length of the NWs (LNW)
using the equation nc = 5.63726/LNW

2 [36–43].
A percolation network of Ag NWs is illustrated in Figure 9 [40]. The resistance of the Ag NW

network decreases with time (Figure 9a) where the percolation network is activated by thermal
annealing (Figure 9b). This result indicates that the formation of a percolation network of Ag NW
reduces the resistance [40].
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Figure 9. (a) Resistance curve for Ag NW networks under thermal ramp annealing (temperature history:
ramping (20 ◦C–100 ◦C for 10 min) and holding (100 ◦C for 1 h). (b) Scheme for the activation of efficient
percolation pathways via thermal annealing. Reproduced with permission from [40]. Copyright 2016
American Chemical Society.

As demonstrated, adding some volume fraction (x) of conductive materials to poor conductors
increases the conductivity for the volume fraction (x) range above a critical value (xc) [36–43]. In this
regard, the effect of NW geometry on the electro-optical properties has been examined to further
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optimize the device performance of Ag NW-based TCEs. As examined by Pike and Seager, the network
of longer NWs is more conducive to enhancing the conductivity of TCE films [36–43]. Similarly, as
confirmed by Sorel et al., Ag NW networks exhibit linearly proportional conductivity to the NW length,
whereas the optical conductivity is almost independent of the NW length [36–43]:

T = (1 +
Z0

2Rs

σOP

σDC
)
−2

(3)

The experimental data from different materials with transmittance values from 0 to the critical
values, depending on the structure of the materials, can be fit. Beyond the critical values, the data
deviate from the fitting curves, and percolation theory should be applied.

The DC conductivity of a NW network film can also be expressed using the film thickness, as
shown in Equation (4) [36–43]:

σDC ∝ (t− tc)
n(tc : threshold thickness, n : percolation exponent) (4)

To fabricate high-conductivity NW networks for industrial applications, t must be greater than
tc [41–43]. Based on this, Coleman and co-workers further defined the relation between σDC and σDC,B
using Equation (5) [41–43]:

σDC = σDC,B(
t

tmin
)

n
(tmin : thickness of Ag NWs network film) (5)

Coleman et al. further used n to define a percolation figure of merit (
∏

), which indicates the
relation between the transmittance (T) and the sheet resistance (Rs) of a TCE, as shown in Equation
(6) [41–43]: ∏

= 2[

σDC.B
σOP

(Z0tminσOp)
n ]

1
n+1

(T = [1 +
1∏ (

Z0

Rs
)

1
n+1

]

−2

) (6)

Figure 10a shows the optical transmittance (at 550 nm) of an Ag NW network as a function of its
sheet resistance; using the experimental data with Equation (6), it is easy to obtain the values of

∏
and

n [36,37,41,42].
∏

is a dimensionless number that reflects the values of the sheet resistance and the
transmittance, and n reflects the junction resistance in the NW network. It is found that the size effects
of Ag NWs are closely associated with percolation in transparent conductors. The curve of optical
transmittance (T) as a function of sheet resistance (Rs) in Figure 10b shows that TCEs do not exhibit
discernible differences with respect to the deposition method. This means that the electro-optical
performance does not depend on the coating process, but rather on the geometry of the constituent
materials. Different film deposition techniques are compared, which indicates that the properties of the
network are independent of the fabrication method. The green line represents a fit to the bulk regime,
and the orange line shows the fit for the percolative regime [36,37,41,42].

2.2.2. Electrical Stability

The electrical stability of an Ag NW network is important as the conductivity of Ag NW-based
TCEs decreases because of electrical stress arising from electromigration or elevated temperature
caused by Joule heating [1–8,43–45]. Specifically, the increased contact resistance of Ag NWs by high
current density at the junction results in Ag electromigration and Joule heating of the network [44,45].
Under such conditions, vacancies in the Ag NWs can further increase the vacancy concentration
and stress gradient of NW network by the rapid sweeping between the electrodes, leading to
an avalanche-breakdown of the circuit beyond certain value of the local stress gradient [44–47].
Additionally, under similar conditions of high current density at the NW junction, the increase in the
local temperature of the Ag NWs at the network junction to more than 300 ◦C leads to the melting (or
evaporation) of Ag NWs due to Plateau–Rayleigh instability [35,44,45].
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Figure 10. (a) Optical transmittance of Ag NWs vs. sheet resistance for various thin films of graphene,
single-walled CNTs, Ag NWs, and silver flakes (dashed lines: bulk regime, solid lines: percolative
regime). Reproduced with permission from [33]. Copyright 2010 American Chemical Society. (b) Optical
transmittance of Ag NWs prepared by different deposition techniques: spin coating, rod coating, drop
casting, and spray injection [33].

Such an electrical instability of NWs can be improved by junction resistance regulation, which
reduces the local current density and the Joule effect [44–46]. Specifically, the electrical stability of
Ag NW-based TCEs can be improved by effectively retarding the atomic surface diffusion of Ag
atoms before the junction deterioration occurs through chemical treatments, electrical welding, laser
sintering, or the deposition of extra layers, which enhances the mechano-electric reliability of the
NWs [1–8,43–46].

3. Mechano-Electric Properties of Ag NW Network

The mechano-electric properties of Ag NW-based TCEs are affected by their network geometry
and high strength of the NWs [48–50]. Specifically, Ag NWs exhibit superior mechano-electric reliability
in comparison with metal thin films. In this context, it has been increasingly important to characterize
and understand the mechano-electric properties of Ag NWs and their networks. This section focuses
on the mechano-electric properties of Ag NW and their networks to provide the necessary information
to meet the needs of flexible optoelectronic device applications.

3.1. Mechanical Property of Nanowires

Since the pioneering work by Galt and Herring regarding Sn whiskers (diameter: ~20 µm) that
showed 10 times higher elastic strain (2–3%) than that of their bulk counterparts, the research on the
fabrication and mechanical characterization of nanostructured materials (<1 µm) has been intensively
pursued through various nanomechanical tests (uniaxial deformation and bending tests) [49–52].
In addition, there have been developments for the mechanical characterization of NWs through
atomic force microscopy (AFM) and electron microscopy (EM), focused ion beam SEM technology
(FIB-SEM), and the integration of micro-electro-mechanical systems (MEMS) into electron microscopes
(EMs) [48,53,54]. Recently, an in situ uniaxial micromechanical device has been developed and
utilized for the mechano-electric characterization of 1D Ag NWs, and bi-axial micromechanical devices
are developed for the 2D nanomaterials [48,55]. Through the mechanical characterizations, two
representative factors affecting the mechanical properties of NWs have been suggested, which are the
microstructural size and crystalline structures.
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3.1.1. Microstructural Size

The performance of NW electrodes is closely related to their dimensions. That is, NWs exhibit the
size dependence in the mechanical strength aspects of the Young’s modulus, fracture strength, and the
yield strength [56–58]. Likewise, the strength values can scale with dimensions, such as the sample size
or microstructural length, a phenomenon known as the mechanical size effect [56–58]. Specifically, the
mechanical strength of a nanomaterial approaches its theoretical value, because of the relatively low
intrinsic defect density in small-scale samples, which leads to very high strengths [56–60]. In contrast,
when the size of the material is large, the surface energy barrier to be overcome also increases, and
the generation of twins is suppressed. For instance, the yield strength of Au nanostructures (NWs
and whiskers) under uniaxial stress exhibits a close-to-theoretical yield strength (~1 GPa) that is much
higher than that of the bulk polycrystalline metal (~10 MPa) [59,60]. Recent uniaxial tensile tests also
indicate a transition in the mechanical properties with decreasing sample size from ductility with little
work hardening to brittleness [56–60]. In addition, under decreased material dimensions, the role of
free surfaces becomes increasingly important in their deformation and fracture, owing to the increased
surface-to-volume ratio. Specifically, as confirmed by tensile tests of Au NWs, the increased surface
energy suppresses deformation twinning of NWs [59,60].

3.1.2. Crystalline Structure

The crystalline structure also affects to the mechanical properties of Ag NWs. Specifically,
single-crystal (SC) and twinned NWs show different tensile behaviors, whereas the elastic modulus of
twinned NWs is similar to that of SC NWs [54,61,62]. In addition, the dislocation nucleation of NWs
takes place at the intersection of twin boundaries with the free surface, exhibiting site-specific behavior
at the yield point [54,61,62]. All partial dislocations of NWs are hindered by twin boundaries under
the maximum flow stress. Such partial dislocations cannot escape the crystal, in stark contrast to the
behavior of SC NWs [54,61,62].

There is a linear increase in the critical resolved shear stress (CRSS) of NWs at the yield point under
increased twin boundary density or decreased twin boundary spacing. For instance, the CRSS value
obtained for SC NWs can introduce coherent twin boundaries during the growth of NWs, resulting in
either detrimental or beneficial effects on the mechanical property (yield stress) [54,61].

The crystalline structure of Ag NWs plays an important role in the mechanical strength. For instance,
the Young’s modulus of Ag NWs is different for SC and fivefold-twinned (FT) NWs depending on the
elastic anisotropy. Typically, materials with large diameters show an increased Young’s modulus, whereas
both decreasing and increasing Young’s moduli were observed for materials with smaller diameters.
The SC Ag NWs show an increased Young’s modulus at decreased diameter. There is a difference in the
Young’s moduli for FT and SC NWs because of the compatibility constraint imposed by the structure.
Different from SC NWs, the Young’s modulus of FT NWs does not change with a decrease in the diameter,
suggesting an independent mechanical strength behavior of FT NWs. Furthermore, FT Ag NWs show
more enhanced yield strength under tensile load compared with their SC counterparts. However, under
compression, FT Ag NW shows a lower yield stress compared with the corresponding SC Ag NW [54,61].

3.2. Mechano-Electric Behavior of Ag NW Networks

The mechano-electric properties of Ag NW networks should be critically evaluated in designing
and fabricating flexible electronics with high reliability. Considering the direct mechanical deformation
of NWs on the devices, it is crucial to prevent the fatigue failure of Ag NWs after repeated bending
deformations. Typically, the mechano-electric testing of conventional macroscale materials, such as
ITO, can be performed by tensile and bending testers. However, in contrast to macroscale materials,
there is no standard test method or equipment for the mechano-electric characterization NW networks.
With respect to the mechanical characterization of NW networks, bending fatigue testers have been
developed for the evaluation of the long-term mechanical reliability of Ag NW-based electrodes
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under various deformation environments. In this section, we discuss the mechano-electric behavior of
Ag NWs under repeated bending cycles exposed to various conditions or environments [48–63].

3.2.1. Dynamic Mechano-Electric Property of Ag NW Networks

As Ag NW-based flexible devices are continuously exposed to the repeated external stresses, Ag NW
networks can exhibit increased resistance after multiple cycles of mechanical deformations [49,63].
Under bending, Ag NW networks are extended by the application of tensile stress. In this context, it is
worthwhile to comprehensively understand the fatigue behavior of Ag NWs for the assessment of
their durability as safety-critical structural components, as well as for guiding the design, fabrication,
and optimization of NW-based devices [49,63]. For the analysis of the long-term mechano-electric
reliability of Ag NW networks, it is required to understand their dynamic (time-dependent) mechanical
properties (or bending fatigue behavior). In this regard, the electrical properties of Ag NWs should be
correlated with their deformation behavior under compression and tensile stress environments using a
bending fatigue tester.

As the mechanical resilience of a device can be evaluated under repeated deformation, the
flexibility of NWs is characterized by plotting the resilience as a function of mechanical bending cycles
in which the mechanical strain is controlled by changing the bending radius (Figure 11a). As shown in
Figure 11b, the bending fatigue test for Ag NW networks can be carried out by setting the bending
radius (R), which is defined as half of the gap of the bent substrate [64,65]. The bending fatigue
resilience is defined by measuring the fractional change in resistance (∆R/R0 = (R − R0)/R0). It should
be noted that a fatigue test for an Ag NW network is difficult to perform owing to the time-consuming
experiment requiring a sufficient number of bending cycles (> ~1000). In addition, the microstructural
analysis of an Ag NW network can be performed by associating the microstructure of the Ag NWs
with the number of bending cycles. The position of an Ag NW on the substrate determines the stress
applied to the Ag NW. When the NW is placed on the upper end of the neutral plane, tensile stress is
applied, whereas compressive stress is applied when it is placed on the lower end [1–5,49,63–65].

The bending fatigue behavior of Ag NW networks is closely associated with their cracking life.
Specifically, a crack induced by bending fatigue intensifies the bending stress, leading to the propagation
of fatigue cracks under increased bending cycles. Similar to conventional defects (e.g., dislocations and
cracks), defects on Ag NWs can act as local stress concentrators and serve as sources of crack nucleation
and propagation. In addition, Ag NW networks exhibit structure (location)-dependent behavior under
applied stress on the NW. In this respect, Ag NWs exhibit superior bending fatigue resistance to that of
their bulk counterpart under typical bending fatigue test conditions; the facilitated atomic mobility on
the surface of NWs with a large surface-to-volume ratio enables the reduced fracture of NWs under
extended cyclic deformations. Theoretically, the defect-free nature (or lack of crack nucleation) of intact
NWs enables infinite fatigue life [50–52]. As will be discussed below, there are several parameters
affecting to the mechanical strength of Ag NWs under repeated bending cycles.
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Figure 11. (a) Conductivity of Ag NW electrode at various bending radii. (Inset: left (inter-connection
bent), middle (inter-connection twisted), right (inter-connected PCB assembly on the arm). Reproduced
with permission from [64]. Copyright 2014 WILEY-VCH Verlag GmbH and Co. (b) Schematic of a
cyclic bending fatigue tester [65].

(1) Density of Ag NW networks

Reportedly, the density of Ag NW networks can critically affect their physical properties and
deformation behavior under cyclic bending fatigue testing [49–53,63]. Different from the channel
crack-induced fatigue failure of metal thin films, the failure mode of Ag NWs network depends on their
density, because of the frequent occurrence of the failure (local failure) of Ag NW networks at junctions.
The parameter n represents the number of unit squares in a line; thus, a higher n value can be considered
as a higher density of the Ag NW network. As revealed in Figure 12, the mechano-electric reliability
of Ag NWs can be closely associated with their network density, suggesting the importance of the
optimized geometrical structure of Ag NW networks toward various electronic devices. A simulation
study showed that the failure of Ag NWs was more pronounced for the densest NW networks, owing
to the more confined geometry. Specifically, a NW network with a confined geometry and higher
density less able to accommodate an applied bending strain by stretching. That is, denser Ag NW
networks exhibit an increased resistance compared to those of lower-density networks [49–52,63,66].
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Figure 12. Calculated resistance changes of Ag NW networks as a function of vacancy fraction; Ag NW
networks were modeled as a grid with a junction failure ratio of 1/8. Reproduced with permission
from [49]. Copyright 2019 Elsevier.

(2) Size and geometric effect

Typically, nanostructured materials exhibit an increased fatigue life in the high-cycle regime after
the bending fatigue test, indicating the increased yield strength and reduced ductility [49–52]. Such
an enhanced mechanical reliability of Ag NWs can be attributed to the size effect, whereby multiple
dislocations of Ag NWs become increasingly difficult to create in the submicrometer regime.

The electrical percolation of Ag NW networks also depends on their dimensions, resulting in
variable mechanical reliability (Figure 13). Reportedly, Ag NW networks with narrower widths show
drastic (Figure 13a) increases in resistance during the bending cycles [49–52]. An Ag NW with a larger
width contains more electrical percolation pathways than narrow strips, leading to enhanced reliability
of the network. With respect to the directionality of an Ag NW network, it does not heavily affect
the failure behaviors, as most of NW network has some form of random distribution and exhibits no
directionality in resistance (Figure 13b) [49–52].
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Figure 13. Resistance change of (a) Ag NW networks with different widths. (b) Response of Cu
thin films and Ag NW networks in terms of directional resistance variations after cyclic bending.
The directions of resistance: perpendicular to the lateral pattern (left) and parallel to the vertical pattern
(right). Reproduced with permission from [49]. Copyright 2019 Elsevier.
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(3) Environmental effect

The environmental conditions also affect the mechanical reliability of Ag NW network-based
devices. Specifically, although Ag shows superior chemical stability to other TCE candidates, such as
Cu or Ni, Ag NW-based TCEs are still sensitive when exposed to air, owing to their high surface area.
The reduced cross-sectional area of NW under oxidation results in a drastically enhanced resistance of
the electrode. Then, as the stress is concentrated on the oxidizing region under bending, the crack
probability increases with NW degradation. The mechanical properties of Ag NW network-based
devices can also be deteriorated by their oxidation and sulfidation as well as by the electro-migration
of Ag atoms [67]. It should be noted that, in practical applications, device aging is not directly or solely
correlated to the deterioration of the material (Ag NW) by the environment but depends more on the
overall architecture of the device owing to their complex ageing mechanisms [67].

3.2.2. Enhanced Mechano-Electric Property

The network structure of Ag NWs suggests superior mechanical reliability under bending fatigue
to that of un-networked NWs owing to the effective accommodation of the bending strain by the
network stretching and the limited accruement of dislocations within the NW network [49–52,68].
Nevertheless, the mechano-electric performance of Ag NWs is insufficient for application to commercial
devices. It is required to improve the mechano-electric stability of Ag NW networks by properly
addressing the current challenges facing the industrial integration of Ag NWs into devices. In this
context, several protocols have been developed for the preparation of Ag NW-based TCEs with
enhanced mechanical flexibility, such as welding, compositing, or deposition of extra layers onto
Ag NW.

(1) Modification of NW network

(a) Annealing/welding of NW network

Annealing/welding can effectively enhance the mechanical stability of TCEs, allowing them to
withstand higher mechanical stress without sacrificing their electrical properties by reducing the
contact resistances between Ag NWs. As the conductivity of Ag NW networks is mainly influenced by
their surface and grain boundary scattering, the conduction mechanism changes from tunneling to free
electron conduction at increased Ag NW concentration.

In this context, the electrical conductivity of Ag NWs can be effectively enhanced by local sintering
of NW junctions through various annealing processes, including thermal annealing, light irradiation,
mechanical pressing, plasma treatment, extra coating, cold welding, laser irradiation, humidity, and
chemical treatment [68–72]. Specifically, as demonstrated by Giusti and Langley et al., the thermal
annealing of an Ag NW network forms fused-in junctions among the NWs, leading to significantly
enhanced flexibility of TCEs with retained electrical conductivity after long-term (500 K) cycles under
the strain of 1% [44,45,69]. As demonstrated by Li and Park et al., the welding of Ag NWs with
intense light (e.g., flashlight) irradiation (4.6–10.3 J/cm2 per pulse), high-power tungsten–halogen lamp
(30 W/cm2) or plasma treatment are also suggested to enhance the mechano-electric reliability (or
maintain the electrical resistance) of Ag NWs for long-term bending cycles (>10,000) [35,73–75]. As for
welding by an extra coating layer (ITO) by sputtering, a welded Ag NW network exhibits maintained
electrical resistance after 10,000 bending cycles [35,76,77].

Recently, there have been studies on the effect of the welding process on the mechano-electric
property of Ag NWs. In typical thermal annealing processes, the NW junctions were welded with
increased temperature, leading to a reduced percolation threshold (enhanced conductivity). However,
as shown in Figure 14a, cold-welding processes, including capillary-force-induced or mechanical
welding, create self-limited welding of the interwire junctions of Ag NW networks, yielding improved
fatigue characteristics [35,64]. The welded Ag NW network can be formed through a mechanical joint
by applying the mechanical stress (or bending stress) on the NW network [64,75]. Very interestingly,
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as shown in Figure 14b, an enhanced mechano-electric reliability was observed for an un-annealed
Ag NW network [64].
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Figure 14. (a) SEM images of Ag NW networks: before and after imposing strain for 10,000 cycles
at a bending strain of 1%. (b) Comparison of un-annealed and annealed (100 ◦C and 180 ◦C for
25 min) Ag NW networks under bending tests. Reproduced with permission from [64]. Copyright
2014 WILEY-VCH Verlag GmbH and Co.

(b) Regulation of the alignment of the NW network

Regulating the alignment of Ag NW networks and their percolation behavior can further enhance
the electrical conductivity of the networks. Figure 15 compares different NW electrical percolation
networks (∼22 Ω/sq.) of aligned and random Ag NW networks [1–5,78,79]. Specifically, an aligned
Ag NW network precisely controlled through capillary printing using a nanopatterned PDMS stamp
can have a lower NW density compared to that of a random Ag NW network, owing to the lower
percolation threshold. As shown in Figure 15a, the aligned Ag NW films showed significantly reduced
sheet resistance at the same NW surface density. The reduced percolation thresholds of the aligned
Ag NW networks allow higher optical transmittance (T) than those of random Ag NW films at similar
Rs. Figure 15b compares T and the haze factor of aligned and random Ag NW networks with similar
Rs values (~22 Ω/sq.). The aligned Ag NW networks exhibited ∼3% higher T and 2.4 times lower
haze values at 550 nm wavelength, compared with the random Ag NW networks. These enhanced
optical properties of the aligned Ag NW networks can be attributed to the decreased light scattering
from the reduced NW surface density. The mechanical stability of flexible polymer light-emitting
diodes (PLEDs) with aligned Ag NWs (Figure 15c) showed 80% retention of the initial luminance
over 300 bending cycles, whereas ITO-based flexible PLEDs showed rapid decreases in luminance.
Notably, PLEDs using aligned Ag NW electrodes showed a 30% enhanced maximum luminance
(33,068 cd/m2) and a higher luminance efficiency (14.25 cd/A) compared with those using random
Ag NW networks [1–5,78,79]. Moreover, Ag NWs networks can be regulated by optimizing the scale
of the Ag NW network to enhance the device efficiency [78,79]. For instance, the network structure of
shorter/smaller Ag NWs (10 mm/40 nm) deposited on the percolation voids of relatively longer/larger
diameter Ag NWs (100 mm/100 nm) can enhance the OLED efficiency owing to the dual-scale metal
NW network [1–5,78,79].
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Figure 15. Optical and electrical properties of Ag NW networks with aligned and random orientation.
(a) Sheet resistance of Ag NW networks with aligned and randomly oriented geometries as a function
of NW density. (b) Optical transmittance (solid lines) and haze factor (dashed lines) over the visible
spectrum for aligned and random Ag NWs. (c) Bending fatigue behavior (bending radius: 5 mm) of
flexible PLEDs and PSCs using ITO and aligned Ag NWs (insets: Aligned Ag NW-based PLED and
PSC). Reproduced with permission from [78,79]. Copyright 2015 American Chemical Society.

(2) Hybridization

The mechano-electric properties of Ag NW percolation network-based TCEs can be further
enhanced in combination with other materials or stacking with appropriate functional layers through
various hybridization techniques [80–90].

(a) Ag NW–oxide hybrid

The Ag NW–oxide hybrid TCE exhibits superior chemical and mechanical characteristics
(stress–strain behavior and fatigue characteristics) to those of Ag NW-based TCEs. Such Ag NW–oxide
hybrids can be constructed through the compositing of Ag NWs with various oxides, including ITO,
ZnO, TiO2, Al2O3, and graphene oxide (GO), yielding enhanced mechanical properties.

For instance, the hybrids of Ag NW–reduced graphene (rGO) (Figure 16a), Ag NW–TiO2 nanosheet
(NS) (Figure 16b), and Ag NW–ZnO (Figure 16c,d) exhibit the improved fatigue behavior owing to the
limited crack formation of Ag NWs after application of the secondary nanostructures (GO NS, TiO2

NS, and ZnO film). More specifically, the application of GO NS can effectively improve the chemical
and mechanical reliability of an Ag NW network owing to its low water and gas permeability and high
chemical resistance, making it suitable as a protective film for flexible devices, as well as enhancing the
mechanical reliability of the Ag NWs. In addition, GO NS can solder Ag the connections in the NW
network, leading to a clearly reduced inter-NW contact resistance without high-force pressing, or a heat
treatment processes [80–84]. With respect to metal oxides (Figure 16b–d), despite the poor conductivity
of the metal oxide layer (ZnO, TiO2, Al2O3), they can reduce the contact resistance of Ag NW networks,
thereby decreasing the total resistance. Specifically, Ag NW failures by Joule heating from electrical
current can be prevented by applying a conformal layer of ZnO wrapped around the Ag NW (ZnO
coated on Ag NW). As a result, OLED devices based on a ZnO–Ag NW hybrid demonstrate longer
lifetimes compared to ITO/Ag NW-based OLED devices [85–88].
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Figure 16. Comparative cyclic bending test results as a function of time or cycle number for (a) Ag NW
networks and Ag NW–RGO hybrid after exposure at 70 ◦C for 132 h. Reproduced with permission
from [66]. Copyright 2016 Royal Society of Chemistry. (b) TiO2 NS–Ag NW hybrid and Ag NW
under 6.7% bending strain. Reprinted with permission from [65]. Copyright 2018 American Chemical
Society. (c) ITO single layer and ZnO–Ag NW–ZnO composite on polymer substrates. Reproduced with
permission from [61]. Copyright 2013 American Chemical Society. (d) Bare Ag NW and ZnO-coated
Ag NW networks. Reproduced with permission from [61]. Copyright 2018 American Chemical Society.

(b) Ag NW–polymer hybrid

There are great challenges facing the development of highly stretchable conducting architectures
based on Ag NW–polymer composites to improve their deformability, electromechanical stability, and
fatigue-resistance [65,89–94]. As Ag NW TCEs are required to withstand external mechanical forces
(tensile, compressive, and shear forces), both the Ag NW film and the polymer should be stretchable,
and the latter acts as a supporting layer for the Ag NW network. Typically, highly stretchable
composites are prepared by assembling an Ag NW network into a sponge-like polymer skeleton, such
as PDMS, poly(urethane acrylate) (PUA), or polyimide [89–94]. As a result, the mechanical stability
of stretchable Ag NW conductors can be increased by compositing Ag NWs with a polymer as a
supporting substrate. For instance, as shown in Figure 17a,b, a hybrid film (Ag NW/PEDOT:PSS)
displays superior bending and taping stability compared to those of bare Ag NWs, indicating enhanced
mechano-electric stability [89,90]. However, the structural design is also needed to ensure the electrical
conductivity of the film under strain. For instance, as shown in Figure 17c (top: schematic, bottom:
stretched devices being twisted/crumpled and strained), if Ag NW networks are pre-strained to form a
wrinkled structured film or have a wavy structure by compression of floating film onto PDMS, the
TCEs show significantly enhanced mechano-electric performance (or stretchability) [1–5,91,92].
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Figure 17. Comparative mechano-electric stability of Ag NWs and Ag NW/PEDOT:PSS composite for
(a) tape test and (b) cyclic bending tests. (Inset: LED emission on Ag NW/PEDOT:PSS electrode before
and after bending cycles) [89,90]. (c) Ag NW/PDMS composite based stretchable electrochromic device.
(top) Stretchable devices being twisted/crumpled and patterned electrochromic device in bleached and
colored states (0 and 50% strain) (bottom). Reproduced with permission from [91,92]. Copyright 2014
American Chemical Society.

(c) Ag NW–conductive layer hybrid

An Ag NW–conductive layer hybrid is beneficial to compensate the mechanical failure of NWs
with the aid of an auxiliary conductive layer. For instance, if Ag NWs are electrically disconnected or
have poor conductivity, the auxiliary conductive layer (ITO or graphene) becomes the main pathway
for electronic transport [95]. An Ag NW/graphene hybrid shows a higher conductivity than individual
Ag NWs and graphene in parallel, suggesting the potentially higher mechanical endurance of the
hybrid electrode against bending fatigue. As shown in Figure 18a, an Ag NW/graphene hybrid film
exhibits an increase in resistance of 25%, which is much less than that (∆R/R0 > 140%) shown by the
Ag NW film after cyclic bending tests under 6.5% strain, owing to new current paths formed by the
graphene layer underneath the Ag NWs. Although some Ag NWs are damaged by the bending fatigue,
the graphene can effectively suppress the resistance increase of the electrode under high bending strain.
In addition, in contrast to the result of the Ag NW/graphene sheet hybrid film that showed a sudden
increase in resistance, the Ag NW/graphene mesh hybrid film exhibited a gradual resistance increase
without any abrupt increase, even after 100,000 bending cycles. The superior mechano-electrical
stability of Ag NW/graphene mesh film is further corroborated by displaying its retained morphology
after cyclic bending (Figure 18b) [83].
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Figure 18. (a) Comparative resistance change of the electrodes of OCL/Ag NW/graphene sheet and the
OCL/Ag NW/graphene mesh hybrid film as a function of bending cycles (bending radius: 1 mm, strain:
6.5%). (b) SEM images of Ag NW/graphene mesh hybrid film after cyclic bending tests [83].

(3) Enhancing the compatibility between Ag NW and substrate

As Ag NW films require supporting substrates owing to their limited self-supporting characteristics,
it is required to improve the compatibility of Ag NWs with the substrates and other coating layers to
ensure the high mechano-electric reliability of Ag NW films. For instance, good adhesion between
Ag NWs and the substrates is crucial to maintain the mechanical stability of TCEs under repeated
bending cycles. In addition, poor adhesion of bare Ag NW films to most substrates has necessitated
enhancing the adhesion between Ag NWs and the substrates by the supplemental processes and
compositing with other materials. Lee et al. demonstrated enhanced adhesion between Ag NWs and
PET substrates through the lamination of Ag NWs on the substrate at 120 ◦C, leading to stronger contact
between the NWs and substrate [14,35]. The intense-pulse-light (IPL) method was also employed to
enhance the adhesion between Ag NWs and the substrate by briefly heating the NWs and substrates at
high temperature, thus increasing the contact between the materials [35,65].

As non-heating approaches, external and strong conformal pressures are applied to Ag NW
electrodes thereby improving the adhesion of Ag NW to the substrate (e.g., PET) by coating an extra
layer or directly compositing the Ag NWs. For instance, an extra layer such as a metal oxide (ZnO,
TiO2) or graphene can be coated onto Ag NWs through atomic layer deposition or sol–gel methods,
leading to enhanced adhesion of the Ag NWs on the polymer substrates [14,30,35,76,77,80,86]. As
demonstrated by Nam et al., the adhesion of Ag NWs was greatly improved by the embedding of
Ag NWs in polymers, such as Norland Optical Adhesive, chitosan, alginate, and polyvinyl alcohol
(PVA) [35,96].

4. Applications of Ag NW Networks with Mechano-Electric Properties

As discussed in the previous section, there have been many Ag NW-based devices developed
for stretchable and flexible electronics (e.g., stretchable displays, high-frequency antennas, artificial
muscles, and skin sensors) [1–5,8,96–111]. In this section, we introduce Ag NW network-based
flexible optoelectronic and electronic devices, emphasizing their performance as a function of their
mechano-electric properties.

4.1. Optoelectronic Devices

Ag NW-based TCEs for various optoelectronic devices (displays, multifunctional sensors,
touchscreens, etc.) have been intensively studied, owing to the good electro-optical properties
and mechano-electric stability of Ag NW networks. In this part, we discuss the mechano-electric
performance of Ag NW-based devices under dynamic motion during extended operation periods.
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4.1.1. Transparent Conductive Electrode

As noted, the mechanical properties (e.g., adhesion to substrates and flexibility) of Ag NW-based
TCEs play an important role in determining the compatibility of device fabrication and scalability (R2R
processing). The adhesion property of Ag NW films was evaluated by a peeling test with Scotch tape
and the resistance of the Ag NW films was recorded before and after the taping process (Figure 19).
Ag NW and Ag NW–TiO2-based electrodes prepared under different thermal conditions (200–350 ◦C)
exhibit different morphologies (Figure 19a (Ag NW network (300 ◦C)) and 19b (Ag NW−sol−gel TiO2

film (300 ◦C)) and resistance changes (Figure 19c), depending on the annealing conditions. Specifically,
as shown in Figure 19c, Ag NW–TiO2 shows a retained NW structure, even after annealing at 300 ◦C,
whereas the network structure of bare Ag NWs is destroyed at moderate temperature (300 ◦C). After the
peel-off test using Scotch tape, the sheet resistance of Ag NW−sol−gel TiO2 did not change, whereas the
bare Ag NW network showed increased sheet resistance beyond the measurement limit (120 MΩ/sq.).
This retained conductivity of Ag NW–sol–gel TiO2 is attributable to the function of the sol−gel TiO2 as
a mold to fix the Ag NWs to the substrates. More importantly, Figure 19d shows that the composite
exhibits superior performance to that of sputtered ITO on PET substrates after 500 bending cycles at 5R
bending radius [87].
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The performance of Ag NW-based electronic devices with very thin transparent active layers 

(organic compounds, metal oxides, etc.) is further enhanced by reduced surface roughness and work 

function regulation, which lead to enhanced charge carrier injection or collection in the devices 

[87,96–99]. More importantly, such modifications could improve the mechano-electric properties of 

the devices [98]. For instance, as shown in Figure 20, Ag NW meshes on PET were prepared without 

Figure 19. SEM images of (a) Ag NW network (300 ◦C) and (b) Ag NW−sol−gel TiO2 film (300 ◦C).
(c) Sheet resistance of Ag NW network and Ag NW composites (Ag NW−ITO NPs and Ag NW−sol−gel
TiO2) after thermal treatments at 300 ◦C. (d) Sheet resistance comparison of Ag NW−sol−gel TiO2 and
ITO film as a function of bending cycles at 5R. Reproduced with permission from [87]. Copyright 2015
American Chemical Society.

4.1.2. Flexible Optoelectronic Device

(1) Flexible Organic Light-Emitting Diode (OLED)

The performance of Ag NW-based electronic devices with very thin transparent active layers
(organic compounds, metal oxides, etc.) is further enhanced by reduced surface roughness and
work function regulation, which lead to enhanced charge carrier injection or collection in the
devices [87,96–99]. More importantly, such modifications could improve the mechano-electric
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properties of the devices [98]. For instance, as shown in Figure 20, Ag NW meshes on PET were
prepared without (Figure 20a) and with (Figure 20b) roll pressure treatment to compare the effect of
roll pressure on the electrical performance of the Ag NW mesh. As shown in Figure 20c, bending the
Ag NW meshes showed no conductivity degradation before and after bending at different radii of
curvature (50–0.625 mm). Repeated bending at 1R also showed no increase in the sheet resistance,
demonstrating good adherence and no signs of delamination of the NW mesh array. This result
indicates the reduced sheet resistance of Ag NW mesh films between the individual Ag NWs by
roll pressing. In the Ag NW-incorporated optoelectronic devices, Ag NW mesh electrodes exhibit
comparable device yield with that of ITO-based devices, owing to the reduced surface roughness of
the electrodes by roll pressing [98].

Materials 2019, 12, x FOR PEER REVIEW 25 of 35 

 

(Figure 20a) and with (Figure 20b) roll pressure treatment to compare the effect of roll pressure on 

the electrical performance of the Ag NW mesh. As shown in Figure 20c, bending the Ag NW meshes 

showed no conductivity degradation before and after bending at different radii of curvature (50–

0.625 mm). Repeated bending at 1R also showed no increase in the sheet resistance, demonstrating 

good adherence and no signs of delamination of the NW mesh array. This result indicates the reduced 

sheet resistance of Ag NW mesh films between the individual Ag NWs by roll pressing. In the Ag 

NW-incorporated optoelectronic devices, Ag NW mesh electrodes exhibit comparable device yield 

with that of ITO-based devices, owing to the reduced surface roughness of the electrodes by roll 

pressing [98].  

 

Figure 20. Cross-sectional SEM images of (a) PEDOT:PSS/Ag NW (as-sprayed). (b) PEDOT:PSS/Ag 

NW (as-sprayed/rolled). (c) Sheet resistance vs. bending of a sample at various bending radii for as-

sprayed Ag NW on PET (red) and Ag NW meshes rolled at 165 °C (blue) (inset: Sheet resistance of 

each sample after bending cycles). Reproduced with permission from [98]. Copyright 2013 American 

Chemical Society. 

There have been many flexible optoelectronic devices (e.g., stretchable PLED)) developed based 

on Ag NW networks and polymers [1–5,97–103]. Typically, flexible OLEDs can be constructed by the 

deposition of OLED components (e.g., PEDOT: PSS/NPB/Alq3/LiF/Al) on an Ag NW-based electrode, 

where an Ag NW–polymer composite-based TCE can be prepared by utilizing elastic polymers (e.g., 

PVA and PUA). For instance, Figure 21A(a) shows a stretchable electroluminescent (EL) device with 

a sandwich structure of TPU-Ag NW/EL layer/TPU-Ag NW (composite electrodes of Ag NW and 

high-k thermoplastic polyurethane (TPU)). The as-prepared stretchable EL device (Figure 21A(b)) 

shows an enhanced efficiency as well as uniform light emission in the bent, stretched, and twisted 

states, owing to the significantly reduced surface roughness. In addition, as shown in Figure 21A(c), 

the annealed Ag NW/TPU electrode shows a much smaller resistance increase than that of the as-

deposited electrode under uniaxial stretching to 100% strain. As for the mechano-electric 

performance during repeated bending cycles, different levels of resistance change are observed 

during 1000 stretching−relaxing cycles to 50% strain (Figure 21A(d)). Such excellent mechano-electric 

stability can be attributed to the strong physical adherence of Ag NWs to the elastomeric substrate, 

which can limit the junction damage and inter-NW sliding for improved stretchability [97]. Similarly, 

an Ag NW–PVA composite electrode exhibits excellent mechanical stability (adhesion, friction, and 

bending stability) because of the strong anchoring of Ag NWs to the PVA matrix at 120% strain [100]. 

Figure 21B displays the structure (Figure 21B(a)) and a photograph (Figure 21B(c)) of a stretchable 

PLED based on a GO–Ag NW/PUA composite and of a semi-transparent stretchable PLED. In 

addition, GO–Ag NW/PUA exhibits negligible resistance changes after a long cyclic bending fatigue 

test (Figure 21B(b)), leading to retained PLED performance even in the stretched state (130%) (Figure 

21B(d)) [102]. Figure 21C shows the electronic and mechano-electric performance of an OLED of 

alginate (Alg)-based composite film, NaAlg(CaCl2)/Ag NW composite film, and ITO anodes. Note 

Figure 20. Cross-sectional SEM images of (a) PEDOT:PSS/Ag NW (as-sprayed). (b) PEDOT:PSS/Ag NW
(as-sprayed/rolled). (c) Sheet resistance vs. bending of a sample at various bending radii for as-sprayed
Ag NW on PET (red) and Ag NW meshes rolled at 165 ◦C (blue) (inset: Sheet resistance of each sample
after bending cycles). Reproduced with permission from [98]. Copyright 2013 American Chemical Society.

There have been many flexible optoelectronic devices (e.g., stretchable PLED)) developed based
on Ag NW networks and polymers [1–5,97–103]. Typically, flexible OLEDs can be constructed by the
deposition of OLED components (e.g., PEDOT: PSS/NPB/Alq3/LiF/Al) on an Ag NW-based electrode,
where an Ag NW–polymer composite-based TCE can be prepared by utilizing elastic polymers
(e.g., PVA and PUA). For instance, Figure 21A(a) shows a stretchable electroluminescent (EL) device
with a sandwich structure of TPU-Ag NW/EL layer/TPU-Ag NW (composite electrodes of Ag NW and
high-k thermoplastic polyurethane (TPU)). The as-prepared stretchable EL device (Figure 21A(b)) shows
an enhanced efficiency as well as uniform light emission in the bent, stretched, and twisted states, owing
to the significantly reduced surface roughness. In addition, as shown in Figure 21A(c), the annealed
Ag NW/TPU electrode shows a much smaller resistance increase than that of the as-deposited electrode
under uniaxial stretching to 100% strain. As for the mechano-electric performance during repeated
bending cycles, different levels of resistance change are observed during 1000 stretching−relaxing
cycles to 50% strain (Figure 21A(d)). Such excellent mechano-electric stability can be attributed to the
strong physical adherence of Ag NWs to the elastomeric substrate, which can limit the junction damage
and inter-NW sliding for improved stretchability [97]. Similarly, an Ag NW–PVA composite electrode
exhibits excellent mechanical stability (adhesion, friction, and bending stability) because of the strong
anchoring of Ag NWs to the PVA matrix at 120% strain [100]. Figure 21B displays the structure
(Figure 21B(a)) and a photograph (Figure 21B(c)) of a stretchable PLED based on a GO–Ag NW/PUA
composite and of a semi-transparent stretchable PLED. In addition, GO–Ag NW/PUA exhibits
negligible resistance changes after a long cyclic bending fatigue test (Figure 21B(b)), leading to retained
PLED performance even in the stretched state (130%) (Figure 21B(d)) [102]. Figure 21C shows the
electronic and mechano-electric performance of an OLED of alginate (Alg)-based composite film,
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NaAlg(CaCl2)/Ag NW composite film, and ITO anodes. Note that, as shown in Figure 21C(a), the
Ag NW composite electrode exhibits superior bending stability to that of the controls (ITO and bare
Ag NW). In addition, the Ag NW composite electrode exhibits superior current efficiency, depending
on the luminance, to that of the ITO electrode (Figure 21C(b), owing to the formation of the composite
structure [101,103].
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Figure 21. (A) Stretchable EL devices based on Ag NWs and high-k TPU (a) Schematic of stretchable
EL device structure with EL layer and Ag NWs on TPU substrates. (b) Stretchable EL device in
bent, twisted, and stretched states. (c) Relative sheet resistance (Rs/Rs0) vs. tensile strain. (d) Sheet
resistance by repetitive stretching to 50% strain for 1000 cycles. Reproduced with permission from [97].
Copyright 2018 American Chemical Society. (B) (a) Schematic illustration of a stretchable PLED based
on a GO–Ag NW/PUA composite OLED device. (b) Bending fatigue test of GO–Ag NW/PET during
repeated cycles (bending radius: 4 mm). (c) Semi-transparent stretchable PLED (top: photograph)
and operating LED (bottom) with NaAlg(CaCl2)/Ag NW composite electrode. (d) Photographs of
PLED and stretched to designed strain (130%). Reproduced with permission from [102]. Copyright
2014 American Chemical Society. (C) (a) Comparative bending fatigue cycles for ITO, Ag NWs, and
composite electrode. (b) Current efficiency vs. luminance for ITO and composite electrode. Reproduced
with permission from [103]. Copyright 2017 American Chemical Society.

4.2. Electronic Devices

Flexible electronic devices based on Ag NW networks require both desired electrical and mechanical
properties. In this section, we introduce a flexible heater and electromagnetic interference shielding, as
two examples out of many Ag NW-based flexible electronic devices.

4.2.1. Wearable Electronic Devices

Wearable electronic devices (e.g., clothing-integrated sensors, heaters, and portable devices)
require electrically conductive materials with mechanical flexibility. The candidate materials for
wearable devices (e.g., e-textiles and polymer composites) should be mechanically flexible without
significant degradation after repeated bending cycles.

First, e-textiles can be prepared by coating the surface of fibers (nylon, polyester, and cotton) with
Ag NWs, leading to mechanically flexible and electrically robust composites after repeated bending.
As shown in Figure 22A, e-textile can be prepared by uniform coating of NWs on the fiber (nylon
thread). The resistance variations under repeated bending for commercial conductive thread and a
NW-coated nylon thread with the same initial resistance are plotted in Figure 22B(a), exhibiting that
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the resistance of the NW-coated thread only increased by 14% after 200 bending cycles at 6R bending
radius, whereas the resistance of the commercial thread increased by a factor of more than four over
the same period [105]. The enhanced mechanical stability of Ag NW-coated thread can be attributed
to the unique network structure of Ag NWs, with much more flexibility and endurance of higher
elastic strains. In addition, the mechanical forces caused by bending improve the connections of the
NW junctions, thereby reducing the junction resistances. As plotted in Figure 22B(b), similarly to the
result of commercial threads, the retained resistance of the Ag NW-coated nylon thread after repeated
washings with detergents indicates the robustness of the coating on the thread and good adhesion of
Ag NWs to the nylon threads [105].
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Figure 22. (A) SEM images of Ag NW-coated nylon thread. (B) Resistance of NW-coated nylon thread
and a commercial thread after (a) repeated bending cycles at 6R and (b) repeated washing cycles [105].

4.2.2. Flexible Heater

A flexible heater, especially a stretchable transparent heater, is another application of Ag NW-based
TCEs, owing to the high electrical and thermal conductivity of Ag NWs. Typically, a transparent
thermal heater can be prepared mixing Ag NWs with an optimal amount of nonconducting materials
to induce Joule heating [1–8,43–45]. As shown in Figure 23a, Lee et al. demonstrated a flexible heater
based on an Ag NW-coated PET substrate, exhibiting mechanical stability, high optical transmittance
and conductivity, as the value of ∆Rs remained below 0.1% after the bending tests [1–5,106]. Such a
negligible change in the sheet resistance indicates the excellent mechanical robustness of the Ag NW
film fabricated by supersonic cold spraying. Figure 23b shows the stretching of an Ag NW-based heater
on a flexible substrate (eco-flex), where the heater film can be stretched up to 400% without a noticeable
degradation in the heating property. It should be noted that the reciprocal relation between the
transparency and conductivity of the Ag NW film limited the concentration of Ag NWs present in the
film, leading to limited stretching of the heater beyond 400%. Furthermore, a patterned Ag NW-coated
flexible PET heater could be prepared using a stainless-steel mask. This indicates that the heat-releasing
capability of patterned Ag NWs was retained over the structure. In a similar study, Hong et al.
introduced a stretchable thermal heater made of a Ag NW-deposited PDMS film by exploiting the
swelling phenomenon of PDMS [1–5,106–110]. The resultant stretchable heater has an effectively
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embedded Ag NW percolation network within the PDMS matrix and good thermal stability at strain of
60%. Along with device fabrication, Sorel et al. reported the characteristic changes in an Ag NW-based
transparent thermal heater in the bulk-like and percolative regimes by calculating a percolative figure
of merit of the Ag NW percolation network [1–5,106–110]. The percolation network model of Ag NWs
provides critical considerations, including the electrical conductivity, optical transparency, and heat
dissipation for high-efficiency Joule heaters [1–5,106–110]. The Ag NWs coated on the eco-flex substrate
showed effective electro-thermal performance in the rapid on/off test and good mechano-electrical
stretchability up to 400%.
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Figure 23. (a) Photographs and infrared (IR) images of Ag NW films during bending tests. (b) Photographs
and IR images of Ag NW films during the stretching in the initial (0%), intermediate (200%), and final
(400%) states. Reproduced with permission from [106]. Copyright 2017 Royal Society of Chemistry.

4.2.3. Electromagnetic Interference Shielding

A highly stretchable and transparent electromagnetic interference shielding (STEMIS) layer
for wearable electronic devices was demonstrated with an Ag NW network on a PDMS substrate
(Figure 24a). As shown in Figure 24b, the EMI shielding effectiveness of the device was measured
under various strain conditions by installing an X band waveguide between the moving stage and
placing a STEMIS film on the waveguide (Figure 24b). The STEMIS layer with different Ag NW areal
densities exhibits a high electromagnetic wave shielding effectiveness under a high strain condition
(Figure 24c). Specifically, when the Ag NW density of the STEMIS is higher than 333 mg/m2, the EMI
shielding effectiveness is maintained at 20 dB or higher, even at a large strain of 50%, indicating stable
EMI shielding effectiveness under mechanical strain. As shown in Figure 24d, despite the decreased
EMI shielding effectiveness at increased sheet resistance, the degradation of EMI shielding effectiveness
is slowed down with a decrease in the Ag NW density owing to the increased sheet resistance by
stretching. Considering the increase in the EMI shielding effectiveness at low Ag NW density, this
unique phenomenon is attributable to the effective shielding of the incoming EM wave by isolated
networks owing to the highly conductive metal network [111].
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Figure 24. Stretchable and transparent EMI shielding (STEMIS) films based on Ag NW network
and their EMI shielding effectiveness under stretching. (a) Schematic diagram of STEMIS film of
Ag NW network on PDMS film. (b) Digital images of EMI shielding test under stretching condition.
(c) Shielding effectiveness vs. strain (%). (d) Shielding effectiveness change vs. sheet resistance.
Reproduced with permission from [111]. Copyright 2017 American Chemical Society.

5. Summary and Concluding Remarks

This review presents the synthetic methods, properties, and applications of Ag NW networks
by focusing on their mechano-electric properties for applications to various flexible devices and
summarizing notable findings and cases from the recent literature.

First, we discuss Ag NW network-based electrodes prepared through various coating processes
and their chemical, electrical, and optical properties. The deposition processes of Ag NW networks
on certain substrates have been addressed, from solution-based coating processes (drop casting,
spray coating, spin coating, etc.) to commercial processes (slot-die and R2R coating). The electrical
characteristics of Ag NW networks are also discussed by focusing on the electrical properties governed
by percolation and the electrical contacts of the networks.

Second, the mechano-electric properties of Ag NW networks are reviewed by describing individual
properties (electrical and mechanical properties) of NW networks with dynamic motion under cyclic
loading, as well as their combined properties. Whereas the mechanical characteristics such as flexibility
and stretchability of Ag NW networks are primarily governed by the mechanical robustness of the
individual NWs, the mechano-electric properties of NW networks are affected by both the electrical
percolation and connections of the networks. The improved mechano-electric properties of Ag NW
are also discussed by presenting Ag NW network-based flexible electrodes prepared through various
approaches, including post-treatment and hybridization.



Materials 2019, 12, 2526 31 of 36

Third, various device applications of Ag NW network-based flexible electrodes are discussed.
Specifically, electronic and opto-electronic devices are discussed by introducing the basic strategies,
applications, and challenges of each device.

Despite the many advantageous features (good electro-optical performance, stretchability, and
long-term mechanical stability) and expected significant role of Ag NW electrodes in the wearable
device industry, there is still much progress to be made to achieve the future commercialization
of small, flexible, and mechanically robust electronic devices. We believe that this review will not
only serve as a design guide for fabricating Ag NW network-based flexible electronic devices with
high mechano-electric reliability, but will also be helpful to fundamentally understand the various
mechanical and electrical properties of Ag NWs.
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