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Abstract
Time	series	data	are	often	observed	in	ecological	monitoring.	Frequently,	such	data	
exhibit	nonlinear	trends	over	time	potentially	due	to	complex	relationships	between	
observed	and	auxiliary	variables,	and	there	may	also	be	sudden	declines	over	time	due	
to major disturbances. This poses substantial challenges for modeling such data and 
also for adaptive monitoring. To address this, we propose methods for finding adap-
tive	designs	for	monitoring	in	such	settings.	This	work	is	motivated	by	a	monitoring	
program	that	has	been	established	at	Scott	Reef;	a	coral	reef	off	the	Western	coast	
of	Australia.	Data	collected	for	monitoring	the	health	of	Scott	Reef	are	considered,	
and semiparametric and interrupted time series modeling approaches are adopted to 
describe	how	these	data	vary	over	time.	New	methods	are	then	proposed	that	enable	
adaptive monitoring designs to be found based on such modeling approaches. These 
methods	are	then	applied	to	find	future	monitoring	designs	at	Scott	Reef	where	it	was	
found	that	future	information	gain	is	expected	to	be	similar	across	a	variety	of	differ-
ent	sites,	suggesting	that	no	particular	location	needs	to	be	prioritized	at	Scott	Reef	
for the next monitoring phase. In addition, it was found that omitting some sampling 
sites/reef locations was possible without substantial loss in expected information gain, 
depending upon the disturbances that were observed. The resulting adaptive designs 
are used to form recommendations for future monitoring in this region, and for reefs 
where changes in the current monitoring practices are being sought. As the methods 
used	and	developed	 throughout	 this	 study	are	generic	 in	nature,	 this	 research	has	
the	potential	to	improve	ecological	monitoring	more	broadly	where	complex	data	are	
being collected over time.
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1  |  INTRODUC TION

Coral	 reefs	 are	 one	 of	 the	most	 beautiful	 and	 biologically	 diverse	
ecosystems	globally.	Unfortunately,	environmental	stressors	such	as	
severe	cyclones	and	bleaching	events	have	had	a	negative	impact	on	
coral	reefs	(Gilmour	et	al.,	2019).	As	a	result,	the	health	of	coral	reefs	
is	continually	being	monitored	to	estimate	the	impact	of	such	distur-
bances	and	to	identify	additional	vulnerabilities	to	decline.

In	 long-	term	 coral	 reef	monitoring,	 experimental	 design	 plays	 a	
vital	role	in	creating	survey	designs	to	collect	data	for	assessing	coral	
health,	trends	over	space	and	time,	and	to	identify	vulnerabilities	of	
coral	communities	to	different	disturbances	 (Campbell	et	al.,	2001).	
Broadly,	there	are	two	types	of	designs:	static	and	adaptive.	Static	de-
signs	are	those	that	do	not	change	over	time	(e.g.,	the	same	sites/reefs	
are	visited	each	year)	and	have	been	commonly	used	within	monitor-
ing	programs.	In	contrast,	adaptive	designs	can	vary	over	time	based	
on, for example, information from new data, and such methods have 
been	proposed	recently	for	determining	when	and	where	to	sample	
within	a	coral	reef	to	monitor	coral	health	(Kang	et	al.,	2016).

In the context of adaptive design, the adaptation can be informed 
by	a	statistical	model.	The	purpose	of	this	model	is	to	extract	infor-
mation	contained	within	the	historical	data	to	quantify	uncertainties	
about, for example, the model itself, the model parameter values, and 
the response variable of interest, and then utilize this information to 
guide	 future	 surveys.	 For	 example,	 in	Thilan	et	 al.	 (2021),	 a	 spatial	
Beta	regression	model	was	developed	for	hard	coral	cover,	and	used	
to	find	future	adaptive	designs.	When	such	designs	were	compared	
with	those	based	on	a	linear	model,	the	importance	of	appropriately	
capturing	 trends	 and	 variability	within	 the	 data	was	 highlighted	 as	
this led to more informative and therefore more efficient designs.

Ecosystems	are	subjected	to	a	variety	of	observed	and	unobserved	
impacts	which	may	interact	in	a	variety	of	different	ways	(Newbold	
et al., 2020).	For	instance,	coral	reef	ecosystems	often	exhibit	nonlin-
ear trends including sudden shifts due to mass coral bleaching, severe 
storms,	and	crown-	of-	thorns	starfish	(COTS)	outbreaks	(Done,	1992; 
McCook,	1999).	 These	 nonlinear	 trends	 pose	 significant	 challenges	
in	modeling	ecological	data	 (Oddi	et	al.,	2019),	and	this	challenge	 is	
further exacerbated when there are sudden shifts in the overall trend 
due	to	major	disturbances	(Scheffer	et	al.,	2001).

Generally,	semiparametric	regression	modeling	approaches	pro-
vide	more	flexibility	than	parametric	models	in	describing	a	variety	
of	 relationships	 between	 (a	 function	 of)	 the	 mean	 response	 and	
given	covariates	 (Crainiceanu	et	al.,	2005).	Thus,	 the	development	
and use of semiparametric regression modeling approaches has re-
ceived	 attention	 recently	 for	modeling	 ecological	 data	 (Vercelloni	
et al., 2014, 2017).	However,	 little	guidance	is	available	for	finding	
adaptive designs based on such models which limits how such infor-
mation can be used to guide future reef monitoring. In addition, to 
account for sudden or sharp declines in the mean response due to 
disturbances such as a mass bleaching event, approaches from time 
series	regression	modeling	can	be	considered.	Within	a	monitoring	
program, of further interest is then how the coral reef should be 
sampled to estimate the impact of such a disturbance.

In this paper, we propose new methods to find adaptive designs 
when the historical data exhibit nonlinear trends and sudden declines 
over time. The motivation for this research is the improvement of 
the	Scott	Reef	Research	Program	(SRRP);	a	monitoring	program	of	a	
coral	reef	system	off	the	Western	coast	of	Australia.	We	leverage	in-
formation from the historical data through semiparametric and time 
series	modeling	approaches.	Methods	for	 finding	adaptive	designs	
based on such a modeling approach are then proposed, and designs 
are	 found	under	 future	monitoring	 scenarios	 at	 Scott	Reef.	 These	
designs are then evaluated and used to provide recommendations 
for	future	surveys	at	Scott	Reef	and	other	reef	monitoring	programs	
where changes in the sampling practices are being contemplated.

2  |  MOTIVATING E X AMPLE

Scott	 Reef	 is	 located	 270 km	 off	 the	 coast	 of	 North-	Western	
Australia	 (Gilmour	 &	 Smith,	 2013; Figure 1a)	 and	 accordingly	 is	
isolated	 from	many	human	 impacts.	However,	 these	 reefs	are	 fre-
quently	exposed	to	cyclones	and	bleaching	events.	For	example,	due	
to	elevated	water	 temperatures	over	a	 few	months	 in	1998,	Scott	
Reef experienced a mass bleaching event, resulting in a decline of 
coral	up	to	80%	(Gilmour	et	al.,	2019;	Gilmour	&	Smith,	2013)	and	
thus, a complete change in hard coral cover trends was observed 
over	time	(Figure	S1).	Furthermore,	such	disturbance	exposure	did	
not	 seem	homogeneous	across	different	 survey	 locations.	That	 is,	
there	were	 survivors	 or	 relatively	 unharmed,	moderately,	 and	 se-
verely	 affected	 reef	 locations	 after	 this	 severe	 disturbance	 event	
(Figure	S2;	Gilmour	&	Smith,	2013).	By	adequately	 identifying	 the	
impacts of sudden disturbances, variations across the reef, and po-
tential causes, it should be possible to develop efficient and appro-
priate monitoring practices that can change/evolve over time, and 
this is the aim of this paper.

3  |  DATA

The	 system	of	 Scott	Reef	 comprises	 of	 four	 separate	 structures,	
namely	 North	 Reef,	 Central,	 South	 Reef,	 and	 Seringapatam	
(Figure 1b).	Under	the	SRRP,	data	have	been	collected	over	six	habi-
tats called slope, upper slope, crest, flat, lagoon, and outcrop from 
1994.83	to	2017.92,	where	decimals	represent	survey	times	within	
a	 given	 year,	 that	 is,	 0.83	 denotes	 the	 10th	 of	 12 months.	 Three	
core sites have been sampled to collect data, which are nested 
within	each	of	 seven	 reef	 locations	 (i.e.,	 SL1,	 SL2,	 SL3,	 SL4,	 SS1,	
SS2,	 and	 SS3;	 Figure 1b).	 As	 part	 of	 the	 SRRP	 surveys,	 the	 rela-
tive	 abundance	 of	 different	 coral	 types	 (e.g.,	 hard	 coral	 and	 soft	
coral)	is	recorded	at	each	site.	In	this	study,	we	consider	hard	coral	
cover	as	an	indicator	of	coral	health	(Bruno	&	Selig,	2007; Osborne 
et al., 2011).	In	Scott	Reef,	hard	coral	cover	proportions	are	evalu-
ated	based	on	 five	points	being	 randomly	placed	on	each	 image,	
and the proportion of points that are placed on coral determines 
the	measured	coral	 cover.	Given	 there	are	50	 images	 for	each	of	
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five	 transects,	 there	are	1250	data	points	per	site	 that	may	have	
been	 randomly	 placed	 on	 coral.	 In	 this	 study,	 data	 collected	 be-
tween	 1994.83	 and	 2016.08	were	 considered	 to	 develop	 future	
monitoring	plans	at	Scott	Reef	(Section	4).

Scott	 Reef	 research	 program	 surveys	 are	 typically	 conducted	
in	October,	 but	 variations	 have	 been	 observed	 from	 year	 to	 year	
(Table	 S1).	 For	 instance,	 when	 there	 was	 a	 severe	 disturbance,	
Australian	 Institute	 of	 Marine	 Science	 (AIMS)	 has	 collected	 data	
during,	immediately	after,	and	then	later	in	the	year	depending	upon	
the	nature	of	the	disturbance.	In	1998,	they	conducted	such	pre-		and	
post-	bleaching	surveys	in	January	and	October,	respectively,	where	
there	was	interest	in	quantifying	coral	loss	during	this	time.

The record of disturbance data refers to what occurred between 
sampling	times.	Accordingly,	bleaching	exposure	has	been	recorded	
as	 either	 present	 or	 not	 (i.e.,	 0	=	No	 coral	 bleaching,	 1	 indicating	
≥1%	 coral	 bleached)	 for	 the	whole	 reef	 system.	 Similarly,	 cyclone	
exposure has been recorded in terms of the number of hours the 
reef	system	was	exposed	to	damaging	waves	(Puotinen	et	al.,	2016).	
These	covariates	vary	over	time	for	the	whole	reef	system,	and	thus	
are	hereafter	referred	to	as	time-	varying	covariates.	In	addition,	reef	
location-	specific	 (rather	 than	 whole	 of	 reef)	 disturbance	 data	 for	
bleaching	and	cyclone	exposure	have	also	been	recorded.

4  |  MONITORING OBJEC TIVES

This	study	aims	to	develop	recommendations	for	future	monitoring	
at	 Scott	Reef	 and	other	 reef	monitoring	programs	where	 changes	
are	being	considered.	We	aim	to	achieve	this	goal	through	consider-
ing the following two questions which form the basis for our two 
objectives:

(1)	Are	some	reef	 locations	 (i.e.,	SL1,	…,	SS3)	within	Scott	Reef	
more important than others in providing information on hard coral 
cover?

(2)	Which	site	at	each	reef	location	provides	the	most	informa-
tion about hard coral cover?

These two objectives will be addressed through the use of an 
adaptive design approach which is described in the next section.

5  |  DESIGN FR AME WORK

Throughout	this	paper,	we	consider	a	Bayesian	design	framework	as	
information from historical data can be leveraged to inform design 
selection. There are also other benefits of such a framework includ-
ing	 flexible	 choice	 of	 utility	 functions	 (e.g.,	monitoring	 objectives)	

F I G U R E  1 (a)	The	location	of	the	system	of	Scott	reef	and	(b)	the	long-	term	monitoring	sites	located	at	south	reef,	central,	north	reef,	and	
Seringapatam	(Google	maps,	n.d.).	The	orange	points	represent	sites	that	have	been	surveyed	since	1994	and	the	yellow	triangles	represent	
newly	added	sites	after	the	2016	bleaching	event	(Sourced	from:	Bright	Earth	eAtlas	basemap	v1.0,	AIMS).
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and	 rigorous	 handling	 of	 uncertainty.	 The	 approach	 to	 find	 a	 de-
sign in this framework can be split into three stages, as shown in 
Figure 2.	The	first	stage	entails	quantifying	prior	information	about	
the	ecological	process	being	monitored,	and	this	is	achieved	here	by	
modeling	historical	data	collected	on	Scott	Reef.	Through	building	
a	Bayesian	statistical	model	for	these	data,	we	will	form	a	posterior	
distribution of the parameters. It is this distribution that will be used 
as the prior information for design selection. In the second stage, 
this prior information is exploited to assess the value of different de-
signs	in	addressing	proposed	monitoring	objectives	(defined	above).	
To	do	so,	an	expected	utility	function	(Chaloner	&	Verdinelli,	1995)	is	
used which evaluates the information that is expected to be gained 
from running a given design. Then, given the value of a design can 
be quantified, the last stage of the process is to optimize the choice 
of design with respect to the monitoring objective for a given fu-
ture monitoring scenario. Once such a design has been found, it is 
proposed as the optimal design, that is, the design that is expected 
to provide the most information about a given monitoring objective 
within the monitoring scenario. In the next section, we describe each 
of these three stages in more detail.

5.1  |  Quantifying prior information

5.1.1  | Model	historical	data

Semiparametric	 regression	 approaches	 can	 be	 used	 to	 capture	
nonlinear relationships within a regression model and have been 
considered	 previously	 to	 describe	 data	 from	 coral	 communities	
on	 the	Great	Barrier	Reef	 (GBR;	Vercelloni	 et	 al.,	2014).	Here,	we	
develop a model to capture nonlinear trends in hard coral cover 
ysrt at the s- th site, in the r- th reef location at the t-	th	survey	time	
(s = 1, 2, 3; r = 1, … , 7; t = 1994.83, … , 2016.08).	 We	 assume	 that	

ysrt	 follows	 a	 Binomial	 distribution	 (denoted	 as	 “BIN”)	 such	 that	
ysrt ∼ BIN

(
n,�srt

)
 where the first parameter n is number of trials 

and the second parameter �srt	 is	 the	 probability	 of	 success.	Here,	
n	is	the	number	of	points	in	a	250 m	combined	transect	length,	that	
is, n = 1250, and �srt can be expressed as �srt = 1∕

(
1 + exp

(
− �srt

))
 

where �srt denotes the linear predictor of the model, that is, a linear 
combination	 of	 parameters	 and	 covariates.	Within	 this	 linear	 pre-
dictor, a semiparametric modeling approach can be used to provide 
flexibility	in	describing	the	relationship	between	covariates	and	the	
mean response �srt. This is achieved through the inclusion of an addi-
tive term f

(
xsrt

)
 where f( ⋅ ) is some smooth function of covariate xsrt 

which	could	be	(for	example)	the	sampling	year.
There are different methods for modeling the smooth func-

tion,	 including	cubic	splines,	B-	splines,	 truncated	polynomials,	and	
radial	 splines	 (Crainiceanu	et	al.,	2005).	We	consider	 the	 low-	rank	
thin- plate splines approach as it requires fewer parameters to es-
timate,	 and	 also	 it	 is	 relatively	 insensitive	 to	 the	 choice	 of	 knots	
(Wood,	2003).	Such	a	smooth	function	can	be	expressed	as	follows:

where �0 =
(
�0, �1, �1, … , �K

)T, �0 is the intercept, �1 is the regression 
coefficient for time, � =

(
�1, … , �K

)
 are random coefficients, �k are 

knots	(i.e.,	the	points	where	piecewise	spline	curves	meet),	and	K is the 
total	number	of	knots.	Here,	knot	�k is the sample quantile of the xsrt’s 
corresponding	to	the	probability	k ∕(K + 1)	(Crainiceanu	et	al.,	2005).

In	the	Scott	Reef,	the	degree	of	disturbance	exposure	does	not	
appear	to	be	consistent	across	sites	(see	Figure	S2 which shows the 
coral	cover	over	time	by	site,	and	highlights	the	sites	which	appear	
to	 be	most	 affected	 by	 the	 bleaching	 event	 in	 1998).	 Hence,	 the	
inclusion	of	 site	 specific/time-	varying	covariates	zt into the model 
(see	below)	 should	 capture	 at	 least	 some	of	 such	variation.	 In	 ad-
dition, there could be variation between sites/reefs that cannot be 

(1)f
(
xsrt,�0

)
= �0 + �1xsrt +

∑K

k=1
�k
||xsrt−�k

||
3
,

F I G U R E  2 Diagram	of	the	proposed	
Bayesian	adaptive	design	framework.	
This	consists	of	three	stages:	quantifying	
prior	information	(left),	assessing	designs	
(middle),	and	optimization	and	evaluation	
(right).



    |  5 of 12ABEYSIRI WICKRAMA LIYANAARACHCHIGE et al.

explained	by	the	available	covariate	information.	In	such	cases,	ran-
dom effects can be included into the model as follows to capture 
such variation, where we note that sites are nested within reefs:

where �sr represents the random effects that are assumed to follow 
p
(
�sr |�r , log�s

)
 where �r ∼ p

(
� | log�r

)
, where p represents some dis-

tribution, and, log�s and log�r are the logarithm of the standard devi-
ations	of	the	site	and	reef	random	effects,	respectively.	Wood	(2003)	
describes the extension of such a model to accommodate other poten-
tial covariates, and we follow this approach to incorporate reef level 
time-	varying	covariates	such	as	bleaching	exposure	and	cyclone	hours.	
In Equation	(2),	zt	represents	time-	varying	covariates	and	�t is the cor-
responding	vector	of	regression	coefficients.	Additionally,	we	incorpo-
rated	three	dummy	variables	to	account	for	cyclone,	severe	cyclone,	
and bleaching exposures at different reef locations. The corresponding 
data matrix and the vector of regression coefficients are denoted as dr 
and �d,	respectively.

Coral	 cover	 is	 often	 impacted	 by	 disturbances	 such	 as	 cy-
clones and bleaching events, and some major events will result 
in	 sudden	 declines	 in	 coral	 cover	 trends	 (De'ath	 et	 al.,	 2012; 
Osborne et al., 2011).	We	propose	that	estimating	the	impact	of	
the	major	bleaching	event	that	occurred	in	1998	can	be	achieved	
using	an	interrupted	time	series	(ITS)	regression	approach	(Bernal	
et al., 2017; Linden, 2015).	The	motivation	for	this	is	that,	in	gen-
eral,	an	ITS	approach	can	account	for	sudden	changes	in	the	trend	
due to some intervention introduced or disturbance that has oc-
curred	 (McDowall	 et	 al.,	2019).	When	 applying	 ITS,	 the	 type	 of	
impact	due	to	the	disturbance	should	be	hypothesized.	This	may	
include a gradual change in slope or in both the intercept and slope 
within	 the	model	 for	 the	mean	response	 (Bernal	et	al.,	2017).	 In	
addition,	 some	disturbances	may	 cause	 an	 immediate	 change	 in	
the	trend	while	others	may	have	a	lag	period	before	any	effect	is	
observed.	The	reader	is	referred	to	Bernal	et	al.	 (2017)	for	more	
details	about	modeling	different	types	of	sudden	changes	in	time	
series data.

Based	on	hard	coral	cover	trends	over	time	(Figure	S1),	we	hy-
pothesized	that	the	1998	mass	bleaching	event	resulted	in	changes	
to both the intercept and slope when modeling hard coral cover 
trajectories.	 Furthermore,	 it	 was	 proposed	 that	 the	 impact	 ex-
isted	for	years	as	mortality	does	not	happen	completely	during	or	
a	 few	months	 after	 bleaching	 (Baird	&	Marshall,	2002;	Gilmour	&	
Smith,	2013).	The	model	defined	previously	using	Equation	 (2)	can	
now be extended to accommodate such an impact as follows:

where BLE98srt represents the bleaching impact, that is, BLE98srt = 0 
before the bleaching event happened, and otherwise, it is equal to 1, 
and � l	is	the	level	change	due	to	the	bleaching	impact.	Here,	Time98srt 

represents the time before and after the bleaching event, that is, 
Time98srt = 0 before the bleaching event occurred, and after that, time 
increases	with	survey	time,	and	�s represents the corresponding slope 
change.

In	 the	model,	 cyclone	 hours	 data	were	 count	 values	 that	 var-
ied over a large range; thus, the square- root transformation 
(Weber,	 1990)	 was	 applied	 before	 including	 this	 covariate	 into	
the model. This transformation was also applied to ensure a lin-
ear	 relationship	 was	 appropriate	 between	 cyclone	 hours	 and	
log

(
�srt ∕

(
1 − �srt

))
	 (O'Hara	&	Kotze,	2010).	 Previous	 studies	 have	

considered centering covariates to avoid numerical issues when fit-
ting	a	given	model,	and	we	follow	this	approach	for	the	time-	varying	
covariates	 (Selig	et	al.,	2012; Vercelloni et al., 2014).	Furthermore,	
we calculated ∣ xsrt − �k ∣	 by	 considering	 centered	 survey	 time	
(Crainiceanu	et	al.,	2005).

Within	 a	 Bayesian	 framework,	 we	 are	 interested	 in	 esti-
mating the joint posterior distribution p

(
�, � |yh,Zh,Vh, dh

)
 

of model parameters and random effects, where 
�=

(
�0, �1,�t ,�d , � l , �s , �, log �� , log �r , log �s

)
 denotes all parameters 

in	the	model	(Equation	(3)),	� is a matrix representation for the nested 
random effects, dh	 denotes	 previous	 surveys	 at	 Scott	Reef,	Vh rep-
resents data matrices related to ∣ xsrt − �k ∣	and	the	ITS	component	(i.e.,	
BLE98srt and Time98srt),	yh	denotes	the	previously	collected	hard	coral	
cover	data	(i.e.,	ysrt, s = 1, 2, 3; r = 1, … , 7; t = 1994.83, … , 2016.08 ),	
and Zh	are	the	previously	collected	time-	varying	covariates	(for	times	
1994.83	to	2016.08)	where	we	have	shifted	notation	such	that	all	his-
torical	data	will	now	be	 indexed	by	h. This will be convenient when 
considering future monitoring scenarios later in the paper. To estimate 
the	posterior	distribution	(see	Appendix	S3	for	more	details),	Markov	
Chain	Monte	Carlo	(MCMC)	methods	can	be	used.	For	this	purpose,	
WinBUGS	was	implemented	(Lunn	et	al.,	2000).

To find the most appropriate model to describe the historical 
data	 at	 Scott	 Reef,	we	 considered	 the	ℳ– closed perspective of 
Bernardo	 and	 Smith	 (2009).	 Accordingly,	 the	 most	 appropriate	
model for the data is assumed to be contained within a finite set 
of L	 candidate	 models	 indexed	 by	m ∈ {1, 2, … , L}.	 We	 defined	
the	 class	 of	 models	 by	 considering	 the	 following	 components:	
the	nested	 random	effects	 for	 sites	within	 reef	 locations	 (NRE);	
the	 smooth	 component	 (SC);	 and	 all	 available	 covariates	 (ALL	
COV),	 that	 is,	 Time,	 Bleaching,	 Cyclone	 hours,	 Interrupted	 98	
(i.e.,	BLE98srt and Time98srt),	 location-	specific	 covariates	 impacts,	
that	 is,	 Cyclone	 Loc2	 (i.e.,	 Cyclone	 Loc	 and	 Severe	 cyclone	 Loc)	
and	 Bleaching	 Loc,	 and	 the	 interaction	 between	 Bleaching	 and	
Cyclone.	The	most	appropriate	model	within	 this	 class	was	 then	
determined	 via	 the	 deviance	 information	 criterion	 (DIC)	 with	
a preference for the model with the smallest of these values 
(Spiegelhalter	et	al.,	2014).	Prior	 information	was	specified	to	be	
vague	on	 likely	 range	of	 values	of	 each	parameter	 (Table	S3).	 In	
addition,	 to	 appropriately	 capture	 the	 nonlinear	 features	 of	 the	
data,	a	specific	number	of	knots	needs	to	be	determined.	For	this,	
we	 followed	 the	approach	of	Ruppert	 (2002)	where	 the	number	
of knots was increased until there was little to no improvement in 
model fit. This resulted in the use of three knots.

(2)log

(
�srt

1 − �srt

)
= �sr + �tzt + �ddr + f

(
xsrt,�0

)
,

(3)

log

(
�srt

1 − �srt

)
= �sr + �tzt + �ddr + f

(
xsrt,�0

)
+ � lBLE98srt + �sTime98srt,



6 of 12  |     ABEYSIRI WICKRAMA LIYANAARACHCHIGE et al.

5.1.2  |  Form	prior	for	design

As	 the	 above	 model	 will	 be	 fitted	 within	 a	 Bayesian	 inference	
framework, a posterior distribution of the parameters will be ob-
tained.	 Such	 a	 posterior	 distribution	 quantifies	 the	 uncertainty	
about the model parameters given the historical data, and it is this 
distribution that is used to form prior information for design. That 
is, this posterior distribution becomes the prior distribution for 
design	 such	 that	 any	additional	data	 that	 are	 collected	 in	 future	
monitoring will update this prior information which will presum-
ably	reduce	uncertainty	about	the	parameters.	It	is	this	reduction	
in	uncertainty	(or	relative	gain	in	information)	that	is	used	to	guide	
future sampling. In particular, this can be used to evaluate a design 
with respect to addressing a given monitoring objective, and this 
is described in the next section.

5.2  |  Assessing designs

This section explains how to evaluate designs in terms of achiev-
ing	a	certain	monitoring	objective	(Figure 2,	middle)	based	on	prior	
information that has been obtained from historical data. A general 
approach	is	adopted	through	a	utility	function	which	is	constructed	
to encapsulate the monitoring objective. A design is then selected, 
so that this objective is expected to be optimized.

5.2.1  |  Propose	design

Define a design as d =
(
d1, d2, … , dns

)t, where ns is the number of 
sites	appearing	in	a	proposed	sampling	design	out	of	all	sites	(i.e.,	7	
reef	 locations × 3	sites	=	21	sites).	The	usefulness	of	such	a	design	
d	can	be	quantified	via	what	is	called	a	utility	function	which	evalu-
ates how much information will be provided from data y to address a 
specific monitoring objective. As it is unknown what data will be ob-
served,	the	expectation	of	the	utility	function	is	taken	with	respect	
to this and other unknowns as follows:

where z	 represents	 specific	 values	 of	 the	 time-	varying	 covariates	
which	 define	 particular	 future	monitoring	 scenarios.	 Further	 details	
about these scenarios will be provided later in this section.

The	choice	of	a	utility	function	depends	on	the	monitoring	objec-
tive.	Here,	our	goal	is	to	determine	the	relative	importance	of	survey	
locations for providing information about coral health based on a 
statistical model, so we consider gathering as much information as 
possible about the parameters in this model as the monitoring ob-
jective.	Accordingly,	a	variety	of	parameter	estimation	utility	func-
tions	could	be	considered	including	the	Kullback–	Leibler	divergence	
(KLD)	and	a	Bayesian	version	of	the	D-	optimality	criterion.	We	chose	
KLD	(Kullback	&	Leibler,	1951)	as	we	are	broadly	 interested	 in	the	

precise estimation of all parameters with respect to the prior infor-
mation.	The	KLD	utility	function	can	be	expressed	as	follows	(Friel	
&	Pettitt,	2008):

Evaluating	this	utility	measures	how	much	the	posterior	distribution	di-
verges from the prior. In terms of designs, a larger deviation for a given 
design d indicates more has been learned from data collected. Thus, we 
seek a design d that maximizes the expectation given in Equation	(4)	
where	the	utility	is	defined	in	Equation	(5).

5.2.2  |  Approximate	the	expected	utility

To find an optimal design, we need to evaluate the expected util-
ity.	However,	typically,	this	expression	does	not	have	a	closed-	form	
solution.	Thus,	a	numerical	approximation	is	required.	For	this,	one	
can	use	Monte	Carlo	integration	(Ryan,	2003)	which	can	be	defined	
as follows:

where J	 (≥100)	 is	 the	 controlling	 parameter	 for	Monte	Carlo	 in-
tegration.	 This	 approach	 to	 approximate	 the	 expected	 utility	 is	
outlined in Algorithm 1,	which	begins	by	initializing	some	param-
eters	(line	1).	To	approximate	the	expected	utility	for	a	given	de-
sign d,	 many	 datasets	 need	 to	 be	 simulated	 based	 on	 the	 given	
design	(line	2).	For	this	purpose,	we	simulate	parameter	and	ran-
dom	effect	values	from	the	prior	distribution	(line	3).	To	simulate	
hard	coral	cover	for	the	next	survey	time	point	t 	(line	4),	we	pro-
pose	 a	Taylor	 series	 expansion	 around	 the	mean	 at	 the	 last	 sur-
vey	point,	 that	 is,	2016.08	 (Table	S7).	 In	 such	a	case,	a	bivariate	
Taylor	 series	 expansion	 needs	 to	 be	 applied	 as	 the	 regression	
model includes two time variables following the incorporation 
of	 the	 interrupted	 regression	 component.	 For	 the	 given	 model,	
the	 Taylor	 series	 approximation	 can	 be	 described	 as	 follows:	
f
(
xsrt, Time98srt

)
≈ f(a, b) + fxsrt (a, b)

(
xsrt − a

)
+ fTime98srt

(a, b)
(
Time98srt − b

)
  ,	

where f
(
xsrt, Time98srt

)
 is the value of the function at the next 

survey	 point	 (i.e.,	 t  =	 2016.33)	 and	(a, b) are values which with 
the	Taylor	 series	 is	 centered	 (see	Appendix	S7 for extrapolation 
results).	The	posterior	distribution	needs	to	be	approximated	for	
each	simulated	dataset	(line	5).	Given	this	needs	to	be	performed	a	
large	number	of	times,	this	is	a	computationally	demanding	step	in	
the	algorithm.	To	address	this,	a	Laplace	approximation	(Overstall	
et al., 2018)	was	adopted.	Given	this	approximation	to	the	poste-
rior	distribution,	the	KLD	utility	can	be	evaluated	(see	Appendix	S9 
for	more	details)	(lines	6–	7).	Finally,	an	average	of	KLD	utility	val-
ues	is	used	to	approximate	the	expected	utility	(line	9).

(4)

E
[
u
(
d, z, y ∣ yh,Zh,Vh, dh

)]
= ∫Υu

(
d, z, y ∣ yh,Zh,Vh, dh

)
p
(
y ∣ z, d, yh,Zh,Vh, dh

)
dy,

(5)

u
(
d, z, y ∣yh,Zh,Vh, dh

)
=∫Θ∫Ξp

(
�, � ∣y, z, yh,Zh,Vh, d, dh

)

× log p
(
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)
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− log p
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y|z, yh,Zh,Vh, d, dh

)
.
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(
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J
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u
(
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,
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5.3  |  Optimization and evaluation of the design

This	section	describes	the	third	stage	of	our	Bayesian	adaptive	de-
sign	framework:	optimization	and	evaluation	of	the	design	(Figure 2, 
right).	The	procedure	used	 for	 this	optimization	 is	described	next,	
along with the design formulation, the selection of future distur-
bance	scenarios	and	a	so-	called	design	efficiency	which	 is	used	to	
evaluate designs.

5.3.1  |  Optimize	design

Using	Algorithm 1, we are now able to approximate the expected 
utility	of	a	given	design	d. The next step is to find the optimal de-
sign d∗ out of the set of candidate designs which maximizes the 
expected	 utility,	 that	 is,	 d∗ = argmax

d

E
[
u
(
d, z, y ∣ yh,Zh,Vh, dh

)]
. 

Here,	 candidate	 designs	d need to be formulated in accordance 
with monitoring scenarios, and these were constructed on the 
basis	 of	 likely	 sampling	 problems	 that	 could	 be	 encountered	 on	
Scott	 Reef	 into	 the	 future.	 For	Objective	 (i),	 we	will	 investigate	
whether	some	reef	 locations	within	Scott	Reef	have	greater	util-
ity	 than	 others.	 Accordingly,	 seven	 candidate	 designs	 were	 for-
mulated considering all possible combinations where six of seven 
reef locations will be sampled. The corresponding designs were 
labeled	 as	 SL1,	 …,	 SS3	where,	 for	 example,	 design	 SL1	 denotes	
that	no	data	will	be	collected	 from	the	 reef	 location	SL1	 for	 the	
next	survey	time.	As	there	will	be	a	relatively	small	number	of	po-
tential	candidate	designs	(i.e.,	seven)	under	this	objective,	we	will	
enumerate	all	seven	designs	to	determine	the	optimal.	Next,	under	
Objective	 (ii),	we	determine	 the	optimal	design	consisting	of	 the	
most	 informative	site	 (out	of	 the	three)	at	each	reef	 location.	To	
locate these optimal designs, the coordinate- exchange algorithm 
was	used	based	on	five	randomly	selected	 initial	designs	 (Meyer	
&	 Nachtsheim,	 1995).	 Here,	 the	 coordinate-	exchange	 algorithm	
was	 implemented	 as	 there	 are	 actually	many	potentially	 optimal	
designs	to	assess,	so	applying	an	exhaustive	search	would	not	be	
computationally	efficient.

5.3.2  |  Evaluate	design	within	monitoring	scenario

To	 evaluate	 our	 adaptive	 designs,	 two	 disturbance	 scenarios	 (i.e.,	
two different values for z)	were	 considered.	 These	were:	 (a)	 actual	
covariate	data	 collected	 at	 the	next	 survey	 time	 (i.e.,	 2016.33)	 and	
(b)	bleaching	and	cyclone	 impacts	 including	an	 interaction	between	
them	at	each	reef	 location	 (see	Appendix	S8	for	more	details).	This	
means	 that	 Scenario	 (a)	withdraws	 the	prevailing	 cyclone	exposure	
while	Scenario	(b)	includes	cyclone	location	disturbances	and	cyclone-	
bleaching interactions for each reef location. Each objective defined 
previously	will	be	assessed	under	these	two	disturbance	scenarios.

To evaluate the optimal designs that will be found, we will eval-
uate the amount of information that is expected to be obtained, and 
compare this to the amount of information that would be obtained 
if	data	were	collected	at	all	sites/reefs.	For	this	comparison,	a	design	
efficiency	can	be	evaluated	as	follows:

where E
[
u
(
d, z, y ∣ yh,Zh,Vh, dh

)]
 and E

[
u
(
dL, z, y ∣ yh,Zh,Vh, dh

)]
 are 

evaluations	of	the	approximate	expected	utility	(Equation	(6))	for	a	de-
sign d and the design dL	(which	denotes	that	all	sites/reefs	are	included	
in	the	next	survey	time),	respectively.	When	evaluating	this	efficiency,	
to reduce the impact of the stochastic approximation to the expected 
utility,	the	evaluation	will	be	repeated	20	times	(independently)	for	d 
and dL,	and	the	efficiency	will	be	evaluated	each	time.	The	mean	of	
these	20	efficiencies	will	then	be	taken	as	the	design	efficiency.

6  |  RESULTS

6.1  |  Quantifying prior information

To	select	the	most	appropriate	model	for	the	Scott	Reef	hard	coral	
cover	data,	we	defined	a	class	of	models	by	considering	all	compo-
nents	described	in	Section	5.1. The corresponding model comparison 

(7)Eff=
E
[
u
(
d, z, y ∣yh,Zh,Vh, dh

)]

E
[
u
(
dL, z, y ∣yh,Zh,Vh, dh

)] ,

ALGORITHM 1 Approach to approximate the expected utility

1. Initialise d, yh,Zh,Vh, dh, z, t, J

2.	For	 j = 1 to J do

3.	Simulate	�(j), �(j) ∼ p
(
�, � |yh,Zh,Vh, dh

)

4.	Simulate	y(j) ∼ p
(
y |�(j), �(j), z, yh,Zh,Vh, d, dh

)
	at	the	next	survey	time	t based on d	via	a	Taylor	series	approximation	to	the	mean	response

5. Estimate p
(
�, � ∣ y, z, yh,Zh,Vh, d, dh

)
 via Laplace approximation

6.	Evaluate	KLD	utility	u
(
d, z, y(j) ∣ yh,Zh,Vh, dh

)

7.	Store	u
(
d, z, y(j) ∣ yh,Zh,Vh, dh

)

8.	End	for

9. Output E
�
u
�
d, z, y ∣ yh,Zh,Vh, dh

��
≈

1

J

∑J

j=1
u
�
d, z, y(j) ∣ yh,Zh,Vh, dh

�
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results based on DIC are provided in Table S4. As the model with a 
smaller value of DIC is preferred, the most appropriate model found 
for hard coral cover can be described as follows:

where � i , i = 1, … , 9 are the regression coefficients and �1, �2, and �3 
are random coefficients. The goodness- of- fit of this model was as-
sessed and found to be appropriate, see Appendix S6 for further de-
tails. Then, the posterior distribution of this model was used as the 
prior distribution for all subsequent design evaluations.

6.2  |  Optimization and evaluation of the design

6.2.1  |  Importance	of	reef	locations

Under	Objective	(i),	we	aim	to	determine	the	relative	importance	
of	seven	reef	 locations	at	Scott	Reef.	First,	disturbance	Scenario	
(a)	was	considered.	For	this	evaluation,	we	formulated	seven	de-
signs	 (i.e.,	 SL1,	…,	 SS3),	 as	 described	 in	 Section	5.3.1. To evalu-
ate	these	designs,	the	KLD	expected	utility	was	evaluated.	These	
results	(as	design	efficiencies)	are	shown	in	Figure 3a, where the 
efficiency	is	with	respect	to	the	design	where	all	reef	locations	are	
sampled.	A	summary	of	the	utility	evaluations	is	given	in	Table 1 to 
aid in interpretation.

According to Table 1,	SL4	is	the	optimal	design	as	it	has	the	highest	
mean	efficiency.	As	the	missing	reef	location	within	this	design	is	SL4,	
this reef location can be considered as the least informative reef loca-
tion	under	Scenario	(a).	This	suggests	that	less	information	is	expected	
to	be	lost	by	omitting	reef	location	SL4	compared	with	omitting	any	
other	reef	 location.	Similarly,	 the	reef	 location	SS2	can	be	reported	
as the most informative reef location as omitting this reef location 
resulted	 in	 the	 largest	 reduction	 in	efficiency	 (Table 1).	However,	 it	
should	be	noted	that	there	 is	very	 little	difference	 in	the	efficiency	
values	between	these	designs	(Figure 3a).	Indeed,	some	of	the	differ-
ences	observed	could	potentially	be	due	to	Monte	Carlo	error.

Second,	 we	 evaluated	 Objective	 (i)	 under	 the	 disturbance	
Scenario	 (b).	 The	 corresponding	 design	 efficiencies	 and	 expected	
utility	values	are	provided	in	Figure 3b and Table 2,	respectively.	It	
is evident from Figure 3b that all the reef locations have similar me-
dian	efficiency	values	under	Scenario	(b)	except	for	SS2,	which	aligns	
with	the	results	under	Scenario	(a).	The	design	SL4	has	the	highest	
efficiency;	thus,	the	reef	location	SL4	can	be	reported	as	the	least	in-
formative	reef	location	under	Scenario	(b).	Furthermore,	comparing	
Figure 3a,b shows that overall there are similar efficiencies for de-
signs under the two disturbance scenarios considered. This suggests 
that the optimal design is robust to the two scenarios considered 
under	Objective	(i).

To explore these design selections, consider that the posterior 
means will be similar to the prior means, so this should not partic-
ularly	contribute	to	the	optimal	design	selection	under	KLD	utility	
function, see Equation S1.	Accordingly,	these	design	selections	could	
be	driven	by	the	posterior	variance–	covariance	of	the	parameters.	
Upon	investigating	this,	the	larger	utility	values	appeared	to	be	re-
lated to the estimation of the reef random effect standard deviation 
parameter	(i.e.,	log	�r).	This	is	typically	where	the	largest	change	from	
the	prior	was	observed,	and	thus	could	potentially	be	driving	the	de-
sign selection, that is, designs that provide more information on the 
variability	of	coral	cover	between	reef	locations	are	being	preferred.

6.2.2  |  Informative	sites	at	each	reef	location

Under	Objective	 (ii),	 we	 determined	 the	 optimal	 design	 that	 con-
sists of the most informative site at each reef location subject to 
two disturbance scenarios. The selected sites from each reef loca-
tion into the optimal designs under the two scenarios are reported 
in Table S8. It can be seen from the table that the optimal designs 
contain different site combinations under the two scenarios. It was 
found through investigating these optimal designs that the esti-
mation of log �r again appeared to be a main contributor to these 
optimal design selections. This indicates that the optimal site com-
bination under a given disturbance scenario provides more informa-
tion	about	the	between	reef	variability.

The optimal designs under the two scenarios have mean efficien-
cies	of	86.28	(5.49)%	and	71.18	(2.62)%,	respectively.	These	reduc-
tions	 in	mean	efficiency	 indicate	that	 if	disturbances	are	similar	to	
previous	years,	then	minimal	sampling	(i.e.,	one	site	per	reef	location)	
will	capture	a	substantial	proportion	of	information.	However,	when	
a	variety	of	disturbance	combinations	are	observed,	then	there	ap-
pears to be more information lost, so there might be value to under-
taking additional sampling in such cases.

7  |  DISCUSSION

This	study	developed	adaptive	design	methods	using	semiparametric	
and	ITS	models	through	utilizing	information	captured	through	such	
modeling	to	guide	future	surveys	at	Scott	Reef.	We	demonstrated	
the use of such a modeling approach in finding adaptive design when 
data showed nonlinear trends with some sudden shifts over time. 
For	this	purpose,	it	was	shown	that	changes	around	major	environ-
mental disturbances in ecological monitoring could be accounted for 
using	an	ITS	regression	modeling	approach.	This	enabled	prior	infor-
mation	from	historical	data	to	be	appropriately	formed	when	such	
data	potentially	exhibit	complex	ecological	relationships.

We	assessed	the	importance	of	reef	locations	under	Objective	(i)	
subject to two disturbance scenarios. The results showed that there 
was little difference between the selection of which reef location to 
omit under either scenario. This indicates that the design choice is 
relatively	inconsequential.	Also,	dropping	one	reef	location	resulted	

(8)

log

(
�srt

1−�srt

)
=�0+�1Time+�2Bleachingt+�3Cyclonehourst

+�4Bleaching×Cyclonert+�5BLE98t+�6Time98t

+�7CycloneLocrt+�8SeverecycloneLocrt
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in	 little	 information	 loss,	 allowing	 the	 survey	effort	 to	be	 reduced	
without losing a substantial amount of information about the param-
eters in the developed model.

Under	Objective	(ii),	we	found	optimal	designs	consisting	of	one	
site at a given reef location based on two disturbance scenarios. This 
provided insight into the most appropriate site to sample from a 

F I G U R E  3 Utility	evaluation	results	
under	disturbance	Scenario	(a)	and	(b)	for	
seven	designs	(x-	axis).	y- axis represents 
design	efficiency	of	each	design	when	
compared to sampling all seven reef 
locations.

TA B L E  1 Summary	of	utility	evaluations	for	seven	designs	under	
Scenario	(a)	in	Objective	(i).

Design Mean efficiency (%) Standard deviation

SL1 98.14 0.59

SL2 98.46 0.60

SL3 98.01 0.52

SL4 99.03 0.46

SS1 98.92 0.62

SS2 97.93 0.71

SS3 98.68 0.68

TA B L E  2 Summary	of	utility	evaluations	for	seven	designs	under	
Scenario	(b)	in	Objective	(i).

Design Mean efficiency (%) Standard deviation

SL1 96.29 1.05

SL2 96.16 0.85

SL3 96.36 0.88

SL4 96.78 1.19

SS1 96.60 0.68

SS2 95.73 0.80

SS3 96.64 0.68
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given reef location depending on prevailing disturbance conditions. 
The differences between the optimal designs between these two 
scenarios suggest that site selection depends on the disturbances 
that have been observed, and our methods provide a framework 
with	which	to	make	this	assessment.	Additionally,	it	appears	that	the	
design	choices	made	under	Objectives	(i)	and	(ii)	are	associated	with	
the estimation of the reef random effect standard deviation param-
eter	(i.e.,	log	�r)	meaning	that	we	are	learning	about	how	coral	cover	
varies between reefs.

In	terms	of	modeling	monitoring	data,	the	Gompertz	model	has	
been	considered	recently	(MacNeil	et	al.,	2019)	for	capturing	non-
linear	relationships	in	population	growth.	However,	such	a	model	
proved to not be flexible enough to capture nonlinear trends 
where observations have been collected with unequal time gaps. 
In such circumstances, semiparametric modeling approaches can 
be utilized to capture nonlinear trends, as demonstrated in this 
study.	The	consideration	of	such	a	modeling	approach	meant	that	
new design methods needed to be proposed such that adaptive 
designs	could	be	found	in	this	context.	This	was	demonstrated	by	
considering two future disturbance scenarios, and assessing the 
performance of these designs against more resource intensive 
sampling.

It is important to note that the adaptive designs found in this 
work	could	potentially	change	depending	on	the	prior	 information	
that	was	obtained	 from	 the	historical	data.	This	 is	why	 significant	
effort was invested in assessing the goodness- of- fit of the model 
through cross- validation in addition to the standard approach of as-
sessing	the	posterior	predictive	distribution.	Given	this,	we	suggest	
it	is	crucial	that	the	exact	analysis	plan	for	evaluating	the	monitoring	
objective	be	encoded	into	the	utility	function.	That	is,	in	this	work,	
the	health	of	Scott	Reef	will	be	assessed	through	hard	coral	cover	as	
estimated from the developed hierarchical model. In such a case, the 
design found is optimal. In contrast, if some other approach will be 
used	to	assess	the	health	of	Scott	Reef,	then	there	is	no	guarantee	
that the proposed designs will be efficient or expected to provide 
maximum information.

In terms of extending our model, a number of options could be 
considered including incorporating the effects of temperature on 
coral	health.	For	this,	we	would	like	to	note	that	bleaching	is	a	better	
direct measure of the impact of temperature on coral, so addition-
ally	having	 temperature	would	most	 likely	be	 redundant.	Similarly,	
one could consider incorporating the effects of increasing acidifi-
cation	 of	 the	 ocean.	However,	 such	 impact	would	 likely	 be	minor	
and	therefore	will	most	likely	be	swamped	by	the	impact	of	cyclone	
and	bleaching	events.	Furthermore,	such	effects	would	not	be	ex-
pected	to	change	rapidly	enough	in	space	and/or	time	to	be	relevant	
to design considerations. Other extensions that could be considered 
include	 further	 capturing	 delayed	 effects	 of	 coral	 bleaching	 (see	
Graham	et	al.,	2007)	which	may	improve	the	model	fit	in,	for	exam-
ple,	the	final	sampling	year	where	some	discrepancy	is	observed	at	
the	initial	stages	of	a	bleaching	event,	see	Figure	S3. Depending on 
how	 this	 is	 captured,	 sampling	designs	could	potentially	be	devel-
oped	to	estimate	such	delays.

The use of flexible semiparametric modeling approaches as ad-
opted in this paper can lead to a statistical model that is overfitted. 
In	our	 case,	 this	 flexibility	 (and	 therefore	potential	 for	overfitting)	
is	 largely	 controlled	by	 the	number	of	 knots	 in	 the	model.	 Ideally,	
there	would	be	enough	knots	 to	effectively	 capture	 trends	 in	 the	
data	but	not	 so	many	 that	 random	variations	are	being	explained.	
Automatic procedures are available which provide a choice for the 
number	of	knots	(e.g.	Ruppert,	2002)	where	one	should	effectively	
penalize	overly	complicated	models.	 In	our	work,	we	 followed	 the	
approach	of	Ruppert	 (2002)	which	 led	 to	a	 choice	of	 three	knots.	
Such	a	low	number	mitigates	overfitting	but	still	provides	flexibility	
in describing trends in data. In addition, cross- validation approaches 
were adopted to assess model fit which should provide further miti-
gation against overfitting.

In terms of future research directions, there is interest in the 
transferability	of	our	designs	and	our	adaptive	design	approach	to	
other	environmental	monitoring	programs.	Broadly,	we	suggest	that,	
in principle, the approach considered in this work could be applied 
within	a	variety	of	monitoring	programs	where	data	collection	is	ex-
pensive, and therefore, the use of resources to collect data needs 
careful consideration and planning. In order for this approach to be 
applied in such settings, one needs a quantifiable monitoring ob-
jective	 defined	based	on	 a	 planned	 analysis.	 This	 is	 critical	 as	 the	
analysis	defines	the	uncertainty	in	the	monitoring	objective,	and	the	
reduction	in	this	uncertainty	is	used	to	compare	and	optimize	sam-
pling	effort.	In	terms	of	the	transferability	of	the	actual	designs,	we	
note that the designs are model- based so some insight into trans-
ferability	may	be	provided	from	a	modeling	prospective	(e.g.,	Yates	
et al., 2018),	particularly	general	learnings	about	what	sampling	is	in-
formative	to	achieve	a	given	objective.	However,	further	exploration	
of	this	area	is	needed	before	anything	concrete	can	be	concluded.

It is expected that disturbances will increase in the future; both 
in	terms	of	frequency	and	in	terms	of	severity.	We	note	that	Scott	
Reef has experienced multiple major and moderate bleaching and 
cyclone	disturbance	events	within	the	time	period	considered	in	this	
paper,	 so	 significant	disturbance	events	are	not	completely	out	of	
consideration	in	this	work.	Accordingly,	we	suggest	that	the	recom-
mendations we have made for future monitoring are still relevant. 
In	particular,	within	the	data	we	have	analyzed,	we	have	seen	that	
increased	 severity	 of	 disturbance	 reduces	 variability	 among	 sites	
suggesting that the impact is more consistent across an entire reef 
location.	Given	this,	the	finding	that	no	particular	site	needs	to	be	
preferred in future sampling would seem reasonable, and this is what 
was found when we evaluated our adaptive designs.

8  |  RECOMMENDATIONS FOR FUTURE 
REEF MONITORING BA SED ON FINDINGS 
FROM SCOT T REEF

	(i)	 Pre-	assessment	 of	 the	 expected	 information	 gain	 by	 location	
(e.g.,	 site	 or	 reef	 location)	 can	 be	 used	 to	 determine	 whether	
any	locations	can	be	prioritized	for	data	collection.	Here,	it	was	
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found that information gain from sites was similar, so no particu-
lar location needed to be prioritized over another.

	(ii)	 After	an	extensive	monitoring	period,	explore	reduced	sampling	
practices	 as	 there	 is	 potential	 to	 reduce	 sampling	 effort	 (e.g.,	
drop	site	or	reef	location)	without	experiencing	significant	infor-
mation loss about coral health.

	(iii)	Evaluate	disturbance	patterns	at	monitoring	 locations	as	 these	
can influence information gain, for example, here, it was shown 
that more information about coral health was obtained when 
new disturbance patterns were experienced when compared to 
historical disturbance patterns.

	(iv)	On-	going	review	of	monitoring	practices	is	recommended	to	as-
sess effectiveness of adaptive designs.
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