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Abstract
Time series data are often observed in ecological monitoring. Frequently, such data 
exhibit nonlinear trends over time potentially due to complex relationships between 
observed and auxiliary variables, and there may also be sudden declines over time due 
to major disturbances. This poses substantial challenges for modeling such data and 
also for adaptive monitoring. To address this, we propose methods for finding adap-
tive designs for monitoring in such settings. This work is motivated by a monitoring 
program that has been established at Scott Reef; a coral reef off the Western coast 
of Australia. Data collected for monitoring the health of Scott Reef are considered, 
and semiparametric and interrupted time series modeling approaches are adopted to 
describe how these data vary over time. New methods are then proposed that enable 
adaptive monitoring designs to be found based on such modeling approaches. These 
methods are then applied to find future monitoring designs at Scott Reef where it was 
found that future information gain is expected to be similar across a variety of differ-
ent sites, suggesting that no particular location needs to be prioritized at Scott Reef 
for the next monitoring phase. In addition, it was found that omitting some sampling 
sites/reef locations was possible without substantial loss in expected information gain, 
depending upon the disturbances that were observed. The resulting adaptive designs 
are used to form recommendations for future monitoring in this region, and for reefs 
where changes in the current monitoring practices are being sought. As the methods 
used and developed throughout this study are generic in nature, this research has 
the potential to improve ecological monitoring more broadly where complex data are 
being collected over time.
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1  |  INTRODUC TION

Coral reefs are one of the most beautiful and biologically diverse 
ecosystems globally. Unfortunately, environmental stressors such as 
severe cyclones and bleaching events have had a negative impact on 
coral reefs (Gilmour et al., 2019). As a result, the health of coral reefs 
is continually being monitored to estimate the impact of such distur-
bances and to identify additional vulnerabilities to decline.

In long-term coral reef monitoring, experimental design plays a 
vital role in creating survey designs to collect data for assessing coral 
health, trends over space and time, and to identify vulnerabilities of 
coral communities to different disturbances (Campbell et al., 2001). 
Broadly, there are two types of designs: static and adaptive. Static de-
signs are those that do not change over time (e.g., the same sites/reefs 
are visited each year) and have been commonly used within monitor-
ing programs. In contrast, adaptive designs can vary over time based 
on, for example, information from new data, and such methods have 
been proposed recently for determining when and where to sample 
within a coral reef to monitor coral health (Kang et al., 2016).

In the context of adaptive design, the adaptation can be informed 
by a statistical model. The purpose of this model is to extract infor-
mation contained within the historical data to quantify uncertainties 
about, for example, the model itself, the model parameter values, and 
the response variable of interest, and then utilize this information to 
guide future surveys. For example, in Thilan et al.  (2021), a spatial 
Beta regression model was developed for hard coral cover, and used 
to find future adaptive designs. When such designs were compared 
with those based on a linear model, the importance of appropriately 
capturing trends and variability within the data was highlighted as 
this led to more informative and therefore more efficient designs.

Ecosystems are subjected to a variety of observed and unobserved 
impacts which may interact in a variety of different ways (Newbold 
et al., 2020). For instance, coral reef ecosystems often exhibit nonlin-
ear trends including sudden shifts due to mass coral bleaching, severe 
storms, and crown-of-thorns starfish (COTS) outbreaks (Done, 1992; 
McCook,  1999). These nonlinear trends pose significant challenges 
in modeling ecological data (Oddi et al., 2019), and this challenge is 
further exacerbated when there are sudden shifts in the overall trend 
due to major disturbances (Scheffer et al., 2001).

Generally, semiparametric regression modeling approaches pro-
vide more flexibility than parametric models in describing a variety 
of relationships between (a function of) the mean response and 
given covariates (Crainiceanu et al., 2005). Thus, the development 
and use of semiparametric regression modeling approaches has re-
ceived attention recently for modeling ecological data (Vercelloni 
et al., 2014, 2017). However, little guidance is available for finding 
adaptive designs based on such models which limits how such infor-
mation can be used to guide future reef monitoring. In addition, to 
account for sudden or sharp declines in the mean response due to 
disturbances such as a mass bleaching event, approaches from time 
series regression modeling can be considered. Within a monitoring 
program, of further interest is then how the coral reef should be 
sampled to estimate the impact of such a disturbance.

In this paper, we propose new methods to find adaptive designs 
when the historical data exhibit nonlinear trends and sudden declines 
over time. The motivation for this research is the improvement of 
the Scott Reef Research Program (SRRP); a monitoring program of a 
coral reef system off the Western coast of Australia. We leverage in-
formation from the historical data through semiparametric and time 
series modeling approaches. Methods for finding adaptive designs 
based on such a modeling approach are then proposed, and designs 
are found under future monitoring scenarios at Scott Reef. These 
designs are then evaluated and used to provide recommendations 
for future surveys at Scott Reef and other reef monitoring programs 
where changes in the sampling practices are being contemplated.

2  |  MOTIVATING E X AMPLE

Scott Reef is located 270 km off the coast of North-Western 
Australia (Gilmour & Smith,  2013; Figure  1a) and accordingly is 
isolated from many human impacts. However, these reefs are fre-
quently exposed to cyclones and bleaching events. For example, due 
to elevated water temperatures over a few months in 1998, Scott 
Reef experienced a mass bleaching event, resulting in a decline of 
coral up to 80% (Gilmour et al., 2019; Gilmour & Smith, 2013) and 
thus, a complete change in hard coral cover trends was observed 
over time (Figure S1). Furthermore, such disturbance exposure did 
not seem homogeneous across different survey locations. That is, 
there were survivors or relatively unharmed, moderately, and se-
verely affected reef locations after this severe disturbance event 
(Figure S2; Gilmour & Smith, 2013). By adequately identifying the 
impacts of sudden disturbances, variations across the reef, and po-
tential causes, it should be possible to develop efficient and appro-
priate monitoring practices that can change/evolve over time, and 
this is the aim of this paper.

3  |  DATA

The system of Scott Reef comprises of four separate structures, 
namely North Reef, Central, South Reef, and Seringapatam 
(Figure 1b). Under the SRRP, data have been collected over six habi-
tats called slope, upper slope, crest, flat, lagoon, and outcrop from 
1994.83 to 2017.92, where decimals represent survey times within 
a given year, that is, 0.83 denotes the 10th of 12 months. Three 
core sites have been sampled to collect data, which are nested 
within each of seven reef locations (i.e., SL1, SL2, SL3, SL4, SS1, 
SS2, and SS3; Figure  1b). As part of the SRRP surveys, the rela-
tive abundance of different coral types (e.g., hard coral and soft 
coral) is recorded at each site. In this study, we consider hard coral 
cover as an indicator of coral health (Bruno & Selig, 2007; Osborne 
et al., 2011). In Scott Reef, hard coral cover proportions are evalu-
ated based on five points being randomly placed on each image, 
and the proportion of points that are placed on coral determines 
the measured coral cover. Given there are 50 images for each of 
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five transects, there are 1250 data points per site that may have 
been randomly placed on coral. In this study, data collected be-
tween 1994.83 and 2016.08 were considered to develop future 
monitoring plans at Scott Reef (Section 4).

Scott Reef research program surveys are typically conducted 
in October, but variations have been observed from year to year 
(Table  S1). For instance, when there was a severe disturbance, 
Australian Institute of Marine Science (AIMS) has collected data 
during, immediately after, and then later in the year depending upon 
the nature of the disturbance. In 1998, they conducted such pre- and 
post-bleaching surveys in January and October, respectively, where 
there was interest in quantifying coral loss during this time.

The record of disturbance data refers to what occurred between 
sampling times. Accordingly, bleaching exposure has been recorded 
as either present or not (i.e., 0 = No coral bleaching, 1 indicating 
≥1% coral bleached) for the whole reef system. Similarly, cyclone 
exposure has been recorded in terms of the number of hours the 
reef system was exposed to damaging waves (Puotinen et al., 2016). 
These covariates vary over time for the whole reef system, and thus 
are hereafter referred to as time-varying covariates. In addition, reef 
location-specific (rather than whole of reef) disturbance data for 
bleaching and cyclone exposure have also been recorded.

4  |  MONITORING OBJEC TIVES

This study aims to develop recommendations for future monitoring 
at Scott Reef and other reef monitoring programs where changes 
are being considered. We aim to achieve this goal through consider-
ing the following two questions which form the basis for our two 
objectives:

(1) Are some reef locations (i.e., SL1, …, SS3) within Scott Reef 
more important than others in providing information on hard coral 
cover?

(2) Which site at each reef location provides the most informa-
tion about hard coral cover?

These two objectives will be addressed through the use of an 
adaptive design approach which is described in the next section.

5  |  DESIGN FR AME WORK

Throughout this paper, we consider a Bayesian design framework as 
information from historical data can be leveraged to inform design 
selection. There are also other benefits of such a framework includ-
ing flexible choice of utility functions (e.g., monitoring objectives) 

F I G U R E  1 (a) The location of the system of Scott reef and (b) the long-term monitoring sites located at south reef, central, north reef, and 
Seringapatam (Google maps, n.d.). The orange points represent sites that have been surveyed since 1994 and the yellow triangles represent 
newly added sites after the 2016 bleaching event (Sourced from: Bright Earth eAtlas basemap v1.0, AIMS).
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and rigorous handling of uncertainty. The approach to find a de-
sign in this framework can be split into three stages, as shown in 
Figure 2. The first stage entails quantifying prior information about 
the ecological process being monitored, and this is achieved here by 
modeling historical data collected on Scott Reef. Through building 
a Bayesian statistical model for these data, we will form a posterior 
distribution of the parameters. It is this distribution that will be used 
as the prior information for design selection. In the second stage, 
this prior information is exploited to assess the value of different de-
signs in addressing proposed monitoring objectives (defined above). 
To do so, an expected utility function (Chaloner & Verdinelli, 1995) is 
used which evaluates the information that is expected to be gained 
from running a given design. Then, given the value of a design can 
be quantified, the last stage of the process is to optimize the choice 
of design with respect to the monitoring objective for a given fu-
ture monitoring scenario. Once such a design has been found, it is 
proposed as the optimal design, that is, the design that is expected 
to provide the most information about a given monitoring objective 
within the monitoring scenario. In the next section, we describe each 
of these three stages in more detail.

5.1  |  Quantifying prior information

5.1.1  | Model historical data

Semiparametric regression approaches can be used to capture 
nonlinear relationships within a regression model and have been 
considered previously to describe data from coral communities 
on the Great Barrier Reef (GBR; Vercelloni et al.,  2014). Here, we 
develop a model to capture nonlinear trends in hard coral cover 
ysrt at the s-th site, in the r-th reef location at the t-th survey time 
(s = 1, 2, 3; r = 1, … , 7; t = 1994.83, … , 2016.08). We assume that 

ysrt follows a Binomial distribution (denoted as “BIN”) such that 
ysrt ∼ BIN

(
n,�srt

)
 where the first parameter n is number of trials 

and the second parameter �srt is the probability of success. Here, 
n is the number of points in a 250 m combined transect length, that 
is, n = 1250, and �srt can be expressed as �srt = 1∕

(
1 + exp

(
− �srt

))
 

where �srt denotes the linear predictor of the model, that is, a linear 
combination of parameters and covariates. Within this linear pre-
dictor, a semiparametric modeling approach can be used to provide 
flexibility in describing the relationship between covariates and the 
mean response �srt. This is achieved through the inclusion of an addi-
tive term f

(
xsrt

)
 where f( ⋅ ) is some smooth function of covariate xsrt 

which could be (for example) the sampling year.
There are different methods for modeling the smooth func-

tion, including cubic splines, B-splines, truncated polynomials, and 
radial splines (Crainiceanu et al., 2005). We consider the low-rank 
thin-plate splines approach as it requires fewer parameters to es-
timate, and also it is relatively insensitive to the choice of knots 
(Wood, 2003). Such a smooth function can be expressed as follows:

where �0 =
(
�0, �1, �1, … , �K

)T, �0 is the intercept, �1 is the regression 
coefficient for time, � =

(
�1, … , �K

)
 are random coefficients, �k are 

knots (i.e., the points where piecewise spline curves meet), and K is the 
total number of knots. Here, knot �k is the sample quantile of the xsrt’s 
corresponding to the probability k ∕(K + 1) (Crainiceanu et al., 2005).

In the Scott Reef, the degree of disturbance exposure does not 
appear to be consistent across sites (see Figure S2 which shows the 
coral cover over time by site, and highlights the sites which appear 
to be most affected by the bleaching event in 1998). Hence, the 
inclusion of site specific/time-varying covariates zt into the model 
(see below) should capture at least some of such variation. In ad-
dition, there could be variation between sites/reefs that cannot be 

(1)f
(
xsrt,�0

)
= �0 + �1xsrt +

∑K

k=1
�k
||xsrt−�k

||
3
,

F I G U R E  2 Diagram of the proposed 
Bayesian adaptive design framework. 
This consists of three stages: quantifying 
prior information (left), assessing designs 
(middle), and optimization and evaluation 
(right).
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explained by the available covariate information. In such cases, ran-
dom effects can be included into the model as follows to capture 
such variation, where we note that sites are nested within reefs:

where �sr represents the random effects that are assumed to follow 
p
(
�sr |�r , log�s

)
 where �r ∼ p

(
� | log�r

)
, where p represents some dis-

tribution, and, log�s and log�r are the logarithm of the standard devi-
ations of the site and reef random effects, respectively. Wood (2003) 
describes the extension of such a model to accommodate other poten-
tial covariates, and we follow this approach to incorporate reef level 
time-varying covariates such as bleaching exposure and cyclone hours. 
In Equation (2), zt represents time-varying covariates and �t is the cor-
responding vector of regression coefficients. Additionally, we incorpo-
rated three dummy variables to account for cyclone, severe cyclone, 
and bleaching exposures at different reef locations. The corresponding 
data matrix and the vector of regression coefficients are denoted as dr 
and �d, respectively.

Coral cover is often impacted by disturbances such as cy-
clones and bleaching events, and some major events will result 
in sudden declines in coral cover trends (De'ath et al.,  2012; 
Osborne et al., 2011). We propose that estimating the impact of 
the major bleaching event that occurred in 1998 can be achieved 
using an interrupted time series (ITS) regression approach (Bernal 
et al., 2017; Linden, 2015). The motivation for this is that, in gen-
eral, an ITS approach can account for sudden changes in the trend 
due to some intervention introduced or disturbance that has oc-
curred (McDowall et al.,  2019). When applying ITS, the type of 
impact due to the disturbance should be hypothesized. This may 
include a gradual change in slope or in both the intercept and slope 
within the model for the mean response (Bernal et al., 2017). In 
addition, some disturbances may cause an immediate change in 
the trend while others may have a lag period before any effect is 
observed. The reader is referred to Bernal et al.  (2017) for more 
details about modeling different types of sudden changes in time 
series data.

Based on hard coral cover trends over time (Figure S1), we hy-
pothesized that the 1998 mass bleaching event resulted in changes 
to both the intercept and slope when modeling hard coral cover 
trajectories. Furthermore, it was proposed that the impact ex-
isted for years as mortality does not happen completely during or 
a few months after bleaching (Baird & Marshall,  2002; Gilmour & 
Smith, 2013). The model defined previously using Equation (2) can 
now be extended to accommodate such an impact as follows:

where BLE98srt represents the bleaching impact, that is, BLE98srt = 0 
before the bleaching event happened, and otherwise, it is equal to 1, 
and � l is the level change due to the bleaching impact. Here, Time98srt 

represents the time before and after the bleaching event, that is, 
Time98srt = 0 before the bleaching event occurred, and after that, time 
increases with survey time, and �s represents the corresponding slope 
change.

In the model, cyclone hours data were count values that var-
ied over a large range; thus, the square-root transformation 
(Weber,  1990) was applied before including this covariate into 
the model. This transformation was also applied to ensure a lin-
ear relationship was appropriate between cyclone hours and 
log

(
�srt ∕

(
1 − �srt

))
 (O'Hara & Kotze,  2010). Previous studies have 

considered centering covariates to avoid numerical issues when fit-
ting a given model, and we follow this approach for the time-varying 
covariates (Selig et al., 2012; Vercelloni et al., 2014). Furthermore, 
we calculated ∣ xsrt − �k ∣ by considering centered survey time 
(Crainiceanu et al., 2005).

Within a Bayesian framework, we are interested in esti-
mating the joint posterior distribution p

(
�, � |yh,Zh,Vh, dh

)
 

of model parameters and random effects, where 
�=

(
�0, �1,�t ,�d , � l , �s , �, log �� , log �r , log �s

)
 denotes all parameters 

in the model (Equation (3)), � is a matrix representation for the nested 
random effects, dh denotes previous surveys at Scott Reef, Vh rep-
resents data matrices related to ∣ xsrt − �k ∣ and the ITS component (i.e., 
BLE98srt and Time98srt), yh denotes the previously collected hard coral 
cover data (i.e., ysrt, s = 1, 2, 3; r = 1, … , 7; t = 1994.83, … , 2016.08 ), 
and Zh are the previously collected time-varying covariates (for times 
1994.83 to 2016.08) where we have shifted notation such that all his-
torical data will now be indexed by h. This will be convenient when 
considering future monitoring scenarios later in the paper. To estimate 
the posterior distribution (see Appendix S3 for more details), Markov 
Chain Monte Carlo (MCMC) methods can be used. For this purpose, 
WinBUGS was implemented (Lunn et al., 2000).

To find the most appropriate model to describe the historical 
data at Scott Reef, we considered the ℳ–closed perspective of 
Bernardo and Smith  (2009). Accordingly, the most appropriate 
model for the data is assumed to be contained within a finite set 
of L candidate models indexed by m ∈ {1, 2, … , L}. We defined 
the class of models by considering the following components: 
the nested random effects for sites within reef locations (NRE); 
the smooth component (SC); and all available covariates (ALL 
COV), that is, Time, Bleaching, Cyclone hours, Interrupted 98 
(i.e., BLE98srt and Time98srt), location-specific covariates impacts, 
that is, Cyclone Loc2 (i.e., Cyclone Loc and Severe cyclone Loc) 
and Bleaching Loc, and the interaction between Bleaching and 
Cyclone. The most appropriate model within this class was then 
determined via the deviance information criterion (DIC) with 
a preference for the model with the smallest of these values 
(Spiegelhalter et al., 2014). Prior information was specified to be 
vague on likely range of values of each parameter (Table S3). In 
addition, to appropriately capture the nonlinear features of the 
data, a specific number of knots needs to be determined. For this, 
we followed the approach of Ruppert  (2002) where the number 
of knots was increased until there was little to no improvement in 
model fit. This resulted in the use of three knots.

(2)log

(
�srt

1 − �srt

)
= �sr + �tzt + �ddr + f

(
xsrt,�0

)
,

(3)

log

(
�srt

1 − �srt

)
= �sr + �tzt + �ddr + f

(
xsrt,�0

)
+ � lBLE98srt + �sTime98srt,



6 of 12  |     ABEYSIRI WICKRAMA LIYANAARACHCHIGE et al.

5.1.2  |  Form prior for design

As the above model will be fitted within a Bayesian inference 
framework, a posterior distribution of the parameters will be ob-
tained. Such a posterior distribution quantifies the uncertainty 
about the model parameters given the historical data, and it is this 
distribution that is used to form prior information for design. That 
is, this posterior distribution becomes the prior distribution for 
design such that any additional data that are collected in future 
monitoring will update this prior information which will presum-
ably reduce uncertainty about the parameters. It is this reduction 
in uncertainty (or relative gain in information) that is used to guide 
future sampling. In particular, this can be used to evaluate a design 
with respect to addressing a given monitoring objective, and this 
is described in the next section.

5.2  |  Assessing designs

This section explains how to evaluate designs in terms of achiev-
ing a certain monitoring objective (Figure 2, middle) based on prior 
information that has been obtained from historical data. A general 
approach is adopted through a utility function which is constructed 
to encapsulate the monitoring objective. A design is then selected, 
so that this objective is expected to be optimized.

5.2.1  |  Propose design

Define a design as d =
(
d1, d2, … , dns

)t, where ns is the number of 
sites appearing in a proposed sampling design out of all sites (i.e., 7 
reef locations × 3 sites = 21 sites). The usefulness of such a design 
d can be quantified via what is called a utility function which evalu-
ates how much information will be provided from data y to address a 
specific monitoring objective. As it is unknown what data will be ob-
served, the expectation of the utility function is taken with respect 
to this and other unknowns as follows:

where z represents specific values of the time-varying covariates 
which define particular future monitoring scenarios. Further details 
about these scenarios will be provided later in this section.

The choice of a utility function depends on the monitoring objec-
tive. Here, our goal is to determine the relative importance of survey 
locations for providing information about coral health based on a 
statistical model, so we consider gathering as much information as 
possible about the parameters in this model as the monitoring ob-
jective. Accordingly, a variety of parameter estimation utility func-
tions could be considered including the Kullback–Leibler divergence 
(KLD) and a Bayesian version of the D-optimality criterion. We chose 
KLD (Kullback & Leibler, 1951) as we are broadly interested in the 

precise estimation of all parameters with respect to the prior infor-
mation. The KLD utility function can be expressed as follows (Friel 
& Pettitt, 2008):

Evaluating this utility measures how much the posterior distribution di-
verges from the prior. In terms of designs, a larger deviation for a given 
design d indicates more has been learned from data collected. Thus, we 
seek a design d that maximizes the expectation given in Equation (4) 
where the utility is defined in Equation (5).

5.2.2  |  Approximate the expected utility

To find an optimal design, we need to evaluate the expected util-
ity. However, typically, this expression does not have a closed-form 
solution. Thus, a numerical approximation is required. For this, one 
can use Monte Carlo integration (Ryan, 2003) which can be defined 
as follows:

where J (≥100) is the controlling parameter for Monte Carlo in-
tegration. This approach to approximate the expected utility is 
outlined in Algorithm 1, which begins by initializing some param-
eters (line 1). To approximate the expected utility for a given de-
sign d, many datasets need to be simulated based on the given 
design (line 2). For this purpose, we simulate parameter and ran-
dom effect values from the prior distribution (line 3). To simulate 
hard coral cover for the next survey time point t  (line 4), we pro-
pose a Taylor series expansion around the mean at the last sur-
vey point, that is, 2016.08 (Table S7). In such a case, a bivariate 
Taylor series expansion needs to be applied as the regression 
model includes two time variables following the incorporation 
of the interrupted regression component. For the given model, 
the Taylor series approximation can be described as follows: 
f
(
xsrt, Time98srt

)
≈ f(a, b) + fxsrt (a, b)

(
xsrt − a

)
+ fTime98srt

(a, b)
(
Time98srt − b

)
  , 

where f
(
xsrt, Time98srt

)
 is the value of the function at the next 

survey point (i.e., t   =  2016.33) and (a, b) are values which with 
the Taylor series is centered (see Appendix S7 for extrapolation 
results). The posterior distribution needs to be approximated for 
each simulated dataset (line 5). Given this needs to be performed a 
large number of times, this is a computationally demanding step in 
the algorithm. To address this, a Laplace approximation (Overstall 
et al., 2018) was adopted. Given this approximation to the poste-
rior distribution, the KLD utility can be evaluated (see Appendix S9 
for more details) (lines 6–7). Finally, an average of KLD utility val-
ues is used to approximate the expected utility (line 9).

(4)

E
[
u
(
d, z, y ∣ yh,Zh,Vh, dh

)]
= ∫Υu

(
d, z, y ∣ yh,Zh,Vh, dh

)
p
(
y ∣ z, d, yh,Zh,Vh, dh

)
dy,

(5)

u
(
d, z, y ∣yh,Zh,Vh, dh

)
=∫Θ∫Ξp

(
�, � ∣y, z, yh,Zh,Vh, d, dh

)

× log p
(
y|�, �, z, yh,Zh,Vh, d, dh

)
d�d�

− log p
(
y|z, yh,Zh,Vh, d, dh

)
.

(6)E
[
u
(
d, z, y ∣yh,Zh,Vh, dh

)]
≈
1

J

J∑

j=1

u
(
d, z, y(j)|yh,Zh,Vh, dh

)
,
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5.3  |  Optimization and evaluation of the design

This section describes the third stage of our Bayesian adaptive de-
sign framework: optimization and evaluation of the design (Figure 2, 
right). The procedure used for this optimization is described next, 
along with the design formulation, the selection of future distur-
bance scenarios and a so-called design efficiency which is used to 
evaluate designs.

5.3.1  |  Optimize design

Using Algorithm 1, we are now able to approximate the expected 
utility of a given design d. The next step is to find the optimal de-
sign d∗ out of the set of candidate designs which maximizes the 
expected utility, that is, d∗ = argmax

d

E
[
u
(
d, z, y ∣ yh,Zh,Vh, dh

)]
. 

Here, candidate designs d need to be formulated in accordance 
with monitoring scenarios, and these were constructed on the 
basis of likely sampling problems that could be encountered on 
Scott Reef into the future. For Objective (i), we will investigate 
whether some reef locations within Scott Reef have greater util-
ity than others. Accordingly, seven candidate designs were for-
mulated considering all possible combinations where six of seven 
reef locations will be sampled. The corresponding designs were 
labeled as SL1, …, SS3 where, for example, design SL1 denotes 
that no data will be collected from the reef location SL1 for the 
next survey time. As there will be a relatively small number of po-
tential candidate designs (i.e., seven) under this objective, we will 
enumerate all seven designs to determine the optimal. Next, under 
Objective (ii), we determine the optimal design consisting of the 
most informative site (out of the three) at each reef location. To 
locate these optimal designs, the coordinate-exchange algorithm 
was used based on five randomly selected initial designs (Meyer 
& Nachtsheim,  1995). Here, the coordinate-exchange algorithm 
was implemented as there are actually many potentially optimal 
designs to assess, so applying an exhaustive search would not be 
computationally efficient.

5.3.2  |  Evaluate design within monitoring scenario

To evaluate our adaptive designs, two disturbance scenarios (i.e., 
two different values for z) were considered. These were: (a) actual 
covariate data collected at the next survey time (i.e., 2016.33)  and 
(b) bleaching and cyclone impacts including an interaction between 
them at each reef location (see Appendix S8 for more details). This 
means that Scenario (a) withdraws the prevailing cyclone exposure 
while Scenario (b) includes cyclone location disturbances and cyclone-
bleaching interactions for each reef location. Each objective defined 
previously will be assessed under these two disturbance scenarios.

To evaluate the optimal designs that will be found, we will eval-
uate the amount of information that is expected to be obtained, and 
compare this to the amount of information that would be obtained 
if data were collected at all sites/reefs. For this comparison, a design 
efficiency can be evaluated as follows:

where E
[
u
(
d, z, y ∣ yh,Zh,Vh, dh

)]
 and E

[
u
(
dL, z, y ∣ yh,Zh,Vh, dh

)]
 are 

evaluations of the approximate expected utility (Equation (6)) for a de-
sign d and the design dL (which denotes that all sites/reefs are included 
in the next survey time), respectively. When evaluating this efficiency, 
to reduce the impact of the stochastic approximation to the expected 
utility, the evaluation will be repeated 20 times (independently) for d 
and dL, and the efficiency will be evaluated each time. The mean of 
these 20 efficiencies will then be taken as the design efficiency.

6  |  RESULTS

6.1  |  Quantifying prior information

To select the most appropriate model for the Scott Reef hard coral 
cover data, we defined a class of models by considering all compo-
nents described in Section 5.1. The corresponding model comparison 

(7)Eff=
E
[
u
(
d, z, y ∣yh,Zh,Vh, dh

)]

E
[
u
(
dL, z, y ∣yh,Zh,Vh, dh

)] ,

ALGORITHM 1 Approach to approximate the expected utility

1. Initialise d, yh,Zh,Vh, dh, z, t, J

2. For j = 1 to J do

3. Simulate �(j), �(j) ∼ p
(
�, � |yh,Zh,Vh, dh

)

4. Simulate y(j) ∼ p
(
y |�(j), �(j), z, yh,Zh,Vh, d, dh

)
 at the next survey time t based on d via a Taylor series approximation to the mean response

5. Estimate p
(
�, � ∣ y, z, yh,Zh,Vh, d, dh

)
 via Laplace approximation

6. Evaluate KLD utility u
(
d, z, y(j) ∣ yh,Zh,Vh, dh

)

7. Store u
(
d, z, y(j) ∣ yh,Zh,Vh, dh

)

8. End for

9. Output E
�
u
�
d, z, y ∣ yh,Zh,Vh, dh

��
≈

1

J

∑J

j=1
u
�
d, z, y(j) ∣ yh,Zh,Vh, dh

�
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results based on DIC are provided in Table S4. As the model with a 
smaller value of DIC is preferred, the most appropriate model found 
for hard coral cover can be described as follows:

where � i , i = 1, … , 9 are the regression coefficients and �1, �2, and �3 
are random coefficients. The goodness-of-fit of this model was as-
sessed and found to be appropriate, see Appendix S6 for further de-
tails. Then, the posterior distribution of this model was used as the 
prior distribution for all subsequent design evaluations.

6.2  |  Optimization and evaluation of the design

6.2.1  |  Importance of reef locations

Under Objective (i), we aim to determine the relative importance 
of seven reef locations at Scott Reef. First, disturbance Scenario 
(a) was considered. For this evaluation, we formulated seven de-
signs (i.e., SL1, …, SS3), as described in Section  5.3.1. To evalu-
ate these designs, the KLD expected utility was evaluated. These 
results (as design efficiencies) are shown in Figure 3a, where the 
efficiency is with respect to the design where all reef locations are 
sampled. A summary of the utility evaluations is given in Table 1 to 
aid in interpretation.

According to Table 1, SL4 is the optimal design as it has the highest 
mean efficiency. As the missing reef location within this design is SL4, 
this reef location can be considered as the least informative reef loca-
tion under Scenario (a). This suggests that less information is expected 
to be lost by omitting reef location SL4 compared with omitting any 
other reef location. Similarly, the reef location SS2 can be reported 
as the most informative reef location as omitting this reef location 
resulted in the largest reduction in efficiency (Table 1). However, it 
should be noted that there is very little difference in the efficiency 
values between these designs (Figure 3a). Indeed, some of the differ-
ences observed could potentially be due to Monte Carlo error.

Second, we evaluated Objective (i) under the disturbance 
Scenario (b). The corresponding design efficiencies and expected 
utility values are provided in Figure 3b and Table 2, respectively. It 
is evident from Figure 3b that all the reef locations have similar me-
dian efficiency values under Scenario (b) except for SS2, which aligns 
with the results under Scenario (a). The design SL4 has the highest 
efficiency; thus, the reef location SL4 can be reported as the least in-
formative reef location under Scenario (b). Furthermore, comparing 
Figure 3a,b shows that overall there are similar efficiencies for de-
signs under the two disturbance scenarios considered. This suggests 
that the optimal design is robust to the two scenarios considered 
under Objective (i).

To explore these design selections, consider that the posterior 
means will be similar to the prior means, so this should not partic-
ularly contribute to the optimal design selection under KLD utility 
function, see Equation S1. Accordingly, these design selections could 
be driven by the posterior variance–covariance of the parameters. 
Upon investigating this, the larger utility values appeared to be re-
lated to the estimation of the reef random effect standard deviation 
parameter (i.e., log �r). This is typically where the largest change from 
the prior was observed, and thus could potentially be driving the de-
sign selection, that is, designs that provide more information on the 
variability of coral cover between reef locations are being preferred.

6.2.2  |  Informative sites at each reef location

Under Objective (ii), we determined the optimal design that con-
sists of the most informative site at each reef location subject to 
two disturbance scenarios. The selected sites from each reef loca-
tion into the optimal designs under the two scenarios are reported 
in Table S8. It can be seen from the table that the optimal designs 
contain different site combinations under the two scenarios. It was 
found through investigating these optimal designs that the esti-
mation of log �r again appeared to be a main contributor to these 
optimal design selections. This indicates that the optimal site com-
bination under a given disturbance scenario provides more informa-
tion about the between reef variability.

The optimal designs under the two scenarios have mean efficien-
cies of 86.28 (5.49)% and 71.18 (2.62)%, respectively. These reduc-
tions in mean efficiency  indicate that if disturbances are similar to 
previous years, then minimal sampling (i.e., one site per reef location) 
will capture a substantial proportion of information. However, when 
a variety of disturbance combinations are observed, then there ap-
pears to be more information lost, so there might be value to under-
taking additional sampling in such cases.

7  |  DISCUSSION

This study developed adaptive design methods using semiparametric 
and ITS models through utilizing information captured through such 
modeling to guide future surveys at Scott Reef. We demonstrated 
the use of such a modeling approach in finding adaptive design when 
data showed nonlinear trends with some sudden shifts over time. 
For this purpose, it was shown that changes around major environ-
mental disturbances in ecological monitoring could be accounted for 
using an ITS regression modeling approach. This enabled prior infor-
mation from historical data to be appropriately formed when such 
data potentially exhibit complex ecological relationships.

We assessed the importance of reef locations under Objective (i) 
subject to two disturbance scenarios. The results showed that there 
was little difference between the selection of which reef location to 
omit under either scenario. This indicates that the design choice is 
relatively inconsequential. Also, dropping one reef location resulted 

(8)

log

(
�srt

1−�srt

)
=�0+�1Time+�2Bleachingt+�3Cyclonehourst

+�4Bleaching×Cyclonert+�5BLE98t+�6Time98t

+�7CycloneLocrt+�8SeverecycloneLocrt

+�9BleachingLocrt+�1v1,rst+�2v2,rst+�3v3,rst+�sr,
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in little information loss, allowing the survey effort to be reduced 
without losing a substantial amount of information about the param-
eters in the developed model.

Under Objective (ii), we found optimal designs consisting of one 
site at a given reef location based on two disturbance scenarios. This 
provided insight into the most appropriate site to sample from a 

F I G U R E  3 Utility evaluation results 
under disturbance Scenario (a) and (b) for 
seven designs (x-axis). y-axis represents 
design efficiency of each design when 
compared to sampling all seven reef 
locations.

TA B L E  1 Summary of utility evaluations for seven designs under 
Scenario (a) in Objective (i).

Design Mean efficiency (%) Standard deviation

SL1 98.14 0.59

SL2 98.46 0.60

SL3 98.01 0.52

SL4 99.03 0.46

SS1 98.92 0.62

SS2 97.93 0.71

SS3 98.68 0.68

TA B L E  2 Summary of utility evaluations for seven designs under 
Scenario (b) in Objective (i).

Design Mean efficiency (%) Standard deviation

SL1 96.29 1.05

SL2 96.16 0.85

SL3 96.36 0.88

SL4 96.78 1.19

SS1 96.60 0.68

SS2 95.73 0.80

SS3 96.64 0.68
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given reef location depending on prevailing disturbance conditions. 
The differences between the optimal designs between these two 
scenarios suggest that site selection depends on the disturbances 
that have been observed, and our methods provide a framework 
with which to make this assessment. Additionally, it appears that the 
design choices made under Objectives (i) and (ii) are associated with 
the estimation of the reef random effect standard deviation param-
eter (i.e., log �r) meaning that we are learning about how coral cover 
varies between reefs.

In terms of modeling monitoring data, the Gompertz model has 
been considered recently (MacNeil et al., 2019) for capturing non-
linear relationships in population growth. However, such a model 
proved to not be flexible enough to capture nonlinear trends 
where observations have been collected with unequal time gaps. 
In such circumstances, semiparametric modeling approaches can 
be utilized to capture nonlinear trends, as demonstrated in this 
study. The consideration of such a modeling approach meant that 
new design methods needed to be proposed such that adaptive 
designs could be found in this context. This was demonstrated by 
considering two future disturbance scenarios, and assessing the 
performance of these designs against more resource intensive 
sampling.

It is important to note that the adaptive designs found in this 
work could potentially change depending on the prior information 
that was obtained from the historical data. This is why significant 
effort was invested in assessing the goodness-of-fit of the model 
through cross-validation in addition to the standard approach of as-
sessing the posterior predictive distribution. Given this, we suggest 
it is crucial that the exact analysis plan for evaluating the monitoring 
objective be encoded into the utility function. That is, in this work, 
the health of Scott Reef will be assessed through hard coral cover as 
estimated from the developed hierarchical model. In such a case, the 
design found is optimal. In contrast, if some other approach will be 
used to assess the health of Scott Reef, then there is no guarantee 
that the proposed designs will be efficient or expected to provide 
maximum information.

In terms of extending our model, a number of options could be 
considered including incorporating the effects of temperature on 
coral health. For this, we would like to note that bleaching is a better 
direct measure of the impact of temperature on coral, so addition-
ally having temperature would most likely be redundant. Similarly, 
one could consider incorporating the effects of increasing acidifi-
cation of the ocean. However, such impact would likely be minor 
and therefore will most likely be swamped by the impact of cyclone 
and bleaching events. Furthermore, such effects would not be ex-
pected to change rapidly enough in space and/or time to be relevant 
to design considerations. Other extensions that could be considered 
include further capturing delayed effects of coral bleaching (see 
Graham et al., 2007) which may improve the model fit in, for exam-
ple, the final sampling year where some discrepancy is observed at 
the initial stages of a bleaching event, see Figure S3. Depending on 
how this is captured, sampling designs could potentially be devel-
oped to estimate such delays.

The use of flexible semiparametric modeling approaches as ad-
opted in this paper can lead to a statistical model that is overfitted. 
In our case, this flexibility (and therefore potential for overfitting) 
is largely controlled by the number of knots in the model. Ideally, 
there would be enough knots to effectively capture trends in the 
data but not so many that random variations are being explained. 
Automatic procedures are available which provide a choice for the 
number of knots (e.g. Ruppert, 2002) where one should effectively 
penalize overly complicated models. In our work, we followed the 
approach of Ruppert  (2002) which led to a choice of three knots. 
Such a low number mitigates overfitting but still provides flexibility 
in describing trends in data. In addition, cross-validation approaches 
were adopted to assess model fit which should provide further miti-
gation against overfitting.

In terms of future research directions, there is interest in the 
transferability of our designs and our adaptive design approach to 
other environmental monitoring programs. Broadly, we suggest that, 
in principle, the approach considered in this work could be applied 
within a variety of monitoring programs where data collection is ex-
pensive, and therefore, the use of resources to collect data needs 
careful consideration and planning. In order for this approach to be 
applied in such settings, one needs a quantifiable monitoring ob-
jective defined based on a planned analysis. This is critical as the 
analysis defines the uncertainty in the monitoring objective, and the 
reduction in this uncertainty is used to compare and optimize sam-
pling effort. In terms of the transferability of the actual designs, we 
note that the designs are model-based so some insight into trans-
ferability may be provided from a modeling prospective (e.g., Yates 
et al., 2018), particularly general learnings about what sampling is in-
formative to achieve a given objective. However, further exploration 
of this area is needed before anything concrete can be concluded.

It is expected that disturbances will increase in the future; both 
in terms of frequency and in terms of severity. We note that Scott 
Reef has experienced multiple major and moderate bleaching and 
cyclone disturbance events within the time period considered in this 
paper, so significant disturbance events are not completely out of 
consideration in this work. Accordingly, we suggest that the recom-
mendations we have made for future monitoring are still relevant. 
In particular, within the data we have analyzed, we have seen that 
increased severity of disturbance reduces variability among sites 
suggesting that the impact is more consistent across an entire reef 
location. Given this, the finding that no particular site needs to be 
preferred in future sampling would seem reasonable, and this is what 
was found when we evaluated our adaptive designs.

8  |  RECOMMENDATIONS FOR FUTURE 
REEF MONITORING BA SED ON FINDINGS 
FROM SCOT T REEF

	(i)	 Pre-assessment of the expected information gain by location 
(e.g., site or reef location) can be used to determine whether 
any locations can be prioritized for data collection. Here, it was 
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found that information gain from sites was similar, so no particu-
lar location needed to be prioritized over another.

	(ii)	 After an extensive monitoring period, explore reduced sampling 
practices as there is potential to reduce sampling effort (e.g., 
drop site or reef location) without experiencing significant infor-
mation loss about coral health.

	(iii)	Evaluate disturbance patterns at monitoring locations as these 
can influence information gain, for example, here, it was shown 
that more information about coral health was obtained when 
new disturbance patterns were experienced when compared to 
historical disturbance patterns.

	(iv)	On-going review of monitoring practices is recommended to as-
sess effectiveness of adaptive designs.
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