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Hemolytic or hemorrhagic episodes are often associated with inflammation even when infectious agents are absent suggesting that
red blood cells (RBCs) release damage-associated molecular patterns (DAMPs). DAMPs activate immune and nonimmune cells
through pattern recognition receptors. Heme, released from RBCs, is a DAMP and induces IL-1β production through the
activation of the nucleotide-binding domain and leucine-rich repeat-containing family and pyrin domain containing 3 (NLRP3)
in macrophages; however, other cellular targets of heme-mediated inflammasome activation were not investigated. Because of
their location, endothelial cells can be largely exposed to RBC-derived DAMPs; therefore, we investigated whether heme and
other hemoglobin- (Hb-) derived species induce NLRP3 inflammasome activation in these cells. We found that heme
upregulated NLRP3 expression and induced active IL-1β production in human umbilical vein endothelial cells (HUVECs). LPS
priming largely amplified the heme-mediated production of IL-1β. Heme administration into C57BL/6 mice induced caspase-1
activation and cleavage of IL-1β which was not observed in NLRP3−/− mice. Unfettered production of reactive oxygen species
played a critical role in heme-mediated NLRP3 activation. Activation of NLRP3 by heme required structural integrity of the
heme molecule, as neither protoporphyrin IX nor iron-induced IL-1β production. Neither naive nor oxidized forms of Hb were
able to induce IL-1β production in HUVECs. Our results identified endothelial cells as a target of heme-mediated NLRP3
activation that can contribute to the inflammation triggered by sterile hemolysis. Thus, understanding the characteristics and
cellular counterparts of RBC-derived DAMPs might allow us to identify new therapeutic targets for hemolytic diseases.

1. Introduction

Damage-associated molecular patterns (DAMPs) or alarmins
are endogenous biomolecules that are released upon tissue
stress, injury, or cell death. DAMPs are able to trigger and/
or exacerbate innate immune response via the activation of
diverse innate immune receptors [1]. Hemolytic or hemor-
rhagic episodes are often associated with inflammation even
when infectious agents are absent, suggesting that damaged
red blood cells (RBCs) release DAMPs [2, 3].

The far most abundant protein in mature RBCs is hemo-
globin (Hb) that composes 96% of the dry weight of RBCs;
therefore, upon hemolysis, tremendous amounts of Hb are
released into the extracellular milieu. Outside of the protec-
tive environment of RBCs, Hb is prone to oxidation, leading
to the formation of oxidized Hb forms, that is, metHb (MHb)
and ferrylHb (FHb) [4–10]. Because of conformational
changes, oxidized Hb forms release their heme prosthetic
group. An endogenous protective system evolved to limit
the harmful effects of extracellular Hb and heme that relies
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mainly on the presence of two proteins in the plasma,
namely, haptoglobin and hemopexin. These acute-phase pro-
teins scavenge Hb and heme, respectively, and help their effi-
cient removal from the circulation [11–14]. Upon massive
intravascular hemolysis, this protective system becomes
overwhelmed, leading to the depletion of haptoglobin and
hemopexin and the accumulation of Hb and heme in the
plasma [11–14].

Extracellular Hb, particularly in its oxidized forms and
the released heme, exerts various biological effects. Heme is
a potent prooxidant and proinflammatory molecule
(reviewed in [10, 15]). As a prooxidant, heme induces lipid
peroxidation and sensitizes various cell types to oxidant-
and tumor necrosis factor- (TNF-) mediated programmed
cell death [16–19]. As a proinflammatory agonist, heme tar-
gets macrophages and induces TNF secretion via a toll-like
receptor 4- (TLR4-) dependent mechanism [20] and triggers
interleukin 1 beta (IL-1β) production through a mechanism
dependent on the expression of the nucleotide-binding
domain and leucine-rich repeat-containing protein 3
(NLRP3) inflammasome [21]. Through heme release, metHb
and ferrylHb share most of the deleterious effects of free
heme [10, 19, 22].

Endothelial cells provide a barrier between blood and tis-
sue and therefore play a fundamental role in the inflamma-
tory response. Because of their location, endothelial cells
are in the frontline to be exposed to Hb and its oxidation
products upon intravascular hemolysis [23]. Growing evi-
dence suggests that heme and oxidized Hb species play a
pathophysiological role in endothelial cell activation upon
hemolytic diseases via the upregulation of adhesion mole-
cules [24–26]. Additionally, endothelial cells respond to dif-
ferent alarmins by NLRP3 inflammasome activation and
subsequent release of IL-1β, and this mechanism has been
shown to play a significant role in diverse pathological condi-
tions including atherosclerosis, diabetic retinopathy, diabetic
nephropathy, and chronic kidney disease [27–32].

Heme is a prototypical alarmin that triggers NLRP3 acti-
vation in macrophages, but we lack knowledge on whether it
acts on endothelial cells. Therefore, here, we investigated
whether heme or other Hb-associated DAMPs induce
NLRP3 inflammasome activation in human umbilical vein
endothelial cells (HUVECs).

2. Materials and Methods

2.1. Materials. Reagents were purchased from Sigma-Aldrich
(St. Louis, MO, USA) unless otherwise specified.

2.2. Mice. C57BL/6 andNlrp3−/−mice were maintained at the
University of Debrecen in a conventional animal house and
were used between 6 and 8 weeks of age. All experiments
followed guidelines of the institutional and national ethical
committee and underwent approval. The Nlrp3−/− mice
strain was originally generated and characterized in the labo-
ratory of J. Tschopp [33]. To study the inflammatory action
of heme, twenty C57BL/6 mice (female, 6–8 weeks of age)
were randomly divided into 4 groups (n = 5/group) and
injected intraperitoneally (i.p.) with heme at a dose of 75,

150, and 300nmol/peritoneal cavity in 200μL apyrogen
PBS. Control mice received PBS only. In one experiment,
we injected C57BL/6 mice (n = 4) i.p. with heme-albumin
that was prepared by incubating heme with an equimolar
amount of human albumin for 10 minutes at room tempera-
ture. After 16 hours, mice were sacrificed by CO2 exposure
and peritoneal leukocytes were harvested by peritoneal
lavage using ice-cold PBS containing 2% FCS (Gibco,
Thermo Fisher Scientific Inc., Waltham, MA, USA) and were
analyzed by flow cytometry. Total number of cells was deter-
mined using a fixed number of latex beads (Beckman Coulter,
Paris, France), coacquired with a preestablished volume of the
cell suspensions. Number of peritoneal neutrophils was eval-
uated using R-phycoerythrin- (R-PE-) conjugated rat anti-
mouse Ly-6G (Gr1; CD11b, BD Biosciences, San Jose, CA,
USA) and biotin anti-mouse neutrophil monoclonal anti-
body (CL8993B, Cedarlane, Hornby, Ontario, Canada). Cells
were costained with propidium iodide (0.5μg/mL) to exclude
dead cells. Fluorescence was measured by flow cytometry
(FACS Calibur, BD Biosciences), and data was analyzed using
FlowJo software (Tree Star, Inc., Ashland, OR, USA). Ly-6G
and 7/4 double positive cells were identified as neutrophils,
Ly-6G negative and 7/4 positive cells were considered as
inflammatory monocytes/macrophages [34]. In another
experiment, twenty C57BL/6 mice (female, 6–8 weeks of
age) were randomly divided into 4 groups (n = 5/group) and
injected intraperitoneally (i.p.) with LPS (100μg/peritoneal
cavity), heme (300 nmol/peritoneal cavity), or LPS+heme
in 200μL apyrogen PBS. Control mice received PBS only.
Total leukocytes in the peritoneal fluid was determined on
Burker chambers after dilution in Turk solution as it was
described previously [21]. For IL-1β detection, peritoneal
fluid was centrifuged and the amount of IL-1β in the super-
natants was quantified by ELISA (DuoSet ELISA, R&D,
Minneapolis, MN, USA). To assess the role of NLRP3 in
heme-mediated inflammatory response, 6 C57BL/6 and 6
NLRP3−/− mice (female, 6–8 weeks of age) were randomly
divided into 2 groups (n = 3/group) and injected i.p. with
heme (300 nmol/cavity in 200μL PBS) or vehicle. Livers
were collected 16 hours postinjection, frozen in liquid nitro-
gen, and stored at −70°C until analysis.

2.3. Cell Culture. Human umbilical vein endothelial cells
(HUVECs) were removed from human umbilical cords
(n = 8) by exposure to dispase and cultured in medium 199
containing 15% FBS, antibiotics, heparin, L-glutamine,
sodium pyruvate, and endothelial cell growth factor on gela-
tinized plates as described previously [19].

2.4. Hemoglobin Preparation. Hb of different redox states,
that is, oxyHb (Fe2+), metHb (Fe3+), and ferrylHb
(Fe4+=O), was prepared as described [25]. Briefly, Hb
was isolated from fresh blood drawn from healthy volunteers
using ion-exchange chromatography on a DEAE Sepharose
CL-6B column. MetHb was generated by incubation
(30min, 25°C) of purified Hb with a 1.5-fold molar excess
of K3Fe (CN)6 over heme. FerrylHb was obtained by incuba-
tion (1 h, 37°C) of Hb with a 10 : 1 ratio of H2O2 to heme.
After oxidation, both metHb and ferrylHb were dialyzed
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against saline (3 times for 3 hours at 4°C) and concentrated
using Amicon Ultra centrifugal filter tubes (10,000 MWCO,
Millipore Corp., Billerica, MA, USA). Aliquots were snap-
frozen in liquid nitrogen and stored at −70°C until use. Purity
of each Hb preparation was evaluated by SDS-PAGE
followed by staining with ProteoSilver Plus Silver Staining
Kit. The purity of Hb preparations was above 99.9%. Hb con-
centrations were calculated as described by Winterbourn [4].

2.5. HUVEC Treatment. HUVECs were used at passage 2
and 3 within 2 days postconfluence. When indicated,
HUVECs were pretreated with the indicated doses of
lipopolysaccharide (LPS; 0.1, 1, and 10μg/mL in complete
(15% FBS) medium) for 24 hours. Heme was dissolved in
NaOH (20mmol/L), the pH was adjusted slowly to 7.4 with
HCl and the solution was sterile filtered using a 0.2μm
syringe filter (Millipore). Heme treatments were carried
out in 1% FBS-containing medium for 4 hours (mRNA),
12 hours (protein expression), or 24 hours (IL-1β secretion
and viability assays).

2.6. Quantitative Real-Time PCR (qRT-PCR). RNA was iso-
lated from cells using TRIzol (RNA-STAT60, Tel-Test Inc.,
Friendswood, TX, USA) according to the manufacturer’s
protocol. Two micrograms of RNA were reverse transcribed
to cDNA with High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Waltham, MA, USA). Quantita-
tive real-time PCR was performed using iTaq Universal
Probes Supermix (Bio-Rad Laboratories, Hercules, CA,
USA) and predesigned primers and probes (TaqMan® Gene
Expression Assays) to detect IL-1β (Hs.00174097), NLRP3
(Hs.00918082), ASC (Hs.01547324), HO-1 (Hs.01110250),
and GAPDH (Hs.02758991). Relative mRNA expressions
were calculated with the ΔΔCt method using GAPDH as
an internal control.

2.7. Determination of Cell Viability. Cell viability was deter-
mined by theMTT assay as previously described [19]. Briefly,
following treatments, cells were washed with PBS, and 100μL
of 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium
bromide (0.5mg/mL) solution in HBSS was added. After a
4-hour incubation, the MTT solution was removed, forma-
zan crystals were dissolved in 100μL of DMSO, and optical
density was measured at 570 nm.

2.8. IL-1β Secretion in HUVECs. HUVECs were cultured in
96-well plates. Following treatment, cellular supernatants
were collected and 100μL of undiluted sample was used for
ELISA analysis (DuoSet ELISA, R&D, Minneapolis, MN,
USA). All of the measurements were performed according
to the manufacturer’s protocol.

2.9. Western Blot. Following treatment, HUVECs were solu-
bilized in 10mmol/L TrisHCl, containing 5mmol/L EDTA,
150mmol/L NaCl (pH7.2), 1% Triton X-100, 0.5% Nonidet
P-40, and protease inhibitors (Complete Mini, F. Hoffmann-
La Roche Ltd., Basel, Switzerland). Whole cell lysates (20μg)
were used to evaluate NLRP3, HO-1, and GAPDH protein
expressions. Liver lysates (20μg) obtained from C57BL/6
or Nlrp3−/− mice were used to investigate caspase-1 and

IL-1β processing. Protein samples were run on 12.5%
SDS-PAGE. Western blotting was performed with the use
of a monoclonal anti-NLRP3 antibody (Clone number
768319, R&D Systems, Minneapolis, USA), a polyclonal
anti-caspase-1 p20 antibody (sc-398,715, Santa Cruz Bio-
technology Inc., Dallas, TX, USA), a monoclonal anti-IL-
1β antibody (number 12242, Cell Signaling Technology,
Leiden, Netherlands), and a monoclonal anti-human HO-1
antibody (sc-136,960, Santa Cruz) followed by the species-
specific HRP-labeled secondary antibodies (Amersham Bio-
sciences Corp., Piscataway, NJ, USA). Antigen-antibody
complexes were visualized with the horseradish peroxidase
chemiluminescence system (Amersham Biosciences Corp.,
Piscataway, NJ, USA). After detection, the membranes were
stripped and reprobed for GAPDH using anti-GAPDH anti-
body at a dilution of 1 : 1000 (Novus Biologicals, Littleton,
CO, USA). Results were quantified by using the Alpha Digi-
Doc RT (Alpha Innotech, San Leandro, CA, USA) quantifi-
cation system.

2.10. Intracellular ROS Measurement. ROS production
was monitored by using the 5-(and-6)-chloromethyl-2′,7′-
dichlorodihydro-fluorescein di-acetate and acetyl ester
(CM-H2DCFDA) assay (Life Technologies, Carlsbad, CA,
USA). After the treatment, cells were washed with PBS and
loaded with CM-H2DCFDA (10μmol/L, 30min, in the
dark). Cells were washed thoroughly, and fluorescence inten-
sity was measured applying 488nm excitation and 533nm
emission wavelengths for 3 hours in every 30 minutes. In
some experiments, ROS was scavenged by N-acetyl cysteine
(NAC, 5mmol/L) during the treatments.

2.11. Statistical Analysis. Data are shown as mean± S.D.
Statistical analysis was performed by one-way ANOVA
or Student’s t-test, as appropriate. P < 0 05 was considered
significant.

3. Results

3.1. Heme Acts as a Proinflammatory Agonist and Induces
IL-1β Secretion In Vivo. To examine whether heme exerts
proinflammatory effects in vivo, we injected heme into the
peritoneal cavity of C57BL/6 mice. Heme induced a dose-
dependent inflammatory response, and its highest dose
(300nmol/mice) triggered about a 20-fold increase in the
number of peritoneal PMN cells andmonocytes/macrophages,
as compared with vehicle-treated controls (Figures 1(a)–1(c)).
Next, we analyzed the effect of heme on the production of IL-
1β in vivo. Intraperitoneal administration of heme caused an
about 25-fold increase in the peritoneal IL-1β level as com-
pared with vehicle-treated controls (Figure 1(d)). These
results indicate that heme triggers processing and release
of IL-1β in vivo. We compared the proinflammatory effect
of heme to that of LPS and found that heme at the dose
of 300nmol/mice triggered 2.9-fold more leukocyte infiltra-
tion into the peritoneal cavity than LPS (100μg/mice)
(Figure 1(e)). LPS failed to further increase the number of
infiltrating leukocytes triggered by heme (Figure 1(e)).
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3.2. Heme Induces IL-1β Secretion in HUVECs through
NLRP3 Inflammasome Activation. Dutra et al. showed that
heme triggers IL-1β production in LPS-primed macrophages
through the activation of the NLRP3/ASC/caspase-1 inflam-
masome platform [21]. Endothelial cells provide a barrier
between blood and tissues, and therefore they are heavily
exposed to heme upon intravascular hemolysis. Given this
fact, we asked whether heme-induced inflammasome activa-
tion—besides of macrophages—also occurs in endothelial
cells. To test this, we treated HUVECs with heme and mea-
sured IL-1β mRNA levels. We found that heme (50μmol/
L) increased IL-1β mRNA levels by 6-fold compared to
vehicle-treated cells (Figure 2(a)). In general, NLRP3 inflam-
masome activation requires two distinct signals; therefore, we
next examined how heme behaves as a second signal. In this
case, we pretreated HUVECs with LPS (signal 1) before the
heme (signal 2) exposure. LPS treatment alone caused an
about 19-fold increase in IL-1β mRNA levels as compared
to vehicle control (Figure 2(a)). Furthermore, we found that
LPS priming largely enhanced the heme response and this
combined treatment resulted in a 53-fold elevation in IL-1β
mRNA (Figure 2(a)). We checked whether IL-1β mRNA
response is dependent on the dose of LPS. We primed
HUVECs with different doses of LPS and found that LPS at

the dose of 0.1μg/mL efficiently amplified the effect of heme
on IL-1β mRNA levels (Figure 2(b)). Next, we asked
whether heme triggers processing and secretion of active
IL-1β. For this, we measured the level of processed IL-1β
in the cellular supernatant of HUVECs. We found that heme
alone caused a dose-dependent mild increase in the level of
active IL-1β as compared to vehicle-treated cells. LPS treat-
ment did not increase secreted IL-1β levels but largely
enhanced the heme-mediated response (Figures 2(c) and
2(d)). To see whether cell death is involved in inflamma-
some activation by heme, we assessed cellular viability fol-
lowing the treatments. We found that heme up to 25μmol/
L is not toxic, but we observed an about 40% of cell death
when cells were exposed to 50μmol/L heme (Figure 2(e)).
The effect of heme on cell viability was independent of LPS
priming (Figure 2(e)). These results suggest that heme and
LPS act synergistically to induce the secretion of IL-1β in
endothelial cells.

To see whether NLRP3 inflammasome activation is
involved in the heme-mediated production of IL-1β, first,
we checked mRNA and protein levels of NLRP3. We found
that heme increased NLRP3 mRNA and protein expressions
in HUVECs (Figures 3(a)–3(c)). LPS as well caused elevation
of NLRP3 expression on both mRNA and protein levels but
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Figure 1: Heme induces neutrophil and monocyte infiltration and IL-1β secretion in vivo. (a–c) C57BL/6 mice were injected (i.p.) with
heme (75, 150, or 300 nmol/mice) or PBS (n = 5 in all groups). Peritoneal cavity was rinsed, and neutrophil and inflammatory
monocytes/macrophage numbers were determined after 16 h of treatment. (a) Representative dot plots of peritoneal cells stained with
Ly-6G and 7/4. (b) Mean number of Ly-6G high and 7/4 high PMN cells. (c) Mean number of Ly-6G low and 7/4 high inflammatory
monocytes/macrophages. (d) C57BL/6 mice were injected (i.p.) with heme (300mmol/kg body weight) or vehicle. Peritoneal cavity was
rinsed, and the active IL-1β level was determined in the supernatant by ELISA (n = 5 in both groups). (e) C57BL/6 mice were injected
(i.p.) with LPS (100 μg/mice), heme (300 nmol/mice), and LPS + heme or PBS (n = 5 in all groups). Peritoneal cavity was rinsed, and total
numbers of leukocytes was counted after 16 h of treatment. Data represent mean± SD; ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 005.

4 Oxidative Medicine and Cellular Longevity



failed to further increase the heme-mediated responses
(Figures 3(a)–3(c)). Assembly of the NLRP3 inflammasome
platform results in activation of caspase-1. We assessed
whether heme treatment triggers caspase-1 activation
in vivo. Injection of heme into wild-type mice peritoneum
induced an almost five-fold elevation in the level of active
caspase-1 (p20) in the liver (Figures 3(d) and 3(e)). In con-
trast, no heme-mediated caspase-1 activation occurred in
Nlrp3−/− mice (Figures 3(d) and 3(e)). Heme induced a
13.8-fold increase in the level of processed active IL-1β in
the liver of wild-type mice. On the contrary, we did not
observe active IL-1β formation in heme-treated Nlrp3−/−

mice (Figures 3(d) and 3(f)). These results suggest that

heme-mediated production of IL-1β occurs through the acti-
vation of NLRP3 inflammasome and caspase-1 activation.

3.3. Coordinated Iron of the Porphyrin Ring Is Involved in
Heme-Mediated Inflammasome Activation. Next, we aimed
to explore the structural motifs that are involved in heme-
mediated inflammasome activation. We tested protoporphy-
rin IX (PPIX), a precursor of heme that lacks the central Fe2+

ion, and the iron salt FeSO4 on whether they are able to
trigger the production of IL-1β in HUVECs. Both PPIX
and free iron (Fe2+) failed to increase the level of IL-1β
mRNA in LPS-pretreated HUVECs (Figure 4(a)). Stimula-
tion of LPS-treated HUVECs with PPIX or free iron did
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Figure 2: Heme induces IL-1β maturation and secretion in HUVECs. (a) LPS-primed (10 μg/mL, 24 h) or nonprimed HUVECs were
exposed to heme (10, 25, and 50μmol/L in 1% FBS, 4 h) or ATP (5mmol/L). IL-1β mRNA levels were determined by qRT-PCR. (b)
LPS-primed (0.1, 1, and 10μg/mL, 24 h) or nonprimed HUVECs were exposed to heme (25 μmol/L in 1% FBS, 4 h). IL-1β mRNA levels
were determined by qRT-PCR. (c) LPS-primed (10 μg/mL, 24 h) or nonprimed HUVECs were exposed to heme (10, 25, and 50μmol/L
in 1% FBS, 24 h). Secreted IL-1β levels were determined by ELISA from the cellular supernatant. (d) LPS-primed (0.1, 1, and 10μg/mL,
24 h) or nonprimed HUVECs were exposed to heme (25 μmol/L in 1% FBS, 24 h). Secreted IL-1β levels were determined by ELISA from
the cellular supernatant. (e) Cells were treated as in (c), and cellular viability was assessed by MTT assay. Results are shown as mean
± SD (n = 3) from one representative experiment of three. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 005.
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not cause secretion of mature IL-1β (Figure 4(b)). These
results suggest that coordinated iron present in the heme
molecule, but not the protoporphyrin ring or the released
iron, is critical to the activation of the inflammasome.

3.4. ROS Are Involved in Heme-Mediated Inflammasome
Activation. Both heme and LPS are well-known inducers
of ROS production in endothelial cells [18, 35]. Recent
studies highlighted the critical involvement of ROS in
NLRP3 activation induced by several stimuli [36, 37];
therefore, we next examined whether elevated ROS pro-
duction plays a role in heme-mediated inflammasome
activation in endothelial cells. First, we investigated ROS
production triggered by different doses of LPS in
HUVECs. We found that LPS—at the concentration range
from 100ng/mL to 10μg/mL—slightly but significantly
increased ROS production in HUVECs (Figure 5(a)).
Then, we investigated whether these doses of LPS could
increase ROS production triggered by heme. Our results
revealed that heme is a very potent inducer of ROS pro-
duction in HUVECs, resulting in about 5-fold elevation
of ROS production over controls and that LPS priming
slightly but significantly increased heme-triggered ROS

formation (Figure 5(b)). The radical scavenger NAC par-
tially inhibited ROS formation in LPS-primed heme-
treated HUVECs (Figure 5(c)). This was associated with
the reduction of heme-induced upregulation of IL-1β
mRNA and the attenuation of active IL-1β formation in
LPS-primed endothelial cells (Figures 5(d) and 5(e)).

3.5. Heme Binding Attenuates the Proinflammatory Effect
of Heme. Heme scavenging proteins such as hemopexin
(Hx) or albumin block most of the prooxidant actions of
heme [38]; therefore, we next investigated whether the
proinflammatory actions of heme towards endothelial cells
could be inhibited by albumin. We primed HUVECs with
LPS and then challenged with heme or heme-albumin
complex. In contrast to heme, heme-albumin failed to
induce IL-1β mRNA expression and secretion of mature
IL-1β in LPS-primed HUVECs (Figures 6(a) and 6(b)).
In contrast to heme, heme-albumin did not increase ROS
production in LPS-primed HUVECs (Figure 6(c)). Finally,
we checked whether heme-albumin triggers leukocyte infil-
tration in C57BL/6 mice. Our results revealed that albumin
completely inhibited heme-mediated leukocyte infiltration
(Figure 6(d)). These results suggest that heme-binding
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Figure 3: Heme induces NLRP3 expression and activation of caspase-1. (a) LPS-primed (10 μg/mL, 24 h) or nonprimed HUVECs were
exposed to heme (10, 25, and 50μmol/L in 1% FBS, 4 h). NLRP3 mRNA levels were determined by qRT-PCR. (b) LPS-primed (10 μg/mL,
24 h) or nonprimed HUVECs were exposed to heme (25 μmol/L in 1% FBS, 6 h). NLRP3 were analyzed by Western blot from whole cell
lysate. Membrane was reprobed for GAPDH. Representative blots of 2 independent experiments are shown. (c) Densitometric analysis of
Western blots. (d) C57BL/6 and Nlrp3−/− mice were injected with heme (300 nmol/peritoneal cavity) or vehicle (Ctrl). Protein expressions
of activated caspase-1 and processed IL-1β were analyzed by Western blot from liver samples (16 h). Membrane was reprobed for
GAPDH. Representative blots of 3 independent experiments are shown. (e and f) Densitometric analysis of Western blots. Results are
shown as mean± SD of 3 independent experiments. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 005.
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plasma proteins exhibit an anti-inflammatory function in
case of massive intravascular hemolysis by inhibiting heme-
mediated inflammatory responses.

3.6. Oxidized Hb Forms Do Not Trigger Inflammasome
Activation in Endothelial Cells.Oxidized forms of Hb are able
to release their heme moiety; therefore, we next investigated
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Figure 4: The coordinated iron is critical in heme-mediated induction of IL-1β. (a and b) HUVECs primed with LPS (10 μg/mL, 24 h) were
stimulated with heme, PPIX, or FeSO4 (25 μmol/L). (a) IL-1β mRNA level (4 h) was determined by quantitative RT-PCR. (b) Active IL-1β
levels in cellular supernatants (24 h) were determined by ELISA. Results are shown as mean± SD (n = 3) from one representative
experiment of three. ∗∗∗P < 0 005.
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Figure 5: Unfettered ROS production is critical in heme-mediated induction of IL-1β. (a) HUVECs were treated with LPS (0.01–10μg/mL,
24 h). (b) HUVECs were primed with LPS (0.01–10μg/mL, 24 h) then treated with heme (12.5 or 25 μmol/L, 4 h). (c–e) Naive or LPS-primed
(10 μg/mL, 24 h) HUVECs were treated with heme (25 μmol/L) in the presence or absence of NAC (5mmol/L). (a–c) Following the 4-hour
heme treatment, ROS production was measured with DCFDA assay. (d) Following the 4-hour heme treatment, IL-1β mRNA level was
determined by quantitative RT-PCR. (e) Active IL-1β levels in cellular supernatants (24 h) were determined by ELISA. Results are shown
as mean± SD (n = 5) from one representative experiment of three. ∗∗∗P < 0 005, ∗∗P < 0 01, and ∗P < 0 05.
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whether the different Hb forms are involved in inflamma-
some activation and the subsequent production of IL-1β in
HUVECs. Exposure of HUVECs to oxidized forms of Hb,
that is, metHb and ferrylHb but not naive Hb resulted in
the upregulation of the heme catabolizing enzyme heme
oxygenase-1 (HO-1) in HUVECs as was revealed by quanti-
tative RT-PCR and Western blotting (Figures 7(a) and 7(b)).
Importantly, we found that metHb and ferrylHb are much
weaker inducers of HO-1 than an equimolar amount of heme
(Figures 7(a) and 7(b)). As heme-mediated ROS production
is critical for NLRP3 inflammasome activation in HUVECs,
we examined whether Hb species at different oxidation
states increase intracellular ROS levels in HUVECs. In
contrast to heme, none of the Hb forms at the concentra-
tion of 25μmol/L increased ROS production in HUVECs
(Figure 8(a)). In contrast, when we applied the Hb forms
at the concentration of 250μmol/L, we observed ROS pro-
duction when the cells were treated with metHb and fer-
rylHb but not with naive Hb (Figure 8(b)).

Then, we investigated whether the different Hb forms
induce NLRP3 inflammasome activation in HUVECs. First,
we assessed IL-1β mRNA levels in nonprimed HUVECs
treated with low (25μmol/L) or high (250μmol/L) concen-
tration of Hb forms (Figure 8(c)). We found that high
concentration of ferrylHb induced a 2.2-fold elevation of
IL-1β mRNA expression in HUVECs, in which the effect
was not observed in cells treated with metHb or naive Hb
(Figure 8(c)). At the same time, heme at 10-times lower
concentration caused an approximately 3-fold upregulation
of IL-1β mRNA expression in HUVECs (Figure 8(c)).
Finally, we investigated the effect of Hb forms (low and
high doses) on IL-1β mRNA expressions in LPS-primed
HUVECs. As shown in Figure 8(d), none of the Hb forms
triggered further elevation of IL-1β mRNA levels when
HUVECs were primed with LPS (Figure 8(d)). These results
suggest that free heme, but not Hb-bound heme, is involved

in inflammasome activation and the subsequent production
of IL-1β in HUVECs.

4. Discussion

In this study, we show that heme is an inducer of IL-1β pro-
cessing through the activation of the NLRP3 inflammasome
in human endothelial cells. The molecular mechanism by
which heme promotes NLRP3 activation involves ROS and
requires structural integrity as well as “free”/non-Hb-bound
status of heme (Figure 9).

Heme is a potent proinflammatory molecule in vivo,
which is a notion supported by the finding that intraperito-
neal injection of heme induces infiltration of neutrophils
and monocytes/macrophages into the peritoneal cavity of
mice. This inflammatory response is associated with
increased production of the proinflammatory cytokine IL-
1β in the peritoneum.

Under noninflammatory conditions, endothelial cells
have multiple functions in maintaining blood fluidity, regu-
lating blood flow, controlling vessel wall permeability, and
keeping circulating leukocytes in a quiescent state. Upon
infection or inflammation, endothelial cells are among the
first cells coming into contact with microbial or endogenous
molecules and they become active participants and regulators
of the inflammatory response [23]. Endothelial cells are
equipped with receptors of the innate immune system allow-
ing them to sense and respond to a variety of pathogen-
associated molecular patterns (PAMPs) and endogenous
DAMPs [39].

Exposure of endothelial cells to classical DAMPs such as
extracellular ATP and high mobility group box 1 protein
(HMGB1) results in the activation of NLRP3 inflammasome
and the subsequent production of IL-1β [40, 41]. Endothelial
activation of NLRP3 inflammasome was observed in animal
models of hypercholesterolemia and hyperglycemia, and
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Figure 6: Albumin inhibits heme-induced NLRP3 inflammasome activation in HUVECs in vitro and heme-induced peritoneal infiltration
of leukocytes in vivo. (a–c) HUVECs primed with LPS (10 μg/mL, 24 h) were stimulated with heme or heme-albumin (H-A, 25μmol/L). (a)
IL-1β mRNA level (4 h) was determined by quantitative RT-PCR. (b) Active IL-1β levels in cellular supernatants (24 h) were determined by
ELISA. (c) ROS production (4 h) was measured with DCFDA assay. Results are shown as mean± SD (n = 4) from one representative
experiment of two. ∗∗∗P < 0 005, ∗∗P < 0 01, and ∗P < 0 05. (d) C57BL/6 mice were injected (i.p.) with heme (300 nmol/mice), heme-
albumin (h–a, 300 nmol/mice), or PBS (n = 5 in all groups). Peritoneal cavity was rinsed, and the total number of leukocytes was counted
after 16 h of treatment. Results are shown as mean± SD, ∗∗∗P < 0 005.
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endothelial production of IL-1β has been shown to contrib-
ute to diverse pathological conditions, including rheumatoid
arthritis, hemorrhagic shock-induced acute lung injury,
transfusion-related acute lung injury, and chronic kidney
disease [27, 29, 32, 42–44].

Activation of different innate immune receptors includ-
ing NLRP1, NLRP3, NLRC4, or AIM2 initiates the assembly
of the inflammasome, leading to activation of inflammatory
caspases and the maturation and secretion of IL-1β [45–48].
Previous studies showed that heme induces IL-1β produc-
tion in macrophages through the activation of the NLRP3
inflammasome [21, 49]. Our results show that heme is a
broader inducer of NLRP3 inflammasome activation and
besides macrophages, its proinflammatory actions target
endothelial cells as well. Activation of the NLRP3 inflamma-
some in macrophages requires two signals. The first (prim-
ing) signal provided mainly by toll-like receptors (TLRs)
or TNF receptor 1 and 2, triggering NF-κB-mediated expres-
sion of NLRP3 [50, 51]. The second signal is provided by a
PAMP or DAMP that activates NLRP3 to trigger inflamma-
some assembly, activation of caspase-1, cleavage of pro-IL-
1β, and release of the active cytokine [51]. In agreement with
this notion, priming with LPS was shown to be essential for
heme-mediated NLRP3 inflammasome activation in macro-
phages [21]. Regarding endothelial cells, heme induced low
amount of active IL-1β formation in nonprimed HUVECs
in which the response was largely amplified after LPS prim-
ing. Active IL-1β formation in nonprimed heme-treated

HUVECs was associated with some degree of cell death.
During endothelial cell necrosis, ATP and HMGB1 are
released, which were shown to trigger endothelial NLRP3
inflammasome activation [40, 41, 52]. Therefore, it is pos-
sible that ATP and HMGB—mediators released upon
heme-mediated cell death—contributed to heme-induced
production of IL-1β in nonprimed HUVECs. On the other
hand, LPS priming did not promote cell death but substan-
tially increased the heme-mediated production of active
IL-1β, suggesting that this response was independent of
cell death.

Heme induced the expression of NLRP3 mRNA in
HUVECs, regardless of LPS priming, and we showed that
NLRP3 is an indispensable player in the heme-triggered pro-
duction active IL-1β. As a result of NLRP3 inflammasome
activation, the procaspase-1 zymogen is self-activated by pro-
teolytic cleavage into the active form [51]. Activated caspase-
1 then cleaves pro-IL-1β leading to the formation of the
active cytokine [51]. We showed here that heme failed to
induce the formation of activated caspase-1 and cleavage of
pro-IL-1β in NLRP3 deficient mice.

Heme consists of a PPIX ring and a central Fe2+ ion that
is stabilized by four N-Fe coordinate-covalent bonds. Follow-
ing uptake by endothelial cells, heme is cleaved by HO-1 and
the liberated d iron contributes to the labile iron pool of the
cells. A recent study revealed that high intracellular iron in
patients with sickle cell disease is associated with markers
of inflammation and mortality [53]. Moreover, labile iron
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Figure 7: Oxidized Hb species transfer heme to endothelial cells. (a–c) HUVECs were treated with heme, Hb, metHb, or ferrylHb (25 μmol/L
heme group). (a) HO-1 mRNA level (4 h) was determined by quantitative RT-PCR. Results are shown as mean± SD (n = 3) from one
representative experiment of three. (b) Protein expression of HO-1 (8 h) was evaluated by Western blot. Membranes were reprobed for
GAPDH. Representative blots of 3 independent experiments are shown. (c) Densitometric analysis of Western blots. Results are shown as
mean± SD of 3 independent experiments. ∗∗∗P < 0 005.
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has been shown to induce NLRP3 inflammasome activation
in human monocytes [54]. These observations inspired us
to investigate whether free iron causes NLRP3 inflamma-
some activation in endothelial cells, too. Here, we show that
in contrast to monocytes, iron itself is unable to trigger active

IL-1β production in HUVECs. There are controversial
results regarding NLRP3 inflammasome activation by the
other component of heme, PPIX [21, 49]. Here, we show that
PPIX fails to induce NLRP3 inflammasome activation and
subsequent production of active IL-1β in LPS-primed
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Figure 8: Oxidized Hb species increase ROS formation but fail to induce IL-1β production and maturation in HUVECs. (a–c) Naive
(a–c) or LPS-primed (d) HUVECs were treated with heme (25μmol/L) Hb, metHb, or ferrylHb (25 or 250 μmol/L). (a and b) Following
the treatments (a: 25μmol/L and b: 250 μmol/L) (4 h), ROS production was measured with DCFDA assay. (c and d) IL-1β mRNA
level (4 h) was determined by quantitative RT-PCR. Results are shown as mean± SD (n = 3) from one representative experiment of three.
∗∗∗P < 0 005, ∗∗P < 0 01, and ∗P < 0 05.
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endothelial cells. This is in agreement with the finding of
Dutra et al. who showed that PPIX does not trigger active
IL-1β production in LPS-primed macrophages [21]. Overall,
our results suggest that coordinated iron present in the heme
molecule is critical to the activation of NLRP3 inflamma-
some and subsequent production of active IL-1β in endothe-
lial cells.

NLRP3 inflammasome activation is triggered by several
structurally diverse molecules that share some common
molecular mechanisms through which inflammasome acti-
vation occurs. These include elevated ROS production, K+

efflux, lysosomal damage, and ATP release [36, 55–57].
Because both heme and LPS are well-known inducers of
ROS production in endothelial cells, here, we concentrated
our work to investigate whether ROS is involved in heme-
mediated NLRP3 inflammasome activation in LPS-primed
HUVECs [18, 35]. Here, we show that LPS is a much weaker
inducer of ROS production in HUVECs in comparison to
heme. On the other hand, LPS priming increased heme-
mediated ROS production in HUVECs in a synergistic man-
ner, suggesting an interplay between the two triggers. Inhibi-
tion of ROS formation by NAC partially prevented heme-
mediated production of IL-1β mRNA in LPS-primed
HUVECs, suggesting that other mechanisms independently
of ROS formation could contribute to this effect. Lysosomal
destabilization has been shown to induce NLRP3 inflamma-
some activation in HUVECs [58, 59]. Previous work showed
that certain activators of the NLRP3 inflammasome, such as

bacterial pore-forming toxins and particulate matter, induce
both mitochondrial ROS production and K+ efflux, but
NLRP3 inflammasome activation was dependent exclusively
on K+ efflux [55]. Dutra et al. showed that heme-mediated
inflammasome activation is dependent on both ROS produc-
tion and K+ efflux but independent on lysosomal destabiliza-
tion in LPS-primed macrophages [21]. Further investigation
is needed to see whether K+ efflux or lysosomal destabiliza-
tion is involved in heme-mediated NLRP3 inflammasome
activation in LPS-primed HUVECs and whether this effect
is independent of ROS production.

Prooxidant and proinflammatory effects of circulating
heme are controlled by specific and nonspecific heme-
binding plasma proteins [18]. Hx is an acute-phase plasma
protein that binds heme with the highest affinity of any
known protein and therefore it is the key defense against
the deleterious effects of heme [38]. Along with this notion,
Hx−/− mice have increased renal damage after acute hemoly-
sis in comparison to wild-type mice [60]. Exogenous admin-
istration of Hx protects mice against endothelial damage
triggered by heme overload by improving liver and cardio-
vascular functions [61, 62]. Besides Hx, other plasma pro-
teins exhibit heme-binding activity that can support the
defense system upon massive hemolysis when Hx is depleted
[18]. For example, the abundant plasma protein albumin has
one strong binding site for heme (fatty acid binding site and
FA1 domain) [63]. Here, we showed that albumin binding
inhibits heme-mediated NLRP3 inflammasome activation
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in LPS-primed HUVECs in vitro and blocks heme-mediated
peritoneal leukocyte infiltration in vivo in C57BL/6 mice. In
accordance with our finding, Dutra et al. showed previously
that Hx binding inhibits heme-mediated NLRP3 inflamma-
some activation in LPS-primed macrophages [21].

Oxidation of Hb in the extracellular milieu is an event of
crucial interest in pathological hemolytic conditions, because
only oxidized forms of Hb are able to release their heme moi-
ety. In line with this notion, metHb and ferrylHb, similarly to
that of free heme, sensitize endothelial cells to oxidant-
mediated killing but naive Hb lacks such harmful effect [22,
64]. Additionally, ferrylHb possesses proinflammatory
actions towards endothelial cells leading to endothelial cell
activation and the disruption of endothelial barrier function,
in which the actions are independent of heme release and are
exclusively linked to ferrylHb as neither Hb nor metHb
behave in a proinflammatory manner towards endothelial
cells [25, 65]. Endothelial cells exposed to heme upregulate
HO-1, the rate-limiting enzyme of heme degradation. Here,
we confirmed that oxidized forms of Hb, that is, metHb
and ferrylHb release their heme moiety by assessing HO-1
mRNA and protein expressions in HUVECs following expo-
sure of different Hb forms. Our data revealed that metHb and
ferrylHb are much weaker inducers of HO-1 than free heme,
suggesting that heme release from oxidized Hb forms is not
complete. This is in agreement with previously reported
studies in which the ability of different Hb forms in triggering
oxidative modification of low-density lipoprotein (LDL) was
examined [19, 64]. In comparing to heme, metHb and
ferrylHb trigger a delayed and less pronounced oxidative
modification of LDL, accompanying with lower numbers of
LDL-associated heme groups, suggesting an incomplete
release of heme moiety from oxidized Hb forms [19, 64]. Free
heme induces ROS production in HUVECs, and we hypothe-
sized that oxidized Hb forms accelerate ROS production in
endothelial cells based on their ability to release heme. Indeed,
we showed here that oxidized forms of Hb, namely, metHb
and ferrylHb increase ROS production in HUVECs when
applied at high concentrations. Our final question was
whether oxidized Hb forms trigger NLRP3 inflammasome
activation and subsequent production of IL-1β in HUVECs.
Ourdata revealed that althoughhigh concentrations ofmetHb
and ferrylHb increasedROS formation inHUVECs, theywere
not potent enough to significantly increase the level of IL-1β
mRNA in HUVECs. Therefore, we concluded that in case
of intravascular hemolysis, non-Hb-bound heme is the driv-
ing force of NLRP3 inflammasome activation in HUVECs.

5. Conclusion

In conclusion, we demonstrated that heme acts in a proin-
flammatory manner in vitro and in vivo and induces NLRP3
inflammasome activation and the subsequent production of
the proinflammatory cytokine IL-1β. Besides macrophages,
heme targets human endothelial cells and triggers the secre-
tion of active IL-1β. Heme-mediated inflammatory response
in HUVECs is largely amplified by LPS priming and was
associated with unfettered ROS production. Heme triggers
NLRP3 inflammasome activation only if it is structurally

intact and if it is not bound to Hb or heme-binding proteins
such as albumin. Further investigations are needed to explore
whether other known mechanisms contributing to NLRP3
inflammasome activation such as K+ efflux or lysosomal
destabilization are involved in heme-mediated NLRP3
inflammasome activation in HUVECs (Figure 9).
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