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A Mechanism-based QSTR Model 
for Acute to Chronic Toxicity 
Extrapolation: A Case Study of 
Antibiotics on Luminous Bacteria
Dali Wang1,2, Yue Gu3, Min Zheng1, Wei Zhang4, Zhifen Lin1,5,6 & Ying Liu6

The determination of the chronic toxicity is time-consumed and costly, so it’s of great interest to 
predict the chronic toxicity based on acute data. Current methods include the acute to chronic 
ratios (ACRs) and the QSTR models, both of which have some usage limitations. In this paper, the 
acute and chronic mixture toxicity of three types of antibiotics, namely sulfonamides, sulfonamide 
potentiators and tetracyclines, were determined by a bioluminescence inhibition test. A novel QSTR 
model was developed for predicting the chronic mixture toxicity using the acute data and docking-
based descriptors. This model revealed a complex relationship between the acute and chronic toxicity, 
i.e. a linear correlation between the acute and chronic lg(−lgEC50)s, rather than the simple EC50s 
or −lgEC50s. In particular, the interaction energies (Ebind) of the chemicals with luciferase and LitR in 
the bacterial quorum sensing systems were introduced to represent their acute and chronic actions, 
respectively, regardless of their defined toxic mechanisms. Therefore, the present QSTR model can 
apply to the chemicals with distinct toxic mechanisms, as well as those with undefined mechanism. 
This study provides a novel idea for the acute to chronic toxicity extrapolation, which may benefit the 
environmental risk assessment on the pollutants.

The chronic toxicity can better reflect the environmental risks of pollutants than the acute toxicity, since the 
organisms in the real environment are commonly subjected to long-term exposure of pollutants. However, it 
remains challenging to obtain the chronic toxicity directly through experimental methods, comparing to a flood 
of acute toxicity data that have been collected. This is because the chronic tests are usually characterized by long 
test cycle, complicated operation and high cost1. An effective solution to these problems is to extrapolate the 
chronic toxicity from the acute data that are easily obtained experimentally2, 3. Therefore, the underlying differ-
ence and connection between the chronic and acute toxicity should be investigated, which may provide easy and 
quick methods for acute to chronic toxicity extrapolation, and help establish chronic toxicity database for the 
environmental risk assessment.

At present, the acute to chronic toxicity ratios (ACRs) are commonly used for acute to chronic toxicity extrap-
olation. The ACR of a chemical is obtained as the ratio of the median lethal concentration (LC50) and the chronic 
maximum acceptable toxicant concentration (MATC)1–3. It is assumed that the ACR of a certain chemical is a 
constant for different species, which is calculated using the observed acute and chronic toxicity data with one spe-
cies and then used to predict the chronic toxicity for another that is exposed to the same chemical4. This method is 
easy to perform and has been used in deriving US National Ambient Water Quality Criteria (NAWQC)5 as well as 
in risk assessments in many countries6. However, this method is problematic, for the ACR of a chemical may vary 
with many factors, such as the chemical modes of action (MOA), the model organisms and the experimental con-
ditions3. Only when the MOA of a chemical is narcotic, can its ACR be a constant7, 8. Otherwise, the ACRs of the 
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chemicals (i.e. the reactive compounds) can vary in a wide range (up to four orders of magnitude difference)2, 3,  
which makes it difficult to choose an appropriate ACR value for the chronic toxicity extrapolation and sometimes 
results in a under- or over-estimation of the chronic toxicity.

Quantitative structure-toxicity relationships (QSTR) severs as an important tool for the chronic toxicity pre-
diction in risk assessment9. To date, a great many QSTR models have been reported for the chronic toxicity predic-
tion, covering a variety of organisms and chemicals10–13. And various chemical properties have been introduced 
as the molecular descriptors for the QSTR models, such as logKow

8, 10, ELUMO
14, 15 and EHOMO

16, 17. In particular, the 
acute toxicity of chemicals was involved as one of the molecular descriptors in some QSTR models. For instance, 
Jiang et al.18 developed a chronic QSTR model that linked the 24 h toxicity [lg(1/EC50–24 h)] of antibiotics on lumi-
nescent bacteria to the 30 min toxicity [lg(1/EC50–30 min)] and other five descriptors. Likewise, in the report of Zou 
et al.19, the lg(1/EC50–24 h) of antibiotics on the luminescent bacteria can also be related to the lg(1/EC50–30 min).  
However, the QSTR model predictions also have some limitations, for instance, they can only apply to the chem-
icals with the similar structures or the same action mechanisms20. Moreover, few of the researches consider the 
chronic effects at the population level from the chemical ecology perspective, e.g. the potential effects of the 
chemicals on the bacterial quorum sensing (QS) systems.

QS is a cell-cell communication by which bacteria coordinate the expression of certain genes using small 
signal molecules (autoinducers, AIs)21. During their normal physiological process, the bacteria secrete AIs into 
the surrounding environment, which accumulate to a threshold concentration and then re-enter the bacterial 
cells, regulating gene expression and a series of bacterial behaviors, such as the biofilm formation22 and lumines-
cence23. The acute toxicity test with the luminescent bacteria usually takes only 15 to 30 min, while the chronic 
toxicity test takes 24 hours or even longer. Therefore, during the acute test, the action of the chemicals on the 
bacterial QS systems can be neglected, whereas during the chronic test, the chemicals may exert considerable 
effects on the bacterial QS systems and thereby the bacterial behaviors. So we assume that the acute toxicity on 
the bacteria is caused by the interference with the structures and functions of the biomolecules, while the chronic 
toxicity should include the effects on the bacterial QS communications. This assumption provides a possibility to 
extrapolate the chronic toxicity data from the acute ones by using parameters that are concerning the bacterial QS 
systems. This is what we are going to explore in the present paper.

In this study, the acute (15 min) and chronic (24 h) toxicity of fifteen antibiotics, inclusive of sulfonamides 
(SAs), sulfonamide potentiators (SAPs) and tetracyclines (TCs), were determined by a bioluminescence inhi-
bition test based on Vibrio fischeri (V. fischeri), both individually and in combination. The differences between 
the mechanisms of the acute and chronic toxicity were explained from the perspective of bacterial QS commu-
nication. A QSTR prediction model was then constructed for the chronic toxicity, by using the acute toxicity and 
the molecular docking-based descriptors. The current study provides a novel method in predicting the chronic 
toxicity of antibiotics, which may help make environmental risk assessment on the pollutants.

Results
Individual toxicity of the antibiotics.  Comparison between the acute and chronic toxicity of individual 
antibiotics.  The acute and chronic toxicity (−lgEC50) of the individual antibiotics were listed in Table 1. In 
general, the chronic −lgEC50s were greater than the acute ones, indicating a greater action of the antibiotics on 
the bacteria during the chronic test. Moreover, the differences between the acute and chronic −lgEC50s varied 
with the chemical type. The largest differences between the acute and chronic −lgEC50s were observed with the 
two SAPs, i.e. OMP and TMP. Their acute −lgEC50s were 3.29 and 3.22, while the chronic −lgEC50s were 6.51 
and 6.48. The differences between the acute and chronic −lgEC50s for them were 3.12 and 3.26, respectively. With 
respect to SAs, the differences between the acute and chronic −lgEC50s were moderate, ranging from 0.41 (SDX) 

Chemicals Abbr.
− ClgE 50

a  
(mol/L) Ka

ClgE 50
c−  

(mol/L) Kc

Ebinda Ebindc (kcal/mol)

Luc Targets* LitR

Sulfadiazine SD 3.03 44.9 4.22 252.57 −31.80 −26.58 −25.46

Sulfadoxine SDX 3.64 65.71 4.05 336.69 −33.77 −29.84 −31.60

Sulfisoxazole SIX 3.54 61.5 4.59 312.87 −34.18 −34.41 −26.31

Sulfameter SM 2.87 57.03 4.30 278.21 −39.32 −24.81 −30.59

Sulfamonomethoxine SMM 3.18 61.17 4.86 299.76 −34.36 −26.23 −27.75

Sulfamethoxypyridazine SMP 2.99 51.97 4.80 248.43 −34.81 −28.80 −29.96

Sulfamethoxazole SMX 3.61 71.35 5.03 350.84 −27.62 −29.75 −25.85

Sulfamethazine SMZ 2.77 37.74 4.30 243.47 −33.85 −30.91 −30.85

Ormethoprim OMP 3.39 176.07 6.51 1077.8 −37.89 −35.81 −28.94

Trimethoprim TMP 3.22 169.51 6.48 1006.1 −38.28 −38.23 −31.79

Chlortetracycline hydrochloride CH 4.22 124.11 4.93 1155.3 −59.22 −36.31 −41.69

Doxycycline hyclate DH 4.45 155.31 4.80 1099.6 −51.62 −40.38 −38.53

Minocycline chloride MH 4.31 89.23 4.42 834.02 −60.55 −32.45 −40.03

Oxytetracycline hydrochloride OH 3.76 113.73 3.94 1063.1 −50.37 −40.27 −40.82

Tetracycline hydrochloride TH 4.06 121.98 4.30 1155.3 −51.84 −33.68 −39.43

Table 1.  Information on the test chemicals. aThe target proteins for SAs, SAPs and TETs were DHPS, DHFR 
and 30 s subunit of ribosomes, respectively.
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to 1.81 (SMP); whereas for TCs, only slight difference were observed between the acute and chronic −lgEC50s, 
ranging from 0.11 (MH) to 0.71 (CH).

Figure 1 shows the comparisons of the dose-response curves for the acute and chronic toxicity. In particular, 
the antibiotics at low concentrations presented stimulatory effects on the bioluminescence in chronic test, which 
manifested hormetic characteristics24. Besides, the slope for the chronic toxicity (Kc) was significantly greater 
than that for the acute toxicity (Ka), which suggested that the effects of the antibiotics in the chronic test varied 
from no observed effect to complete (100%) inhibition within a narrow concentration range. For example, in 
the chronic test, the effects of TMP (Fig. 1j) on V. fischeri varied from no observed effect to complete inhibition 
with the concentration increasing by only 1.30 × 10−7 mol/L; while in the acute test, the concentration increase 
for TMP was almost two orders of magnitude, with the log concentration ranging from −4.5 to −2.5 (Fig. 1j). 
Although Kc was greater than Ka for all of the chemicals, their absolute values varied vastly with the chemical type 
(see Fig. 2A). For SAs, Ka values distributed within 37.71–71.35, while Kc values ranged from 243.47 to 350.84. 
With respect to SAPs and TCs, the Ka values fell in the range of 100–200, whereas the Kc values were greater than 
1000, with only one exception MH (the Ka and Kc were 89.23 and 834.02, respectively).

The differences between the acute and chronic −lgEC50s, as well as Ka and Kc reflected varying responses of 
V. fischeri to the antibiotics in the acute and chronic test, implying a much greater susceptibility to the chronic 
exposure than to the acute exposure. At least two reasons may account for these differences, one is the exposure 
time, and the other is the varying toxic mechanisms in the acute and chronic actions.

Mechanisms for the acute and chronic toxicity of individual antibiotics.  The acute test in the current research 
takes only 15 min, therefore the acute toxicity of the antibiotics was primarily due to their interference with the 
light emitting process, and the luciferase might act as the main target of antibiotics25, as shown in Fig. 3B. While 

Figure 1.  Dose-effect curves for the acute (black) and chronic (red) toxicity of the individual antibiotics.
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the chronic test takes 24 h, during which the bacteria grow from extremely low density to high density (stationary 
phase), as shown in Figure S1 in the supporting information. During this period, the antibiotics could on the one 
hand bind with their target proteins26 (DHPS, DHFR and 16S rRNA, respectively), killing or inhibiting the bac-
terial growth, on the other hand affect the bacterial QS communications (see Figure S2 for detailed information 
on QS of V. fischeri).

The expression of the QS-related genes was determined upon exposure to SCP in the chronic toxicity, in 
order to investigate its influence on the bacterial QS communication. As depicted in Fig. 4, SCP presented 
concentration-dependent inhibition on the expression of litR, luxR, and dhps. This suggested that the bacte-
rial QS communication were considerably influenced by the exogenous drugs. The decrease in the luxR mRNA 
expression was probably induced by the depression on the litR expression, since the litR locates in the upstream 
of lux genes. In light of this, the actions on the LitR proteins by the antibiotics were actually prior to their actions 
on the LuxR (Fig. 3C). Therefore, the influences of the antibiotics on the LuxR proteins can be represented by 

Figure 2.  Comparisons between Ka and Kc of the single chemicals (A) and the binary mixtures (B).

Figure 3.  Mechanisms for the acute and chronic toxicity of individual chemicals. (A) The luminescence curves 
of V. fischeri during 0–24 h. From 0–10 h, there was no QS communication among the bacteria, since the 
bacteria and the AIs were at low concentrations. After 10 h, the AIs around the bacteria achieved the threshold 
concentration and triggered on the bacterial QS communication. (B) In the acute test, the antibiotics primarily 
target the luciferase (Luc) to inhibit the bioluminescence. (C) In the chronic test, the antibiotics acted on LitR to 
inhibit the QS communication and thereby the bioluminescence.

http://S1
http://S2
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the influences on the LitR. In addition, the expression of dhps mRNA was also inhibited by SCP in a similar 
concentration-dependent mode (Fig. 4). The same change trend of litR and dhps with the SCP concentration indi-
cated that LitR probably participates in regulating the dhps expression. Therefore, the influences of the antibiotics 
on their target proteins can also be related to their actions on LitR (Fig. 3C).

Quantitative relation between Ka and Kc for individual antibiotics.  Based on the above analysis, the antibiotics 
primarily target luciferase in acute actions, while may influence both their target proteins and the bacterial QS 
systems in chronic actions. Therefore, the higher sensitivity of V. fischeri in the chronic test was probably due to 
the interference of antibiotics with the bacterial QS communication, and the differences between Ka and Kc can 
be explained by the interaction between the antibiotics and the QS-related proteins.

Herein, we introduced lgKc/Ka to represent the difference between Kc and Ka. This parameter may reflect 
the difference of the V. fischeri sensitivity to the antibiotics in acute and chronic test. A greater value of lgKc/Ka 
suggested a larger difference in the sensitivities between acute and chronic test. It was then found that lgKc/Ka 
for the individual antibiotics showed a good correlation (R2 = 0.827) with ELuc and ELitR (Equation 1) through the 
multiple linear regression analysis.

= . − . − .
K
K

lg 0 275 0 004E 0 011E
(1)

c

a

Luc LitR

n = 15, R2 = 0.827, RMSE = 0.053, F = 28.696, P = 0.000, Qloo
2  = 0.748, RMSEloo = 0.057, Qlto

2  = 0.742, 
RMSElto = 0.058.

Qloo
2  and Qlto

2  are the cross-validated squared correlation coefficients from leave-one-out (LOO) and 
leave-two-out (LTO) cross-validation, respectively. The high Qloo

2  = 0.748 and Qlto
2  = 0.742 suggested a good inter-

nal validation. (The external validation was not performed for the individual toxicity data due to the limited size 
of the data).

Besides, it was found that the lgKc/Ka also had a good correlation with ELuc and ET (Ebind with the respective 
targets). As indicated by Equation 2, the determination coefficient (R2) of this model was 0.819, which was slightly 
lower than that of Equation 1.

= . − . − .lg K
K

0 300 0 009E 0 004E
(2)

c

a

Luc T

n = 15, R2 = 0.819, RMSE = 0.054, F = 27.150, P = 0.000, Qloo
2  = 0.725, RMSEloo = 0.059, Qlto

2  = 0.718, 
RMSElto = 0.060.

It should be noticed that ET in Equation 2 was obtained with distinct proteins for different drugs, namely 
DHPS for SAs, DHFR for SAPs and 30 s subunit of ribosomes for TCs, respectively. Therefore, the ET values varied 
with not only the composition of the chemicals but also the target proteins. For this reason, the ET in Equation 2 
will not be able to discriminate the toxic effect of a defined drug when the target protein varied. In this sense, the 
moving average approach27–30 was employed to generate new descriptors ΔEij, as follows:

∆ = − ( )E E E
(3)ij i ij avg

In this equation, Ei denotes the interaction energy of drug i with the protein, j denotes the target (e.g., DHPS and 
DHF), and (Eij)avg is the average value of Ebind for all drugs with the same j. Using this new descriptor, another 
QSAR model for lgKc/Ka was obtained with high R2 (0.803) as below:

lg K
K

0 802 0 010 E 0 003 E
(4)

c

a

Luc T= . − . ∆ − . ∆

n = 15, R2 = 0.803, RMSE = 0.056, F = 24.490, P = 0.000, Qloo
2  = 0.715, RMSEloo = 0.060, Qlto

2  = 0.709, 
RMSElto = 0.061.

In Equations 1, 2 and 4, ELuc represents the effects of antibiotics on luciferase in acute test, while ELitR and 
ET reflect the effects of antibiotics in chronic actions. The good relationships between them and lgKc/Ka sug-
gested that the distinct targets in the acute and chronic test may account for the differences between Ka and Kc. 
Furthermore, as noted above, LitR may involve in regulating dhps genes, so the bind of the antibiotics with LitR 

Figure 4.  Expression of related proteins in the QS systems of V. fischeri upon exposure to SCP.
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may affect their actions on the target proteins (Fig. 3C). Consequently, the interaction between the antibiotics and 
the target proteins (i.e., ET) can be represented by ELitR.

In Equation 1, it was seen that the lgKc/Ka values were negatively correlated to ELitR. This is likely because 
the lower Ebind values represented stronger interaction between the drugs and the proteins, which resulted in 
larger differences between the acute and chronic actions. Based on the above analysis, it can be deduced that the 
difference between Kc and Ka for individual antibiotics was due to the distinct targets in acute and chronic test, 
and their difference (represented by lgKc/Ka) can be quantitatively characterized by their interaction energy with 
the proteins (Ebind).

Combined toxicity of the binary antibiotic mixtures.  Different joint effects of the antibiotic mix-
tures.  The combined toxicity of the binary mixtures of SA-SA, SA-SAP and SA-TC were determined in both 
acute and chronic test, the TU of the mixtures were listed in Table S1 in Supporting Information. According to 
Table S1, all of the mixtures presented antagonistic joint effects in the acute toxicity test, with TU values greater 
than 1.2. The results were consistent with the findings of Zou et al.19, in which SAs and TMP showed antagonistic 
joint effects on the bioluminescence of Photobacterium phosphoreum (15 min) with TU ranging from 1.44 to 4.54. 
This was because the components in the mixtures both target the luciferase in the acute actions (as depicted in 
Figure S3), and the competition between them may hamper their interaction with the proteins and thus reduced 
their inhibition on the bioluminescence. In the chronic test, the joint effects of the antibiotic mixtures varied 
with the type of the components, exhibiting either synergism or addition. For the mixtures of SA-SA, TU values 
varied from 0.8 to 1.19, suggesting simply additive effects between the two components. This is similar to the 
results in Fang et al.31 that the binary mixtures of SAs presented additive effects on E. coli (12 h) and B. subtilis 
(24 h) in chronic test. Unlike SA-SA mixtures, strong synergism was observed with SA-SAP, with TU ranging 
from 0.37–0.55. The synergistic effects between SAs and SAPs were due to their double blocking effects on the 
folate metabolism pathways (Figure S3). In detail, SAs inhibited the activity of DHPS, blocking the generation of 
dihydrofolate; while SAPs interfered with the activity of DHFR and blocked the biosynthesis of tetrahydrofolic 
acid. As a result, the SA-SAP mixtures lead to increased inhibition on the bacteria. With respect to the mixtures of 
SA-TC and SAP-TC, antagonistic effects were generally observed, which was in agreement with the results of the 
acute test. The antagonist effects of SA-TC and SAP-TC in the chronic test were probably due to the mutual effect 
of the two components. As noted in the study of Long et al.26, TCs can inhibit the protein synthesis and decrease 
the amount of intracellular DHPS or DHFR accordingly, which led to the decrease of the acting sites of SAs or 
SAPs and thus weakened their toxicity.

Quantitative relation between Ka and Kc for antibiotic mixtures.  The Ka and Kc values for the binary antibiotic 
mixtures were calculated and the comparisons between them were shown in Fig. 2B. Similarly to the single toxic-
ity, Kc for the mixtures was significantly greater than Ka. Notably, mixtures of SA-SAP that presented synergistic 
joint effects showed the largest differences between Ka and Kc, with Ka/Kc ranging from 500 to 1500. For the 
mixtures of SA-TC that are antagonistic, the differences between Ka and Kc were relatively lower, which varied 
between 100 to 800 fold; while for SA-SA mixtures that showed additive effects, the differences between Ka and 
Kc were about 300 times.

Similarly, the docking-based descriptors were also employed to construct the QSTR model for lg(K /K )c
m

a
m , i.e., 

the differences between Ka and Kc for the mixtures (Kc
m and Ka

m). The total mixture data (81) were split into train-
ing (80%, 64 data) and test (20%, 17 data) subsets randomly (see Tables S2 and S3, respectively). A model for 
lg(K /K )c

m
a
m  was developed based on training set using Ebind as the descriptors and the linear equation was as 

follows:

= . − .
∑

− . ×
∑

+ .
∑

+ .
∑

−lg K
K

1 009 0 007 C
C

E 2 056 10 C
C

E 0 021 C
C

E

0 012 C
C

E
(5)

c
m

a
m

A
a

a A
Luc 4 B

a

a B
Luc A

c

c A
LitR

B
c

c B
LitR

n = 64, R2 = 0.831, RMSE = 0.031, F = 72.657, P = 0.000, Qloo
2  = 0.793, RMSEloo = 0.033, Qlmo

2  = 0.792, 
RMSElmo = 0.033, QF1

2  = 0.789, RMSEP = 0.016.
As seen from Equation 5, the lg(K /K )c

m
a
m  values were correlated with four docking-based descriptors, i.e., the 

ELuc and ELitR of each component (A and B). The four descriptors represent the actions of component A and B in 
acute and chronic test, respectively. In this equation, CA

a  and CB
a  represented the acute EC50s of component A and 

B, while CA
c  and CB

c  denoted the chronic EC50s. The parameter ∑C C/i  indicated the apparent concentration pro-
portion of component i in the mixtures, which was proposed by Zou et al.19 and have been introduced for the 
QSTR model constructions for mixtures26, 31. This parameter was involved in this model to reflect the varying 
contribution of drug i in different mixtures. R2 = 0.831 of this model indicated high goodness-of-fit of the training 
set. Internal validation was carried out using leave-one-out (LOO) and leave-many-out (LMO) method. For the 
latter case, a group of data including 20% of the training set were left out and predicted later by the model 
obtained with the remaining 80% of the data. The higher Qloo

2  (0.793) and Qlmo
2  (0.792) suggested good robustness 

and stability of this model. The external predictive performance of this model was assessed by QF1
2 32. The high 

value of QF1
2  suggested that the constructed model have good predictive performance. Plots of the experimental 

versus predicted lg(K /K )c
m

a
m  were presented in Fig. 5A. It can be seen that the predicted lg(K /K )c

m
a
m  values were in 

good correlation with the experimental values, for both the training and test set. The applicability domain (AD) 
for this model was characterized by the leverage approach33. A Williams plot of the leverage values versus 

http://S1
http://S1
http://S3
http://S3
http://S2
http://S3
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standardized residuals for every data was obtained, as depicted in Fig. 5B. The Williams plot allows a graphical 
detection of both the outliers and the influential chemicals in a model34. According to Fig. 5B, all of the leverage 
values were less than the warning leverage (in this case h* = 0.237 as indicated by the vertical dash line), and there 
were no outlier data with standard residuals >3δ (indicated by the horizontal dash lines) for both the training and 
test sets. This suggested that all of the data fall inside the AD of the model, and the model can thus be utilized to 
predict the lg(K /K )c

m
a
m  values.

Other functional forms and descriptors were also investigated for the possibility to construct a QSTR model 
for the lg(K /K )c

m
a
m  values. For example, we used the moving average descriptors (ΔEij) to construct a model as 

follows:

= . − . ∆ + . ∆ + . ∆ + . ∆lg K
K

0 450 0 006 E 0 005 E 0 018 E 0 005 E
(6)

c
m

a
m A

Luc
B
Luc

A
T

B
T

n = 64, R2 = 0.292, RMSE = 0.064, F = 6.093, P = 0.000
R2 = 0.292 indicated bad fitting of this model, therefore the moving average descriptors may not apply to the 

QSTR model construction for the mixture data.

QSTR models for acute to chronic toxicity extrapolation.  As depicted in Figure S4, the equation of 
the linear regression for the dose-response curves is denoted as:

= × +Inhibition(%) K lgC b (7)

K is the slope of the fitting curve, and b denotes the intercept. Based on this equation, we can obtain the  
−lgEC50 for the acute and chronic toxicity:

− =
−

− =
−lgEC 50 b

K
, lgEC 50 b

K (8)50
a a

a
50
c c

c

Then, the ratio of −lgEC50
a  to −lgEC50

c  can be calculated:

lgEC
lgEC

K
K

50 b
50 b (9)

50
a

50
c

c

a

a

c

−

−
= ×

−
−

Equation 9 can be transformed by taking the logarithm values of the two sides of the equation:

lg( lgEC ) lg( lgEC ) lg K
K

lg 50 b
50 b (10)50

a
50
c c

a

a

c
− − − = +

−
−

Particularly, we fitted lg K
K

c

a
 with lg b

b
50
50

a

c

−
−

 and found a good correlation between them:

−
−

= . − .lg 50 b
50 b

1 059 2 504 lg K
K (11)

a

c

c

a

n = 15, R2 = 0.703, RMSE = 0.198, F = 30.724, P = 0.000.
Taking Equations 1 and 11 into Equation 10, we finally obtained the prediction model for the acute to chronic 

toxicity extrapolation for individual antibiotics:

Figure 5.  (A) Plots of experimental versus predicted lg(K /K )c
m

a
m  values. (B) Williams plot of the training and 

test sets with a warning leverage h* = 0.237. h* was calculated by h* = 3(m + 1)/n, where m is the number of the 
descriptors, and n is the number of the data.

http://S4
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lg( lgEC ) lg( lgEC ) 0 006E 0 017E 0 645 (12)50
c

50
a Luc LitR− = − − . − . − .

For antibiotic mixtures, lg K
K

c
m

a
m  and −

−
lg b

b
50
50

a
m

c
m  also had a good correlation, which was as follows:

−
−

= − . − .
b
b

K
K

lg 50
50

0 093 1 101 lg
(13)

a
m

c
m

c
m

a
m

n = 64, R2 = 0.971, RMSE = 0.075, F = 2099.31, P = 0.000, Qloo
2  = 0.969, RMSEloo = 0.076, Qlmo

2  = 0.969, 
RMSElmo = 0.076, QF1

2  = 0.969, RMSEP = 0.040.
The plots of the experimental versus predicted lg b

b
50
50

a
m

c
m

−
−

 values and the Williams plots of this model were 
depicted in Fig. 6A and B, respectively. The internal (Qloo

2  = 0.969 and Qlmo
2  = 0.969) and external validation 

(QF1
2  = 0.969) and the Williams plot of this model all confirm that this model could be utilized to predict the 

−
−

lg b
b

50
50

a
m

c
m  values.

Likewise, taking Equations 5 and 13 into Equation 10, we obtained the final chronic toxicity extrapolation 
model for the mixtures:

lg( lgEC ) lg( lgEC ) 0 0007 C
C

E 2 077 10 C
C

E

0 002 C
C

E 0 001 C
C

E 0 195
(14)

50
m,c

50
m,a A

a

a A
Luc 5 B

a

a B
Luc

A
c

c A
LitR B

c

c B
LitR

− = − − .
∑

− . ×
∑

+ .
∑

+ .
∑

+ .

−

This model was derived from model 5 and 13 that have been well established and validated. This model estab-
lished a linkage between the chronic and acute mixture toxicity using the docking-based descriptors. Based on 
this model, we calculated the predicted −lgEC50

m,c and plotted them versus the experimental −lgEC50
m,c values, as 

shown in Fig. 7. It can be seen from Fig. 7 that there was satisfactory agreement between the observed and pre-
dicted values, which suggested that the model could be used to predict the mixture chronic toxicity of the 
antibiotics.

Moreover, in this model, −lg( lgEC )50
c  is linearly related to −lg( lgEC )50

a , which is different from the ACR 
model that describes a simple linear relationship between EC50

c  and EC50
a . In addition, model 14 also differs from 

the model proposed by Zou et al.19, in which −lgEC50
c  was linearly correlated with −lgEC50

a . The complex relation-
ship between EC50

c  and EC50
a  as indicated by model 14 might be the reason for which the predecessors were not 

able to exactly extrapolate the chronic toxicity from corresponding acute data.

Discussion
In this paper, we put forward a new model (Equation 12) for predicting the chronic toxicity of mixtures based on 
their acute toxicity. This model reflected a nonlinear correlation between the acute and chronic toxicity, which 
suggested that the lg(−lgEC50)s for the acute and chronic toxicity presented a good correlation. Compared to 
previous prediction models, this model was improved with regard to the following aspects.

The present model was based on a good understanding on the toxic mechanisms.  The previous 
models were usually based on a simple safety coefficient for the acute to chronic toxicity extrapolation, without 
considering the different toxicity mechanisms between the acute and the chronic toxicity. As a consequence, 
these methods can only apply to the narcotic compounds, whose toxicity effects are merely the baseline toxicity 

Figure 6.  (A) Plots of experimental versus predicted −
−

lg b
b

50
50

a
m

c
m  values. (B) Williams plot of the training and test 

sets with a warning leverage h* = 0.093.
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that is related to the lipid solubility as characterized by lgKow. For example, Blaschke et al.35 found that the acute 
and chronic toxicity of narcotic compounds towards Vibrio fischeri both had a good correlation with lgKow, with 
determination coefficients up to 0.95 and 0.94, respectively. In this sense, the ACRs for the narcotic compounds 
are usually constant, because their acute and chronic toxicity shared the same mechanism. Whereas, the ACRs 
for the reactive compounds (specific acting) may vary vastly (10–10000), because their acute and chronic toxic 
effects are induced by completely different mechanisms. For instance, Ahlers et al.3 discovered that the variations 
in ACRs of different reactive compounds can reach 5–6 orders of magnitude, even for the same species. Therefore, 
it is quite unreliable to simply extrapolate the chronic toxicity of reactive chemicals from the acute data by taking 
ACRs as a constant value.

In this study, we constructed the prediction model based on the premise that the targets of the chemicals in 
acute and chronic actions were identified, i.e., luciferase and LitR respectively. The toxic effects of the chemicals in 
acute and chronic actions were represented by their binding energies with the target proteins, which were used for 
building the prediction model. This mechanism-based extrapolation was proven to have good predictive capacity.

The present model can apply to compounds with different action mechanisms.  Zou et al.19 have 
developed a QSTR model for predicting the chronic mixture toxicity of SAs and TMP. In Zou’s model, the bind-
ing energies of SAs and TMP with luciferase were employed to represent their acute toxicity, while their binding 
energies with DHPS and DHFR were employed for their chronic toxicity, respectively. We attempted to verify 
Zou’s model for its ability to predict the chronic mixture toxicity of SAs and TCs, by replacing the binding ener-
gies of TMP (with DHFR) with the binding energies of TCs (with 30 s subunit), as indicated by Equation S1 in 
supporting information.

The comparison between the predicted and experimental values was shown in Figure S5, from which we can 
see that the predicted −lgEC50s were significantly greater than the experimental values. Therefore, Zou’s model 
is not suitable for predicting the chronic mixture toxicity of SAs and TCs, though it may have good predictive 
ability for SA-TMP mixtures. This limitation of Zou’s model is also the problem with many QSTR models, that 
is, a QSTR model can only apply to the compounds with the same action mechanism, while for compounds with 
different action mechanisms it may not work20.

In this research, the three types of antibiotics, i.e., SAs, SAPs and TCs, acted through different mechanisms 
during chronic test by targeting DHPS, DHFR and 30 s subunit, respectively. But in constructing the QSTR mod-
els for their binary mixture toxicity, we used their binding energies with LitR to substitute for the binding energies 
with their respective target proteins. This is feasible because LitR is likely involved in regulating the bacterial 
growth and thereby the production of the proteins including DHPS, DHFR and 30 s subunit. Particularly, we 
found a good correlation between the Ebind with LitR (ELitR) and the Ebind with the target proteins (ET) for the three 
types of antibiotics. As shown in Equation 15, the determination coefficient was up to 0.805.

E Ebind1 725 20 107 (15)LitR T= . + .

n = 15, R2 = 0.805, RMSE = 0.016, F = 46.796, P = 0.000.
Therefore, the ELitR can be used to substitute for the ET in constructing the QSTR models. By doing so, we 

obtained the prediction model that can apply to the compounds with distinct mechanisms.
In particular, our model can be applicable for predicting the chronic toxicity of chemicals with unknown 

action mechanism, which is also another distinctive advantage of this model. Because this model utilizes Ebind 
with LitR as the characterization of chronic toxicity without considering the particular targets of the com-
pounds, which makes the prediction model stand a good chance of applying to chemicals with unknown action 
mechanism.

Limitations of the present model.  All prediction models may have some intrinsic limitations from vari-
ous aspects, and the limitations of this approach can be concluded as follows: firstly, this model can merely apply 

Figure 7.  Plots of experimental versus predicted −lgEC50
m,c by model 14.
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to binary mixtures at equitoxic ratio. The case of multicomponent mixtures with non-equitoxic ratio should be 
considered in the following research. What’s more, our model needs to be validated by a large amount of experi-
mental data before it can be put into application confidently.

Materials and Methods
Chemicals and organisms.  All of the chemicals were purchased from Aladdin Sigma-Aldrich (St. Louis, 
MO, USA) (purity ≥99%), as listed in Table 1. V. fischeri (AS 1.3842) was purchased from Species Conservation 
Center of Chinese Academy of Sciences.

Toxicity test.  The acute and chronic toxicity of the chemicals were determined based on a bioluminescence 
inhibition test, the detailed procedure was as follows: first, the chemicals were prepared into a series of solutions 
(in 2% NaCl) and added into the diluted bacteria suspension that has been cultured to exponential growth phase. 
DMSO was added to the chemical solutions with a final concentration of 0.5% v/v in order to enhance the dis-
solution of the chemicals. The 0.5% v/v DMSO induced no adverse effects on the bacterial growth and the bio-
luminescence36. For the chronic test, sufficient culture medium was added to support the growth of the bacteria; 
while in the acute test, the culture medium was replaced with 2% NaCl. After completely mixed, the bacteria 
suspensions were incubated at 20 °C for 15 min (acute) and 24 h (chronic) respectively. Afterwards, the inhibition 
rate of chemicals to the bacteria was calculated by the following equation:

=
−

×Inhibition% L L
L

100%
(16)

0 i

0

where L0 represents the light intensity of the control group, and Li denotes the light intensity of the exposed group 
i. Then the dose-response curve was plotted with the compounds’ concentration and their inhibition on the bio-
luminescence, and the EC50 for acute toxicity of each compound was calculated.

For the mixture toxicity test, the binary mixtures were prepared at equitoxic ratio according to the individual 
EC50s of the components. Then the mixture toxicity was determined based on the above method and the EC50 for 
the mixtures (EC50m) were obtained. The joint effects of the antibiotic mixtures are characterized by the total 
toxicity unit (TU) as calculated by TU C

EC
i

50,i
= ∑ , where Ci was the concentration of each component when the 

inhibition rate of the mixture achieved 50%; EC50,i represented EC50 of the individual component i. TU ranging 
from 0.8 to 1.2 represents additive joint effect, while TU > 1.2 indicates antagonism and TU < 0.8 synergism37.

Homology Modeling.  The crystal structures of the proteins are required for the protein-chemical docking 
studies. For luciferase, LitR and the 30 s subunit of ribosomes, their crystal structures (3FGC, 3WHP and 4U1U, 
respectively) were directly obtained from the protein data bank (PDB, http://www.pdb.org). While the crystal 
structures of dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) were constructed using 
Homology Modeling module in Discovery Studio 3.1 (DS3.1, Accelrys Software Inc., San Diego, CA). The protein 
sequences YP_203863.1 (DHPS) and Q5E7M1 (DHFR) were obtained from NCBI (https://www.ncbi.nlm.nih.
gov), which were selected as the target sequences for the homology modeling. BLAST (Basic Local Alignment 
Search Tool) at the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was then run with the two sequences 
over the protein database bank, based on which 1AJ0 and 3TYU were selected as the templates for DHPS and 
DHFR, respectively. Afterwards, Align Sequence to the Templates wizard was performed on DS3.1, followed by 
the Building Homology Model. The “copy ligand” function was employed during the modeling, which embedded 
the ligand of the templates into the modeled proteins. In the Building Homology Model protocol, the number of 
models was set as 20, which generates 20 modeled structures for each protein. These structures were then sub-
jected to Verify Protein (MODELER), and the structure with the highest Verify Score was chosen for the docking 
studies after the Loop Refinement (MODDLER).

Molecular Docking.  Molecular Docking was performed by CDOCKER module in DS3.1. The crystal struc-
tures of the proteins are in complex with their ligands. Their active sites were defined by selecting the ligands 
as the centers with the radius of the site sphere at 11.0 Å. Prior to the docking work, the proteins were pre-
pared by the protein preparation wizard, and the chemicals were subjected to the energy minimization. Then the 
CDOCKER docking was performed with the default parameters. The CDOCKER used the soft-core potentials 
with an optional grid representation to dock ligands into the active site of the receptor. 10 random conformers 
were generated for each compound, and the lowest CDOCKER interaction energy (Ebind) was selected to repre-
sent its binding affinity with the receptor.

Data Analysis.  Multiple linear regressions were performed using SPSS 18.0 (SPSS Inc.). The statistical quality 
of the fitted models was evaluated by the square of the correlation coefficient (R2), root mean standard error 
(RMSE), Fischer ratio (F), and the significant level (P). Cross-validation was employed for the internal validation 
of the constructed models using LOO (Qloo

2 ), LTO (Qlto
2 ) and LMO (Qlmo

2 ) methods. In the cross-validation, dif-
ferent proportions of data (one, two and many for LOO, LTO and LMO, respectively) are iteratively held-out from 
the training set and predicted as new by the developed model in order to verify internal “predictivity”38. Q2 was 
calculated by the following equation:

= −
∑ −

∑ −
Q

y y
y y

1
( )

( ) (17)
i i

i mean

2
2

2
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where yi, and yi  are the actual and predicted values of the dependent variables in the training set, respectively; 
ymean is the average value of all the dependent variables in the training set. The external validation of the model 
was characterized by QF1

2 39, which was calculated as follows:

= − ∑ −

∑ −
Q Y Y

Y y
1 ( )

( ) (18)
F

i i

i mean
1

2
2

2

where Yi and Yi are the actual and predicted values of the dependent variables in the test set, respectively; ymean is 
the average value of all the dependent variables in the training set.

Conclusion
In the current work, a QSTR model was built for predicting the chronic mixture toxicity of antibiotics on biolu-
minescence based on the acute data and the docking-based descriptors. This model revealed a complex relation-
ship between the acute and chronic toxicity, i.e. the lg(−lgEC50)s for the acute and chronic toxicity were linearly 
correlated. This is different from the ACR prediction method that describes a simple linear relationship between 
EC50s for the acute and chronic toxicity. The present model was based on a good understanding on the differences 
between the acute and chronic action mechanisms. In particular, the interaction energies (Ebind) of the chemi-
cals with LitR, rather than their respective target proteins, were introduced to represent their toxic effects in the 
chronic test. Therefore, the present model could probably apply to chemicals with distinct toxic mechanisms as 
well as those with undefined toxic mechanism. This breaks the limitation of the traditional QSTR models that can 
only apply to chemicals with similar structures or the same toxic mechanisms. Although the prediction capacity 
of the present model still needs further validation, it may provide a novel idea for the acute to chronic toxicity 
extrapolation studies, which may help with the environmental risk assessment on the pollutants.
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