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Abstract

In multiple-criteria decision making/aiding/analysis (MCDM/MCDA) weights of criteria con-

stitute a crucial input for finding an optimal solution (alternative). A large number of methods

were proposed for criteria weights derivation including direct ranking, point allocation, pair-

wise comparisons, entropy method, standard deviation method, and so on. However, the

problem of correct criteria weights setting persists, especially when the number of criteria is

relatively high. The aim of this paper is to approach the problem of determining criteria

weights from a different perspective: we examine what weights’ values have to be for a

given alternative to be ranked the best. We consider a space of all feasible weights from

which a large number of weights in the form of n−tuples is drawn randomly via Monte Carlo

method. Then, we use predefined dominance relations for comparison and ranking of alter-

natives, which are based on the set of generated cases. Further on, we provide the esti-

mates for a sample size so the results could be considered robust enough. At last, but not

least, we introduce the concept of central weights and the measure of its robustness (stabil-

ity) as well as the concept of alternatives’ multi-dominance, and show their application to a

real-world problem of the selection of the best wind turbine.

1 Introduction

Multiple criteria decision making/aiding/analysis (MCDM/MCDA) methods represent one of

the most successful tools for sophisticated decision making in the framework of complex real-

world problems usually involving many alternatives which should be compared and ranked

under a set of suitable criteria. A state-of-the-art on MCDM/MCDA methods can be found

e.g. in [1–3] or [4]. One of the main challenges associated with MCDM/MCDA that attracted

a broad range of studies is the problem of appropriate (objective) derivation of criteria weights,

see e.g. [5–15], or [16]. According to [9], the methods for the derivation of criteria weights fall

into three categories–subjective weighting methods, objective weighting methods and hybrid

weighting methods. Subjective methods depend on the preferences of decision-makers and

include direct ranking, point allocation, pairwise comparisons, or SMART (Simple Multi-

Attribute Ranking Technique). The main disadvantage of these methods is that they are
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recourse-consuming when the number of criteria increases. Objective weighting methods uti-

lize specific computational process based on the initial data or decision-matrix, and are not

based on experts’ preferences or judgements; entropy method, CRITIC (CRiteria Importance

Through Inter-criteria Correlation) or SECA (Simultaneous Evaluation of Criteria and Alter-

natives) belong in this category. The hybrid weighting methods, such as MEREC (MEthod

based on the Removal Effects of Criteria), combine both approaches.

In general, MCDM/MCDA methods suffer from two drawbacks related to criteria weights.

The first is that it is almost impossible to set weights of criteria precisely (perfectly) so that the

optimal solution is obtained indeed. This occurs, in particular, when facing a new challenge or

a novel and a decision maker is lacking corresponding knowledge and/or experience, typically

when cutting edge science or technology is involved. However, even relatively simple tasks

constitute a problem. For instance, QS university ranking, which aspires to provide an ordered

list of top 1,000 universities in the World as close to the reality as possible, applies the following

criteria: academic reputation (40%), employer reputation (10%), faculty/student ratio (20%),

citations per faculty (20%), international student and faculty ratio (both 5%). However, how

do we know that these exact criteria weights provide a truly objective and unbiased ranking of

universities?

The second drawback relates to the well-known high sensitivity of criteria weights with

respect to the final evaluation of alternatives. In some cases even the slightest change in criteria

weights may lead to a diametrically different ranking of alternatives and/or the change of the

best one, see e.g. [17], and this is the case when natural uncertainties in the evaluation of crite-

ria or alternatives arise. NASA belongs among institutions famous for their meticulous

approach to the space exploration and problem solving in general. Their NASA Systems Engi-
neering Handbook in the part 6.8 Decision Analysis states [18]:

Once the decision alternative evaluation is completed, recommendations should be brought

back to the decision maker including an assessment of the robustness of the ranking (i.e.,

whether the uncertainties are such that reducing them could credibly change the ranking of

the alternatives). Generally, a single alternative should be recommended. However, if the alter-

natives do not significantly differ, or if uncertainty reduction could credibly alter the ranking,

the recommendation should include all closely ranked alternatives for a final selection by the

decision-maker.

This paragraph clearly acknowledges uncertainty in the evaluation of alternatives and

stresses the importance of a robustness analysis.

In this paper we turn over the usual perspective on MCDM/MCDA problems. Instead of

asking which alternative is the best under given criteria weights we ask what the values of crite-

ria weights have to be so that given alternative is ranked first. Further on, we ask what smallest

change in criteria weights leads to the change of the best alternative and whether there are fea-

sible weights such that any alternative could be ranked first at all.

The aim of our study is to answer these questions by proposing a novel Monte Carlo

weights’ approach. We consider the set of all feasible weights (a subspace of an n-dimensional

space, where n is the number of criteria) from which a large number of weights (see Section 4

for estimates of the sample size with respect to the relative standard error of the mean) in the

form of n-tuples is drawn randomly from a uniform probability distribution via Monte Carlo

method. Then, we apply predefined dominance relations for comparison and ranking of alter-

natives, and we provide an analysis of the sensitivity (robustness) of the aforementioned solu-

tions by introducing a concept of the so called central weights and their radius. Moreover, we

show that although an alternative can be non-dominated when compared with a single other

alternative, a group domination (called multi-domination) may appear: an alternative might be

dominated by a subset of other alternatives for all feasible weights. The identification of multi-

PLOS ONE On the Monte Carlo weights in multiple criteria decision analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0268950 October 7, 2022 2 / 18

https://doi.org/10.1371/journal.pone.0268950


dominated alternatives can significantly reduce the number of alternatives under consider-

ation as demonstrated in the application part of the paper. At last, but not least, our approach

accentuates the problem of uncertainty mentioned in the NASA Systems Engineering Hand-

book by modelling the values of criteria weights, thus allowing examination of their influence

on alternatives’ final rankings.

The organization of paper is as follows: in Section 2 we provide a brief introduction to the

Monte Carlo method, Monte Carlo weights and dominance relations along with an illustrative

numerical example. In Section 3 we demonstrate the application of our approach to the analy-

sis of a concrete real-world problem, namely a selection of the best wind turbine. Discussion

(Section 4) and Conclusions (Section 5) close the article.

2 The method

2.1 The Monte Carlo method

In general, the term Monte Carlo method refers to a broad variety of algorithms that obtain

numerical results via (many times) repeated random sampling from a given probability distri-

bution. See e.g. [19–22] or [23] for an introduction to the Monte Carlo method.

History of Monte Carlo method dates back to the Buffon’s needle problem for the deriva-

tion of the value of π from the 18th century. The modern version of the Monte Carlo method

was pioneered during the World War II by Stanislaw Ulam and John von Neumann [22, 24].

Since then, Monte Carlo method was successfully applied in physics (see e.g. McKean–Vlasov

processes), mathematics (complex multidimensional definite integrals), economics (Markov

chains, risk), engineering (oil extraction), biology (study of genomes and proteins), medicine

(radiotherapy), sports, or operations research (optimization problems), see e.g. [25–28], or

[29]. In the context of pairwise comparisons, Monte Carlo studies were applied for instance in

[30–38], or [39]. Nevertheless, a comprehensive review of Monte Carlo applications is beyond

the scope of this study. In [28] Alex Bielajew states that up to year 2011, more than 300,000

papers were published on the Monte Carlo method, with 10% of papers related to medicine

only.

Currently, the Monte Carlo method constitutes a popular modelling method in a wide

areas of human action supported by many software products such as GoldSim, NIST, or

B-RISK, and Monte Carlo simulation modules are also included in MS Excel as XLSTAT, in

the statistical software SPSS, in MATLAB, or in the programming language R.

Usually, the Monte Carlo methods follow the following steps: 1) the domain of sampling

and probability distribution are defined, 2) a large number of random draws (with repeating)

is performed, 3) results are aggregated, analysed and interpreted.

The application of Monte Carlo method requires a random (unbiased) sampling from a

given probability distribution. In practice, pseudo-random sequences are generated by a class

of algorithms called pseudorandom number generator (PRNG), or a deterministic random bit
generator (DRBG), see e.g. [40]. For example, MS Excel uses the Mersenne Twister algorithm
(MT19937). Pseudo-random sequences are easy to test and re-run. The only quality usually

necessary to make a good simulation is that a pseudo-random sequence is ‘random enough’.

The second crucial feature of the Monte Carlo simulations is their error. Each time a Monte

Carlo simulation is performed, slightly different results (mean values) are obtained. The vari-

ability of results (i.e., how much the mean estimate varies from one Monte Carlo simulation to

another Monte Carlo simulation) depends on the number N of trials in each Monte Carlo

simulation.

Let xi, i 2 {1, . . ., N} denote the individual randomly generated values, let N be the sample

size, let �x denote the mean value of the sample and let s2
x be its variance. When Monte Carlo
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simulations are repeated, the mean values �x will slightly differ (variances are assumed to be

identical). The variance of the mean s�x2 is then given as follows [41]:

s2
�x ¼

s2
x

N
ð1Þ

Thus, the standard error (deviation) of the mean s�x decreases with the square root of the

sample size N in each Monte Carlo simulation. This relation does not depend on the underly-

ing probability distribution.

In our approach, the criteria weights are randomly drawn from the uniform probability dis-

tribution. For the uniform probability distribution, where xi 2 [a, b], the variance s2
x is given

as follows:

s2
x ¼
ðb � aÞ2

12
ð2Þ

The relations above enable estimation of the sample size N so that a standard error is under

a desired threshold, see Section 4 for more details.

2.2 Monte Carlo weights and dominance relations

Let A = {A1, A2, . . ., Ak} be the set of k alternatives under consideration, let C = {C1, C2, . . ., Cn}

be the set of n criteria and let w = (w1, w2, . . ., wn) be the vector of criteria weights such that wi

2 ]a, b[, b> a> 0.

Since in our approach the weights of criteria are randomly generated from the interval [a, b
[ by the Monte Carlo method, we will denote these weights as Monte Carlo weights (MC
weights in short). For practical purposes the number of generated cases of these weights is rec-

ommended to be at least in thousands, see e.g. [42, 43], or [44], but see Section 4 for more

details.

Further on, let’s assume that all alternatives are evaluated with respect to all criteria, and fij
denotes the evaluation of the i-th alternative under j-th criterion, where fij 2 R. The matrix F =

(fij) is called the decision matrix. Further on, let U(Ai) be a (cardinal) utility function of an

alternative i:

UðAiÞ ¼
Xn

j¼1

fij � wj: ð3Þ

Next, we propose the following dominance relations for alternatives’ comparison and

ranking.

Definition 1

Let N be the number of cases of Monte Carlo weights w = (w1, w2, . . ., wn). Let Bi, 8i 2 {1, . . .,

n}, be the number of generated MC weights such that alternative Ai achieved the highest value of
Eq (3) (was the best) from the set of all alternatives. Then Ai dominates Aj (Ai� Aj) w. r. t. Defi-
nition 1 if and only if Bi> Bj.

Definition 2

Let N be the number of cases of Monte Carlo weights w = (w1, w2, . . ., wn). Let Dij, 8i 2 {1,

. . ., n}, be the number of generated cases such that alternative Ai achieved a higher value of the
utility function (3) than alternative Aj. Then Ai dominates Aj (Ai� Aj) w. r. t. Definition 2 if
and only if Dij> Dji.

Definition 3
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Let N be the number of cases of Monte Carlo weights w = (w1, w2, . . ., wn). Let Ui
mean ¼

1

N

PN
r¼1

Pn
j¼1

f ðjÞi � wðjÞ be the mean utility function achieved by alternative Ai over all generated
cases. Then alternative Ai dominates Aj (Ai� Aj) w. r. t. Definition 3 if and only if
Ui

mean > Uj
mean.

By each of the three dominance relations alternatives can be partially ordered (in the case of

ties) or totally ordered (in the case of no ties).

Remark 1

Let T be the number of ties where Ui = Uj out of N generated cases. A matrix D = (dij) such
that dij = Dij/(N–T) forms a square pairwise comparison matrix denoted as a ‘fuzzy’ PC matrix
with elements satisfying the relation dij + dji = 1, which, in turn, can be easily transformed into a
multiplicative PC matrix A = (aij) via relation aij ¼

dij
1� dij

. From a multiplicative PC matrix alter-

natives’ weights (also called a priority vector) can be easily derived by the eigenvalue method or

the geometric mean method, see e.g. [45, 46], or [39].

Further on, we define central weights (the most stable weights) for each alternative as

follows:

Definition 4

Let fij be the evaluation of alternative i with respect to criterion j. Let w = (w1, . . ., wn) be a
vector of MC weights of all criteria. Let U(i) denote a utility function of alternative i. Let W(i) =

{w|Ui� Uj, 8j} be a “space” of weights for which alternative i is the best (attains the maximum
value of a utility function). Further on, let wðiÞ

�
2WðiÞ denote weights for which two conditions

are satisfied:

i) There exists a neighbourhood in the form of an open “ball” N�W(i) such that wðiÞ
�
is its cen-

tre, and r> 0 is its radius.
ii) The radius r is maximal.
Then the wðiÞ

�
is called the central weights w.r.t. alternative i.

Obviously, the greater is the value of r from Definition 4, the greater is the necessary change

in weights from central weights to replace the best alternative i with another best alternative.

In this sense, r expresses stability or robustness of the central weights. Also, it should be men-

tioned that the previous definition utilizes the notion of a distance (between weights), hence a

suitable metric function must be selected in practice. Therein after, it is assumed that the Man-
hattan metric is such a suitable metric, see also [47].

The best or optimal alternative in MCDM/MCDA problems always belongs to the set of

non-dominated alternatives. This means that given the set of alternatives A = {A1, . . ., Ak} and

the set of criteria C = {C1, . . ., Cn}, alternative Ai dominates alternative Aj (we write Ai� Aj) if

for all j = {1, . . ., n} it holds that Ai is evaluated better or equally as Aj, but at least one prefer-

ence is strict.

Next, we provide a generalization of the concept of dominance.

Definition 5

Let A = {A1, . . ., Ak} be the set of alternatives and let C = {C1, . . ., Cn} be the set of criteria. Let
N� N0 be the number of randomly generated MC weights. We say that alternatives from the set
A� � A dominate alternative Aj w. r. t. Definition 5, if for each generated case of MC weights
there is an alternative Ai 2 A� such that Ai� Aj.

In other words, if an alternative j is dominated by a set of alternatives according to Defini-

tion 5, it is never ranked as the best one. We recommend to set the lower bound N0 of the

number of randomly generated MC weights to 10,000 in accordance with [42, 43], or [44].

While the case of one alternative dominance over another alternative can be called single-
dominance (s-dominance in short), the case of the dominance of a set over one alternative can
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be referred to as multi-dominance (m-dominance in short). It should be noted that while s-
dominance implies m-dominance, the inverse is not true in general.

To summarize, the proposed Monte Carlo weights method for multiple criteria decision

analysis proceeds in the following steps (that slightly differ with regard to the dominance rela-

tion involved):

1) The sets of alternatives A and criteria C along with the decision matrix F = (fij) form the

method’s input. Also, a probability distribution of random draws of weights is set (usually it is

uniform distribution).

2) A large number of criteria weights is generated randomly via Monte Carlo method such

that each weight wi is drawn independently from (the same) open interval ]a, b[. The domi-

nance relation is selected.

3i) For the dominance relation from Definition 1: For each generated case of the MC

weights the best alternative (the alternative with the highest value of a utility function) is

found.

4i) Results are aggregated over all generated cases and the values of Bi are found.

5i) All alternatives are ranked via the dominance relation from Definition 1 from the best to

the worst.

3ii) For the dominance relation from Definition 2: For each generated case of the MC

weights all alternatives are pairwise compared with respect to their utility function.

4ii) Results are aggregated over all generated cases and the values of Dij are found.

5ii) All alternatives are ranked via the dominance relation from Definition 2 from the best

to the worst.

3iii) For the dominance relation from Definition 3: For each generated case of the MC

weights the value of a utility function is calculated for each alternative.

4iii) Results are aggregated over all generated cases and the values of Ui
mean are found.

5iii) All alternatives are ranked via the dominance relation from Definition 3 from the best

to the worst.

6) At this final step central weights w� and radius r are estimated for each alternative.

Fig 1 shows a simplified flow chart of the method. During the procedures above a decision

maker may identify an alternative that is multi-dominated, i.e. never best and thus irrelevant.

In such a case it is recommended to remove this alternative from further consideration.

2.3 An illustrative numerical example

Let’s consider 5 alternatives {A1, A2, A3, A4, A5}, and 3 criteria {C1, C2, C3}. All alternatives are

evaluated on the scale from 1 (the worst) to 10 (the best), see Table 1. Weights of all three crite-

ria are unknown. The goal is to find the best alternative.

To solve the problem we use the Monte Carlo weights method with 10,000 randomly gener-

ated criteria weights. For each generated case, the dominance relations from Definitions 1–3

were applied and the results are presented in Tables 2–5. We use the same number of gener-

ated cases (a sample size) through the paper purely for practical reasons—we built our Monte

Carlo simulation tool with 10,000 cases. This simple size is usually more than sufficient and

provides robust results, however, a researcher may adjust the sample size with respect to the

desired accuracy, see Discussion (Section 4) for more details.

As can be seen, the best alternative (a Condorcet winner) is A4 followed by A1. Figs 2 and 3

illustrate a ‘space’ of weights for which a given alternative is ranked best. Rankings of all alter-

natives with respect to dominance relations from Definitions 1–3 are provided in Table 6. The

weights of all alternatives from the PC matrix in Table 5 derived by the geometric mean

method are as follows: wGM = (0.319, 0.130, 0.021, 0.426, 0.104).
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Fig 1. Monte Carlo weights method.

https://doi.org/10.1371/journal.pone.0268950.g001

Table 1. The decision matrix: The evaluation of alternatives with respect to criteria.

Alternative/criteria C1 C2 C3

A1 7 7 4

A2 2 8 5

A3 3 4 5

A4 1 8 8

A5 2 2 10

https://doi.org/10.1371/journal.pone.0268950.t001

Table 2. Alternatives’ evaluation with respect to Definitions 1 and 3.

Alternative Best w.r.t. Def. 1 (in %) Umean

A1 34.9 8.02

A2 0.67 7.52

A3 0 6.02

A4 45.7 8.52

A5 18.7 7.03

https://doi.org/10.1371/journal.pone.0268950.t002
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A natural question regarding this or other problems associated with the Monte Carlo

method arises: how many cases should be randomly generated so that the result is robust

enough. We provide an answer to this question in Section 4. Here, we show the convergence

of Umean(A1) with the growing number N of generated cases, see Fig 4. For N = 1, 000 the value

Table 5. Alternatives’ evaluation with respect to Definition 2 and Remark 1, a multiplicative preference matrix.

Alternative A1 A2 A3 A4 A5

A1 1 2.02 36.17 0.64 1.83

A2 0.49 1 6.94 0.21 1.38

A3 0.027 0.14 1 0.06 0.43

A4 1.57 4.82 16.12 1 2.98

A5 0.55 0.73 2.32 0.34 1

https://doi.org/10.1371/journal.pone.0268950.t005

Table 3. Alternatives’ evaluation with respect to Definition 2.

Alternative A1 A2 A3 A4 A5

A1 – 6692 9731 3894 6461

A2 3304 – 8741 1714 5791

A3 269 1258 – 583 3005

A4 6104 8283 9416 – 7485

A5 3538 4209 6992 2514 –

https://doi.org/10.1371/journal.pone.0268950.t003

Table 4. Alternatives’ evaluation with respect to Definition 2 and Remark 1, a fuzzy preference matrix.

Alternative A1 A2 A3 A4 A5

A1 0.5 0.669 0.973 0.389 0.646

A2 0.330 0.5 0.874 0.171 0.579

A3 0.027 0.126 0.5 0.058 0.301

A4 0.610 0.828 0.942 0.5 0.749

A5 0.354 0.421 0.699 0.251 0.5

https://doi.org/10.1371/journal.pone.0268950.t004

Fig 2. Weights of criteria if A1 is the best alternative (left) and A2 is the best alternative (right).

https://doi.org/10.1371/journal.pone.0268950.g002
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Fig 3. Weights of criteria if A4 is the best alternative (left) and A5 is the best alternative (right).

https://doi.org/10.1371/journal.pone.0268950.g003

Table 6. Alternatives’ rankings with respect to Definitions 1–3.

Rank Def. 1 Def. 2 Def. 3

1 A4 A4 A4

2 A1 A1 A1

3 A5 A2 A2

4 A2 A5 A5

5 A3 A3 A3

https://doi.org/10.1371/journal.pone.0268950.t006

Fig 4. The dependence of U(A1) mean values on N.

https://doi.org/10.1371/journal.pone.0268950.g004
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of Umean(A1) = 7.90, for N = 2, 000 is Umean(A1) = 7.95, and for N = 5, 000 is Umean(A1) = 7.97.

These values differ from the value 8.024 (N = 10, 000) by 1.5%, 0.9% and 0.6% respectively

(this deviation should not be confused with the relative standard error introduced in Section

4), hence, even with N = 2, 000 the deviation of the value of the utility function Umean(A1) from

the value for N = 10, 000 is under 1%.

3 Application of Monte Carlo weights to the wind turbine selection

In the study of Rehman and Khan [48], the task of finding the best wind turbine for a wind

power plant was performed. The authors gathered data about 18 wind turbines and evaluated

their properties with regard to five criteria: hub height (C1), rotor diameter (C2), cut-in speed

of wind (C3), rated speed of wind (C4) and rated power (C5). Every criterion had the weight

equal to 0.20. The data were normalized, criteria C1 − C4 were minimization ones, criterion C5

was originally a maximization one, so it was transformed into a minimization one by taking its

inverse. After the transformation all criteria were minimization ones and the best turbine was

the turbine with the lowest weighted sum—Fuhrlander FL 600, see Table 7.

What escaped notice of the authors of the study is that Suzlon S.52 and Suzlon S.88 turbines

were dominated by other alternatives, so they could be safely removed from further

consideration.

As can be seen from Table 7, differences between turbines’ final scores were rather small.

Therefore, it could be expected that even a small change in criteria weights might lead to a dif-

ferent best wind turbine. Indeed, it suffices to change the weight of the criterion C2 to 0.195

and the weight of the criterion C5 to 0.205 (leaving the rest of criteria weights at 0.20), and the

Table 7. The evaluation of all turbines with respect to all criteria, normalized matrix, [48].

Turbine Normalized Hub

Height

Normalized Rotor

Diameter

Normalized Cut-in Speed

of wind

Normalized Rated Speed

of wind

Normalized Rated

Power

Weighted

Sum

Fuhrlander FL

600

0.588 0.526 0.357 0.688 0.714 0.575

Hyosung HS50 0.588 0.526 0.500 0.688 0.643 0.589

RRB Energy PS

600

0.565 0.495 0.500 0.938 0.714 0.642

Suzlon S.52/600 0.882 0.547 0.571 0.813 0.714 0.706

Unison U57 0.800 0.600 0.429 0.656 0.643 0.626

Vestas V47 0.647 0.495 0.571 0.813 0.686 0.642

Windflow 500 0.341 0.347 0.857 0.875 0.762 0.637

AAER A-1000 0.824 0.611 0.571 0.750 0.524 0.656

DeWind D6 64m 0.706 0.674 0.357 0.769 0.405 0.582

Mitsubishi

MWT62

0.812 0.646 0.500 0.781 0.524 0.653

Nordex N54/

1000

0.706 0.568 0.536 0.875 0.524 0.642

Suzlon S.62/1000 0.765 0.653 0.429 0.750 0.524 0.624

Vensys 62-1200 0.812 0.653 0.357 0.719 0.429 0.594

AAER A-2000-

84

0.765 0.884 0.464 0.750 0.048 0.582

DeWind D.81 0.941 0.842 0.429 0.848 0.048 0.621

Ecotecnia 80/

2000

0.824 0.842 0.429 0.750 0.048 0.578

REpower MM92 0.929 0.968 0.429 0.781 0.048 0.631

Suzlon S.88/2000 0.941 0.926 0.571 0.875 0.048 0.672

https://doi.org/10.1371/journal.pone.0268950.t007
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weighted sum for Fuhrlander FL 600 changes to 0.5755, while Ecotecnica 80/2000 attains

0.5746, becoming the best one. It took only 1% change of weights to arrive at a different best

alternative.

To analyse the dependence of the best turbine on criteria weights, we applied the Monte

Carlo weights method. We generated 10,000 random cases of criteria weights from the interval

]0, 1[ and applied the dominance relations from Definition 1 and 2 to compare and rank all

turbines (except for the two dominated ones) and to find their respective central weights—this

dataset can be found on https://doi.org/10.6084/m9.figshare.19525087.v1. The results are sum-

marized in Tables 8 and 9.

The turbine that was the most frequently best (in 36.2% of generated cases) was Fuhrlander

FL 600 in accord with the result of the original study. However, our approach provided new

valuable insights into the problem. Firstly, it can be seen from the Table 7 that another 8 tur-

bines were m-dominated and would never be ranked the best (with both Suzlon turbines men-

tioned above 10 turbines altogether attained 0% cases of being evaluated as the best). From the

remaining 8 turbines only four turbines were ranked best in at least 10% of cases: Fuhrlander

FL 600, Windflow 500, AAER A-2000-84 and Ecotecnia 80/2000. Only these four turbines

could deserve a more detailed consideration. Therefore, the Monte Carlo approach allowed

significant reduction of the candidates for the best solution. But the advantages of the method

do not stop here.

From the central weights for each of the four best alternatives, we see what weights would

favour one alternative over the others. Windflow 500 turbine would be considered the best if

criteria C1 and C2 were the most important. AAER A-2000-84 turbine would be best if criteria

C1 and C5 were the most important, and finally Ecotecnia 80/2000 would be ranked first if the

last criterion C5 was the most important and the first criterion C1 was the least important.

After this analysis a decision maker may weigh in which configuration of criteria weights is

most desirable, and then select the best option.

Table 8. Turbines, their central weights w�, radius r and a percentage of cases in which they were ranked first.

Turbine w1 w2 w3 w4 w5 r Best (in %) mean U
Fuhrlander FL 600 0.526 0.552 0.636 0.553 0.275 0.498 36.2 1.4404

Hyosung HS50 0.329 0.595 0.114 0.781 0.384 0.277 1.2 1.4768

RRB Energy PS 600 – – – – – – 0 1.6103

Suzlon S.52/600 – – – – – – 0 1.7691

Unison U57 0.022 0.075 0.168 0.704 0.086 0 0.04 1.5691

Vestas V47 – – – – – – 0 1.6106

Windflow 500 0.690 0.657 0.192 0.389 0.349 0.371 15.3 1.5945

AAER A-1000 – – – – – – 0 1.6458

DeWind D6 64m 0.378 0.483 0.819 0.132 0.461 0.247 1.1 1.4609

Mitsubishi MWT62 – – – – – – 0 1.6373

Nordex N54/1000 – – – – – – 0 1.6098

Suzlon S.62/1000 – – – – – – 0 1.5659

Vensys 62-1200 0.063 0.610 0.713 0.488 0.429 0.202 0.8 1.4906

AAER A-2000-84 0.686 0.250 0.392 0.507 0.726 0.463 16.3 1.4624

DeWind D8.1 – – – – – – 0 1.5595

Ecotecnia 80/2000 0.300 0.495 0.556 0.494 0.735 0.478 29.1 1.4535

REpower MM92 – – – – – – 0 1.5853

Suzlon S.88/2000 – – – – – – 0 1.6885

https://doi.org/10.1371/journal.pone.0268950.t008
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4 Discussion

The Monte Carlo weights method for the solution of MCDM/MCDA problems involving a

utility function has several advantages, namely:

• The method does not need precise values of criteria weights in advance since it models a

large number of feasible weights so that the decision maker receives information of how the

weights influence the results.

• The method enables the evaluation and ranking of alternatives despite the unknown criteria

weights.

• The method enables to find the set of weights for which a given alternative is the best. Then

it is up to the decision maker to decide which weights are acceptable and which are not.

• The method enables the evaluation of a stability of the so called central weights. The concept

of central weights enables the decision maker to see what weights would be necessary for

each alternative to be the best one.

• The method enables, as shown in the example on the wind turbine selection, to find multi-

dominated alternatives, which are not so obvious as their single-dominated counterparts,

thus reducing the number of alternatives under consideration.

On the other hand, the Monte Carlo weights approach has its limitations. Firstly, in some

real-world problems criteria weights are set a priori at given values and the analysis of what

would happen if they change is irrelevant. Secondly, Monte Carlo method is both computa-

tionally costly and time demanding, and might not be useful in situations when a fast solution

is needed. Other limitation constitutes the fact that we introduce Monte Carlo weights for the

problems where the final aggregation of alternatives’ evaluations is performed via a utility

function, but many MCDM/MCDA theoretical frameworks do not incorporate a utility func-

tion. However, we believe the Monte Carlo weights can be introduced into other frameworks

associated with criteria weights as well, and our future research will focus in this direction.

As mentioned in Section 2, it is useful to know the size of the randomly generated sample

necessary for results to be robust enough. Hereinafter, we provide this estimate.

First we assume the criteria weights are randomly drawn from a uniform distribution on

the interval ]a, b[. Let xi denote randomly generated values of weights of a given criterion

(does not matter which one, since they are treated equally), let �x ¼ ðb � aÞ=2 denote the mean

weight of a given criterion (this value is the same for all criteria), let s2
x ¼

ðb� aÞ2

12
be the sample

variance of xi and let s�x2 be the standard error (variance) of the mean. From relations (1) and

(2) it follows that

s2
�x ¼
ðb � aÞ2

12N
: ð4Þ

Further on, let s�x�x ¼ p, where p is the coefficient of variation of the mean (also called the
standard error of the mean or the relative standard error).

Now, let’s estimate the sample size N corresponding to the relative standard error p:

s�x

�x
¼ p ¼

ðb � aÞ
ffiffiffiffiffiffiffiffiffi
12N
p

ðb � aÞ
2

¼
2
ffiffiffiffiffiffiffiffiffi
12N
p ð5Þ
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hence

N ¼
1

3p2
: ð6Þ

The relation (6) provides the relationship between the sample size N and the relative stan-

dard error p (given as a decimal number) of a given generated weight. The smaller is p, the

more ‘fairly’ are the weights generated (no weight is, on average, higher than some other

weight), however, the price is a large sample N.

For reader’s convenience, we provide the sample sizes N for different values of p in the fol-

lowing Table 10.

It should be noted that the sample sizes N provided by relation (6) and shown in Table 10

are only estimates since a sample variance of xi is used instead of (unknown) population vari-

ance, and the assumption of (totally) random draws might not be fulfilled in practice due to

the application of pseudo-random generators mentioned in Section 2.1.

An estimate of the sample size with respect to the relative standard error of a utility function

U can be derived as well. Assume the utility function from relation (3) and recall the following

formula for the variance of a linear combination of two uncorrelated (independent) variables

(x, y):

s2ðaxþ byÞ ¼ a2s2ðxÞ þ b2s2ðyÞ ð7Þ

Now, let’s estimate the relative standard error of the mean of the utility function of an alter-

native j (we assume fij� 0). The variance of Uj is given as:

s2
Uj
¼ s2

Xn

i

fijwi

 !

¼ f 2
1j � s

2
w1
þ . . .þ f 2

nj � s
2
wn
¼
ðb � aÞ2

12

X

i

f 2

ij ð8Þ

Therefore, the variance of the mean of Uj is given as follows:

s2
�Uj
¼

ðb � aÞ2

12

Xn

i
f 2

ij

N
ð9Þ

And the relative standard error p is given as:

p ¼
s �Uj

�Uj
¼

ffiffiffiffiffiffiffiffiffiffiP
if 2
ij

q
ðb � aÞ

ffiffiffiffiffiffiffiffiffi
12N
p

�Uj

¼

ffiffiffiffiffiffiffiffiffiffiP
if 2
ij

q
ðb � aÞ

ffiffiffiffiffiffiffiffiffi
12N
p P

ifij �wi

¼
2
ffiffiffiffiffiffiffiffiffiffiP

if 2
ij

q
ðb � aÞ

ffiffiffiffiffiffiffiffiffi
12N
p

ðb � aÞ
P

ifij
¼

ffiffiffiffiffiffiffiffiffiffiP
if 2
ij

q

ffiffiffiffiffiffiffi
3N
p P

ifij

ð10Þ

Table 10. The (minimal) sample size N with respect to the relative standard error p.

p 0.01 0.02 0.03 0.04 0.05 0.10

N 3,333 833 370 208 133 33

https://doi.org/10.1371/journal.pone.0268950.t010
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Finally, from Eq (10) we easily derive N:

N ¼
P

if
2
ij

3p2ð
P

ifijÞ
2 ð11Þ

Since for fij� 0 the following inequality holds:

X

i

f 2

ij � ð
X

i

fijÞ
2
: ð12Þ

We get that the following estimate:

N �
1

3p2
: ð13Þ

The sample size estimate for the relative standard error of the mean of a utility function is

thus lower than the sample size estimate for the relative standard error of the mean of a given

weight.

Another interesting problem is whether it is possible to obtain a set of weights W for which

a given alternative is the best (has the highest value of the utility function U), see Definition 1,

analytically, without simulations. Assume that there are at least two alternatives and that

weights of criteria wi 2 ]0, 1[.

This task means to solve a system of linear inequalities where the number of inequalities

equals the number of alternatives (k) minus one plus 2n ‘structural inequalities’ (0 < wi< 1),

and the number of variables is equal to the number of criteria (n). Suppose that we want to

find the set W1 for Alternative 1. Then, the system of inequalities is given as follows:

f11w1 þ f12w2 þ . . .þ f1nwn � f21w1 þ f22w2 þ � � � þ f2nwn

. . .

f11w1 þ f12w2 þ � � � þ f1nwn � fk1w1 þ fk2w2 þ . . .þ fknwn

0 < wi < 1;8i:

:

8
>>>>>>><

>>>>>>>:

ð14Þ

This set of inequalities can be solved by the Fourier–Motzkin elimination (FME), see e.g.

[49]. In each step of the FME, one variable is eliminated from the system, but new inequalities

are added, until only one variable remains and its value can be expressed as an interval. Let’s

assume that the solution to the system above was found and has the following form, where L
and U denote the lower and upper bounds for each weight wi:

L1ðw2; . . . ;wnÞ � w1 � U1ðw2; . . . ;wnÞ

L2ðw3; . . . ;wnÞ � w2 � U2ðw3; . . . ;wnÞ

. . .

Ln � wn � Un

:

8
>>>>>>><

>>>>>>>:

ð15Þ

The set W1 forms a polyhedron in an n-dimensional unit cube. For the comparisons with

other alternatives with regard to Definition 1, instead of counting the number of generated

cases for which Alternative 1 is the best, we have to find the volume of the set W1. This volume
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is given as an n-dimensional definite integral:

volðW1Þ ¼

Z Un

Ln

Z Un� 1ðwnÞ

Ln� 1ðwnÞ
. . .

Z U1ðw2 ;...;wnÞ

L1ðw2 ;...;wnÞ
1dw1dw2 . . . dwn: ð16Þ

However, the downside of the FME is that the number of inequalities grows doubly expo-

nentially [50, 51]. At most, one can expect to get 4ðk
4
Þ

2n� 1

inequalities for one variable, where k
is the input number of inequalities and n is the number of variables [51]. Hence, for instance,

with originally 8 inequalities and 4 variables one may end up (in the worst case scenario) with

a system of 1,024 inequalities that leads to the solution for only one alternative. . . Therefore, it

is possible to use the analytic approach, but the computational complexity makes it rather

infeasible in practice except for the cases with very low numbers of alternatives and criteria.

5 Conclusions

In this paper we introduced the notion of the Monte Carlo weights in the MCDM/MCDA

framework. We showed that alternatives can be compared and ranked even when information

on criteria weights is missing or unavailable, and that our approach enables to find (the most

stable) weights such that a given alternative is ranked the best, and the evaluation of its stability

by finding the minimal change of criteria weights necessary to a replacement at the top of the

ranking. Thus, the Monte Carlo weights method provides a valuable insight into configuration

of criteria weights and its influence on alternatives’ ranking.

Further on, we introduced the notion of multi-dominance, which enables to narrow the set

of alternatives under consideration, and we provided estimates for Monte Carlo sample size so

a desired robustness of results can be achieved.

We believe the presented approach can be useful particularly in situations when criteria

weights are uncertain or difficult (impossible) to acquire, which is, in particular, the case of

newly or recently emerging problems with none or insufficient previous experience.

Our further research will focus on more general framework of the Monte Carlo weights

method not limited to the problems incorporating the notion of a utility function.
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30. Ágoston KCs, Csató L. Inconsistency thresholds for incomplete pairwise comparison matrices. Omega,

2022; 108:102576. https://doi.org/10.1016/j.omega.2021.102576

31. Aguarón J, Moreno-Jimenez JM. The geometric consistency index: Approximated thresholds. Euro-

pean Journal of Operational Research, 2003, 147(1):137–145. https://doi.org/10.1016/S0377-2217

(02)00255-2

32. Alonso JA, Lamata MT. Consistency in the analytic hierarchy process: a new approach. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2006, 14(4): 445–459. https://doi.

org/10.1142/S0218488506004114
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