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Introduction

Abstract

Objective: We describe the clinical characteristics and genetic etiology of sev-
eral new cases within the ACO2-related disease spectrum. Mitochondrial aconi-
tase (ACO?2) is a nuclear-encoded tricarboxylic acid cycle enzyme. Homozygous
pathogenic missense variants in the ACO2 gene were initially associated with
infantile degeneration of the cerebrum, cerebellum, and retina, resulting in pro-
found intellectual and developmental disability and early death. Subsequent
studies have identified a range of homozygous and compound heterozygous
pathogenic missense, nonsense, frameshift, and splice-site ACO2 variants in
patients with a spectrum of clinical manifestations and disease severities. Meth-
ods: We describe a cohort of five novel patients with biallelic pathogenic vari-
ants in ACO2. We review the clinical histories of these patients as well as the
molecular and functional characterization of the associated ACO2 variants and
compare with those described previously in the literature. Results: Two siblings
with relatively mild symptoms presented with episodic ataxia, mild develop-
mental delays, severe dysarthria, and behavioral abnormalities including hyper-
activity and depressive symptoms with generalized anxiety. One patient
presented with the classic form with cerebellar hypoplasia, ataxia, seizures, optic
atrophy, and retinitis pigmentosa. Another unrelated patient presented with
ataxia but developed severe progressive spastic quadriplegia. Another patient
demonstrated a spinal muscular atrophy-like presentation with severe neonatal
hypotonia, diminished reflexes, and poor respiratory drive, leading to ventilator
dependence until death at the age of 9 months. Interpretation: In this study,
we highlight the importance of recognizing milder forms of the disorder, which
may escape detection due to atypical disease presentation.

shown to be important in mitochondrial DNA mainte-
nance.' Both homozygous or compound heterozygous

ACO2 encodes mitochondrial aconitase 2 (MIM: 100850),
an iron-dependent tricarboxylic acid (TCA) cycle enzyme
that catalyzes the reversible isomerization of citrate to
isocitrate. ACO2 is ubiquitously expressed and has been

missense and frameshift variants in ACO2 are associated
with infantile cerebellar-retinal degeneration (ICRD,
MIM: 614559) and optic atrophy 9 (MIM: 616289). The
first reported cases of ICRD were in two consanguineous
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families with infantile-onset optic atrophy, cerebellar atro-
phy, hearing loss, and profound global developmental
delay.” Subsequent studies in additional families noted
the core symptoms of ataxia and developmental delay,
but not all patients had optic nerve involvement and the
severity of the clinical symptoms varied widely.>* Some
mild cases have been described in association with nystag-
mus, abnormal pursuit, cogwheel saccades, head bobbing,
dysarthria, and delayed psychomotor development. Two
recent publications also described individuals with ACO2
variants with microcephaly and spastic paraplegia as the
major presenting feature, suggesting that the phenotypic
spectrum of this disorder is still being defined.””

To date there have been 34 unique disease associated
variants in ACO2 described in 26 individuals/families
detected through untargeted sequencing and subsequent
familial testing. Despite the central role of ACO2 in the
TCA cycle, patients have not demonstrated obvious bio-
chemical derangements. Additionally, residual enzymatic
activity does not fully correlate with the severity of clini-
cal symptoms. This adds an additional layer of diagnostic
complexity when variants of uncertain significance are
identified in ACO2. Here, we present five new cases that
significantly expand the mutational and clinical spectrum
for this disorder and highlight the importance of recog-
nizing attenuated forms of the disorder which may escape
detection. We propose unifying the diverse clinical pre-
sentations under the umbrella of ACO2-related disorders.

Methods

Patients

Our cohort consists of five newly described cases with a
molecular diagnosis of ACO2 deficiency. The presentation
and clinical course for each patient is summarized in Table 1.
Two of these patients (P4 and P5) were briefly described in a
large clinical exome sequencing (CES) study of >2200 Saudi
families (cases REQ18-2038 and 17-6359, respectively), but
are reported in detail here.® Individuals were also identified
and enrolled in the current study using GeneMatcher® (Clini-
cal data were retrospectively collected by each clinician par-
ticipating in the study. The study was approved by our local
institutional review board and in accordance with the Decla-
ration of Helsinki. In addition, written informed consent was
obtained to publish subject photographs.

Genetic analyses

All variants are reported based on NCBI reference
sequences NM_001098.2 (Protein: NP_001089.1). Clinical
trio whole-exome sequencing (WES, Mayo Clinic Labora-
tories, Rochester, MN) was performed and revealed two

P.R. Blackburn et al.

compound heterozygous variants of uncertain significance,
¢.2153T>C:p.(1le718Thr) and ¢.2050C>T:p.(Arg684Trp), in
ACO?2 in P1. These variants were confirmed by familial
mutation testing (Sanger sequencing confirmation) in P2
and established mode of inheritance in both parents. Simi-
larly, research WES'® was performed in P3 who was found
to carry two novel variants, ¢.719G>A: p.(Gly240Asp) and
€.433-2_433-1delinsCT. Confirmatory sequencing to deter-
mine inheritance could only be performed for this patient’s
mother (father deceased). Singleton clinical WES was per-
formed in P4 and P5 as previously described and identified
two private homozygous variants in ACO2 ¢.1187C>T:
p-(Ser396Leu) and «¢.2338_2339delCA: p.(GIn780Valf-
sTer63), respectively.'' Familial segregation was confirmed
via Sanger sequencing in both individuals.

In silico predictions for nonsynonymous variants were
performed using Variant Score Ranker (http://vsranker.b
roadinstitute.org/)."* Simulations were performed using a
homology model (PDB: 1b0j.1.A) of human mitochon-
drial aconitate hydratase (Q99798) from the SWISS-
MODEL Repository (SMR) and generated by the SWISS-
MODEL homology modeling pipeline.’> DynaMut was
used to analyze and visualize changes in protein dynamics
and stability resulting from vibrational entropy changes
caused by missense mutations in ACO2 using normal-
mode analysis (http://biosig.unimelb.edu.au/dynamut/)."*
Variant allele frequencies were evaluated in gnomAD
(https://gnomad.broadinstitute.org/)."> Missense Tolerance
Ratio (MTR) scores and graphs were generated using
MTR-Viewer (http://biosig.unimelb.edu.au/mtr-viewer/).'®
Protein and transcript diagrams were generated using
ProteinPaint (https://proteinpaint.stjude.org/)."”

Results

Clinical reports

In this study, we describe two brothers (P1 and P2), cur-
rently 12 and 15 years of age, who presented initially with
ataxia at 12 and 20 months, respectively, in the setting of
intercurrent febrile illnesses (Fig. 1A). Their
resolved and recurred episodically, correlating to routine
viral infections. Both brothers have mild developmental

ataxia

delays, severe expressive speech disorder with dysarthria,
behavioral abnormalities including attention deficit hyper-
activity disorder (ADHD), depressive symptoms with gen-
eralized anxiety, and impaired fine motor skills. Neither
brother had significant dysmorphic features (Fig. 1B).
Additionally, both brothers were initially thought to have
susceptibility to infections but workup for suspected
immune deficiencies was unrevealing. Both brothers have
received monthly intravenous immunoglobulin (IVIg),
however, which may have led to clinical improvement.
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Figure 1. (A) Pedigrees of families 1-4 showing inheritance of disease-associated variants in ACO2. Standard pedigree symbols are used; squares,
male; circles, female; slush through symbols, deceased individuals. Shading indicates affected status. An arrow indicates the proband in family 1.
(B) Images of P1 and P2 (brothers), and P4. Images of P1 were taken at 9 years of age and at 12 years of age for P2. Images of P4 at the age of
8 months showing severe hypotonia. (C) Typical MRI findings in patients with ACO2-related disorders. Serial images of patients 1-5 (P1-P5) are
shown top to bottom. Representative sagittal, two axial, and coronal images are shown for each patient. Noncontrast MRI of the brain of P1 was
performed at 2 years and 3 months of age. MRI of the head was normal with normal myelination for age with bilateral terminal zones in the
periatrial white matter. The pons and superior cerebellar vermis are slightly small for age. Brain MRI for P2 was performed at 6 years of age.
Midbrain, pons, and middle cerebellar peduncles were noted to be small in size. MRI of the cerebellar hemispheres was normal, although the
superior cerebellar vermis was felt to be mildly atrophic. In P3, brain MRI at 16 years of age showed mild cerebellar atrophy but was otherwise
normal. In P4, brain MRI at 5 months and 11 days showed dilatation of the ventricles and prominent subarachnoid spaces, thinning of the corpus
callosum, hypoplastic cerebellar vermis, and hypoplastic pons. Brain MRI in P5 was performed before 4 years of age and showed global

hypomyelination and other nonspecific findings.

P3 is a 26-year-old female who presented with cerebel-
lar hypoplasia, ataxia, spastic cerebral palsy, seizures, optic
atrophy, and retinitis pigmentosa (Fig. 1A). This individ-
ual has moderate-to-severe intellectual disability, a vocab-
ulary of 4-5 words, and is non-ambulatory.

P4 was delivered at term to a 27-year-old primigravida
mother. His parents are first cousins (Fig. 1A). Antenatal
follow up was unremarkable. He was admitted to neona-
tal intensive care unit (NICU) 2 h after birth because of
cyanosis. He was noticed to have poor respiratory drive
and respiratory acidosis. Neurologic examination showed
generalized hypotonia with diminished reflexes. He devel-
oped abnormal episodes characterized by twisting move-
ments involving his arms and seizure disorder that was
controlled by clonazepam. An electroencephalographic
study (EEG) revealed gross abnormalities consistent with
multifocal epilepsy. He had absent visual tracking and
protective blinking. Ophthalmologic examination showed
bilateral retinal degeneration and optic atrophy. He was
overall nondysmorphic (Fig. 1B). Cardiovascular workup
was normal. He had central apnea requiring ventilator
support and failed several attempts of weaning and extu-
bation until his death at the age of 9 months.

P5 is an 1l-year-old female with progressive spastic
quadriplegia, severe hypotonia, absent visually evoked poten-
tials, and severe developmental and motor delays (Fig. 1A).
She was born at term following an uneventful pregnancy via
spontaneous vaginal delivery. She had her first recognized
seizure at 3 months of age and has had at least one seizure
per week since then despite being on three antiepileptic med-
ications (Levetiracetam, topiramate, and lamotrigine).

Additional details can be found in the supplemental
materials and in Table 1.

Laboratory investigations

P1 had a normal karyotype and normal array CGH test-
ing. His older brother (P2) had more extensive evalua-
tions including a normal karyotype, normal array CGH,
normal Prader-Willi/Angelman syndrome methylation
testing, and normal MECP2, FMRI, and KCNAI gene

testing. Extensive metabolic evaluations were unrevealing
as well. These included normal ammonia, creatine kinase,
carbohydrate-deficient transferrin, alpha fetoprotein, hex-
osaminidase A, biotinidase, coenzyme Q10 quantification,
amino acids (plasma, CSF, urine), 7-dehydrocholesterol,
peroxisomal panel, urine amino acids, oligosaccharide
screen, acylglycines, glycosaminoglycans, urine purine and
pyrimidine panel, hexosaminidase A, biotinidase, sphin-
gomyelinase, and mitochondrial respiratory chain com-
plex probe. He also had normal mitochondrial DNA
(mtDNA) sequencing and normal ataxia evaluation
through Athena Diagnostics. This included normal analy-
ses of SCAI, SCA2, SCA3, SCA6, SCA7, SCAS8, SCAIO,
SCA17, DRPLA, FRDAI1, SCA14, SETX, POLGI, SCAS5,
SIL1, TTPA, and KCNC3.

P3 had a normal microarray, normal MECP2 gene test-
ing, normal PWS/Angelman methylation studies, and nor-
mal  mitochondrial  testing  (including  deletions/
duplications). Biochemical testing including total and free
carnitine, acylcarnitine profile, carbohydrate-deficient
transferrin, urine organic acids, lactate, biotin, and perox-
isomal studies were all normal.

P4 had normal 46, XY male karyotype. His creatine
kinase was normal (152 U/L). Muscle biopsy revealed
nonspecific myopathy and there was no evidence of con-
genital muscular dystrophy, nemaline myopathy, dys-
trophinopathy, or sarcoglycanopathy. Merosin was
normally expressed. Testing for spinal muscular atrophy
(SMA) was normal. Very long-chain fatty acids for perox-
isomal disorders were negative. Additional metabolic
screening was unremarkable.

A limited clinical history for P5 showed acylcarnitine
testing, plasma amino acids, and urine organic acids were
normal.

Additional details can be found in the supplemental
materials and in Table 1.

Brain imaging

A comparison of brain MRI findings in each patient is
shown in Figure 1C. P1 had noncontrast MRI of the
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brain and lumbar spine, without comparison performed
at 2 years and 3 months of age. MRI of the head was
normal with normal myelination for age with bilateral
terminal zones in the periatrial white matter. The pons
and superior cerebellar vermis were slightly small for age
(Fig. 1C). Lumbar spine, from T7 vertebral body through
the sacrum showed a normal spinal cord, conus, and
filum terminale without evidence of tethered cord (not
shown). P2 had his most recent brain MRI at 6 years of
age. Midbrain, pons, and middle cerebellar peduncles
were noted to be small in size (Fig. 1C). MRI of the cere-
bellar hemispheres was normal, although the superior
cerebellar vermis was felt to be mildly atrophic. There
was mildly prominent T2 signal surrounding the 4th ven-
tricle, but no unusual enhancement. The corpus callosum
was within normal limits. In P3, brain MRI at 16 years of
age showed mild cerebellar atrophy but was otherwise
normal (Fig. 1C). A brain CT at age 18 revealed similar
findings (not shown). In P4, brain MRI at 5 months and
11 days of age showed dilatation of the ventricles and
prominent subarachnoid spaces, thinning of the corpus
callosum, hypoplastic cerebellar vermis, and hypoplastic
pons (Fig. 1C), while brain CT at the age of 1 day was
unremarkable. Brain MRI in P5 was performed around
4 years of age and showed global hypomyelination and
other nonspecific findings (Fig. 1C).

Genetic and in silico analysis

P1 and P2 both carry compound heterozygous variants,
paternally inherited ¢.2153T>C: p.(Ile718Thr) and mater-
nally inherited ¢.2050C>T: p.(Arg684Trp) (Fig. 2A and B).
The p.(Ile718Thr) variant has not been reported previously,
or has it been observed in population databases (gnomAD).
The variant falls in a highly conserved residue (to yeast)
and is predicted to be damaging by in silico prediction soft-
ware. AAG predictions (a measure of the change in mono-
meric protein stability when a point mutation is
introduced) show a destabilizing effect of the p.(Ile718Thr)

P.R. Blackburn et al.

variant (AAG: —3.151 kcal/mol) with an increase in mole-
cule flexibility (AASVib ENCoM: 0.275 kcal/mol/K)
(Fig. 2C). The p.(Arg684Trp) variant was previously
observed in two recently described patients in trans with
the c.1787A>G: p.(His596Arg) missense variant.” Both resi-
dues are evolutionary conserved and were predicted to
impact substrate binding. Functional studies in the Aacol
yeast strain showed a 25% reduction in enzymatic activity
for the homologous Arg684Trp variant, Arg681Trp, sug-
gesting that Arg684Trp is a hypomorphic ACO2 vari-
ant.71819

P3 was found to carry two variants, c.719G>A:
p.(Gly240Asp) and c.433-2_433-1delinsCT in trans, with
the ¢.433-2_433-1delinsCT splice-site mutation confirmed
in the patient’s mother (Fig. 2A and B). Her father was
deceased at the time of testing. In silico splice prediction
tools (SpliceSiteFinder-like, MaxEntScan, GeneSplicer, and
NNSPLICE) show complete loss of the exon 4 splice accep-
tor site with the ¢.433-2_433-1delinsCT variant. The
p.(Gly240Asp) variant has been reported rarely in gnomAD
(0.000007953% or 2/251480 total alleles) and falls in a
highly conserved residue (to yeast). AAG predictions show
a destabilizing effect of the p.(Gly240Asp) variant (AAG:
—0.057 kcal/mol) with a net decrease in molecule flexibility
(AASVib ENCoM: —0.168 kcal/mol/K) (Fig. 2C).

In P4, the ¢.1187C>T: p.(Ser396Leu) homozygous vari-
ant falls in a moderately conserved residue and has not
been reported in gnomAD or other population databases
(Fig. 2A and B). In silico prediction algorithms consis-
tently show a deleterious effect of this mutation and AAG
predictions show a stabilizing effect (AAG: 1.519 kcal/
mol) with a net decrease in molecule flexibility (AASVib
ENCoM: —0.375 kcal/mol/K) (Fig. 2C). This novel vari-
ant falls near the c.1181G>A: p.(Gly394Glu) variant that
has been observed in several patients including in associa-
tion with infantile cerebellar-retinal degeneration in trans
with a p.(Trp574Cys) variant.'®

In P5, the ¢.2338_2339delCA: p.(GIn780ValfsTer63)
homozygous variant falls in the last amino acid before the

Figure 2. (A) Schematic diagram of the ACO2 protein showing the mitochondrial aconitate hydratase catalytic and swivel domains. Patient
variants are overlaid on the diagram and are color-coded based on their effect on the encoded protein (Based on NCBI Reference Sequences:
NM_001098.2, NP_001089.1). Variants identified in patients described in this cohort are shaded orange. Protein diagrams were generated using
ProteinPaint (https:/proteinpaint.stjude.org/). (B) MTR-Viewer results for ACO2. The line graph displays the Missense Tolerance Ratio (MTR)
distribution (measure of regional intolerance to missense variation) for ACO2 with regions in red indicating observed variation significantly
deviates from neutrality (http://biosig.unimelb.edu.au/mtr-viewer/). Missense mutations identified in the patient cohort are overlaid and shown as
orange circles. (C) Visual representation of the change in vibrational entropy energy between wild-type (WT) and missense mutations (MUT)
generated using DynaMut (http:/biosig.unimelb.edu.au/dynamut/). Amino acids colored according to the vibrational entropy change upon
mutation with blue indicating a rigidification of the protein structure and red indicating a gain in overall flexibility. A zoomed-in visualization of
the predicted interatomic interactions for WT and MUT residues are shown as sticks and colored in light green along with surrounding residues
which are involved in any type of interactions. A table summary of the predicted AAG and AAS predictions are shown below the models for each
missense variant in ACO2 (AAG: negative values are destabilizing and positive values are stabilizing).

1022 © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association
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Table 2. Clinical characteristics of ACO2-deficient patients and associated functional studies of residual enzyme function.

Reference Fukata Metodiev Metodiev Metodiev Metodiev Metodiev Bouwkamp
PMID 31106992 25351951 25351951 25351951 25351951 25351951 29577077
Gender Female Male Male Metodiev Male Female Male
Ethnicity Japanese French French Algerian Algerian N/R Arab-Bedouin
Age at report Died at 5 years, 36 years 41 years Died 57 days Died 61 days 4y 28y
pneumonia
OPA Yes Yes Yes Bilateral edema of optic disks Extinguished VEP Optic disk No; developed
pallor, abnormal
altered VEP tracking as
adult
Cerebellar atrophy Yes No No Moderate Moderate Moderate Mild
at 4 years
Peripheral neuropathy N/A No No N/A N/A N/A No
D Yes No No N/A N/A N/A Yes
Ataxia Yes No No Yes Yes Yes HSP
Epilepsy Yes, controlled No No N/R N/R N/R Yes (3 months);
with medication spontaneous
remitted by
5 years
Communication No communication No No N/A N/A N/R Vocalizations
Hypotonia Yes No No N/A N/A Yes N/R
Microcephaly Normal at birth, No No Normal at birth Normal at birth N/R Yes (3rd
not mentioned percentile,
subsequently adult)
Dysmorphic features N/R NR NR NR
Other Reportedly Reportedly Metabolic acidosis, Apneic episodes Failure to thrive
isolated OPA isolated OPA hyperglycemia, apneic
episodes
Sensorineural hearing loss Yes No No
Presentation ICRD Optic atrophy Optic atrophy ICRD with central apnea ICRD with Mild ICRD HSP, infections,
central apnea severe ID
Functional studies (patient level)
Tissue source Fibroblasts Fibroblasts Fibroblasts Fibroblasts Fibroblasts Fibroblasts Immortalized
Leukocytes
Protein expression 36 20 20 100 N/P 20 20
Activity 15 60 66 <5 N/P 30 30
Substrate Citrate Cis aconitic acid Cis aconitic acid Cis aconitic acid Cis aconitic acid Cis aconitic acid
ACO1 activity considered? No Yes, Citramalate Yes, Citramalate Yes, Citramalate Yes, Citramalate Yes, Citramalate Yes,
ACO2 inhibition ACO2 inhibition ACO2 inhibition fractionation
Mitochondrial depletion N/P N/P N/P N/P N/P N/P
Mitochondrial respiration studies N/P Normal Reduced
Notes
Functional studies (variant level)
cDNA C.1534G>A €.1997G>C €.220C>G c.1981G>A €.220C>G c.1981G>A c.776G>A C.776G>A €.2208G>C €.2328_2331 .1240T>G Hmz
delGAAG
Protein p.Asp512Asn  p.Gly666Ala  p.Leu74Val p.Gly661Arg p.Leu74Val p.Gly661Arg  p.Gly259Asp  Hmz p.Gly25 Hmz p.Lys736Asn p.Lys776 p.Phe414val
9Asp Asnfs*49
Model HEK293 cells
Enzyme activity 76% 55%
Complementation ~ N/P N/P No Yes No Yes No No No No
Mitochondrial 50% max
respiration respiration
rate
RT-PCR

N/R, Not reported; N/A, Not assessed; N/P, Not performed; Hmz, Homozygous; HSP, Hereditary spastic paraplegia; ICRD, Infantile cerebellar
retinal degeneration; OPA, Optic atrophy; VEP, Visual-evoked potential.

1024
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Bouwkamp Marelli Srivastava Sadat Sharkia Speigel
29577077 29564393 28545339 26992325 30689204 22405087
Female Female Male Male Male 8 patients
Arab-Bedouin Caucasian N/R Afro-Caribbean and East Indian African/Caucasian
14y 56y 18y 3 years 8 and 6 years 0.5-18 years
No Yes; older Yes Appeared normal N/A Optic atrophy,
at evaluation strabismus,
nystagmus
No Mild Mild No prominent cerebellar involvement with oculomotor Normal at 2 years Severe
dyspraxia, truncal unsteadiness and disequilibrium,
gait ataxia, mild limb dysmetria, and revealed
prominent cerebellar involvement with oculomotor
dyspraxia, truncal unsteadiness and disequilibrium,
gait ataxia, mild limb dysmetria, and reduced muscle tone.
Prominent cerebellar involvement with oculomotor
dyspraxia, truncal No reduced muscle tone
No No Yes N/R N/R
Moderate Mild Severe profound; Yes Moderate Severe-profound
partially spared
cognition compared
to ICRD cases
Episodic; incurrent Lower HSP, Childhood-onset Truncal ataxia (6 months) 1 year 1 year
febrile illness upper limb ataxia (15 months), initially
with intercurrent
iliness then progressing
to constant
No Intractable Myoclonic jerks during illness Yes, 1 and 1.5 years Yes (6/8)
Verbal Full sentences; dysarthria Verbal, delayed acquisition Nonverbal
N/R Axial hypotonia; Moderate Yes, 1 year Yes
appendicular hypertonia
Acquired; 3rd N/R No Yes
percentile
Bilateral 2,3 N/R Down slanting palpebral fissures,
syndactyly of feet prominent forehead, and droopy eyelids
Around 3 years recurrent Motor delay 3 years Retinal dystrophy, Cog-wheel eye saccades
encephalopathic short stature
episodes and (z-score — 4.75)
regression
No NR Yes
HSP OPA, HSP Mild ICRD Ataxia Ataxia ICRD
Immortalized Fibroblasts N/A Fibroblasts Lymphoblasts
Leukocytes
100 50% full-length Unchanged N/A
RNA transcript
20 50 20 11.9+/- 9.2% Controls
Citrate
Yes, fractionation Not described N/A
Not seen Yes, 50% Reduction
Reduced Normal Deficiency, 40% reduction in max respiratory rate
No functional studies 50% reduction in citrate synthase activity; Krebs
cycle proteins were elevated in expression
suggesting possible compensatory mechanism
.1240T>G Hmz €.2135C>T €.940 + 5G>C €.2328_2331 c.10917>C €.2135C>T c.1819C>T c.1787A>G €.2050C>T €.336C>G Hmz
delGGAA
p.Phe414val p.Pro712Leu Frameshift p.Val364Ala p.Pro712Leu p.Arg607Cys p.Arg684Trp ACO2, p.His596Arg ACO2, p.Ser112Arg
p.Arg681Trp acol p.His593Arg acol
N/A N/P N/P Yeast
Complementation
75% of controls 45% of controls
No N/P N/P No
No change Reduced;
45% of controls
Smaller RNA

product noted
at about 50%

© 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association
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TGA stop codon (Fig. 2A) and is a predicted stop loss
alteration resulting in inclusion of a novel peptide
sequence (VRAVPPRPAAGVKESSTCAISGS DPSSHGFLF
QDGVTRHASCSPLSPRSDCGCGGGVLKITF*) that is 62
amino acids in length. It is possible that this novel pep-
tide could impair localization of this protein, lead to
aggregation, or disrupt normal protein structure, thereby
affecting overall stability. The same homozygous
p-(GIn780ValfsTer63) variant was found in another Arab
family (Family 046) in two affected children (phenotype
similar to reported).”*! In addition, two other cases have
been described with a similar frameshift mutation,
€.2328_2331delGGAA: p.(Lys776Asnfs*49) that is also
predicted to lead to the addition of a novel peptide
sequence at the end of ACO2.*

Discussion

The five patients reported here demonstrate and expand
the clinical heterogeneity associated with this disorder.
The two sibling cases (P1 and P2) are unique in their
mild and episodic disease presentation, while P3 and P5
are consistent with initial descriptions of the cerebellar-
retinal form of disease. Only one other case has been
reported with a mild presentation that included ataxia,
hypotonia, occasional myoclonic jerks during times of ill-
ness, mild-to-moderate hearing loss bilaterally, but with
no evidence of cerebellar atrophy or significant optic
nerve involvement on MRI,’ findings that were similarly
absent in the two brothers. In addition, we describe a sev-
ere case (P4) with SMA-like presentation and early lethal-
ity due to respiratory failure. P4 presented with a severe
form of cerebellar-retinal degeneration with ponto-cere-
bellar-retinal degeneration.

Two mildly affected patients were recently described in
Sharkia et al. with compound heterozygous variants:
c.1787A>G:p.(His596Arg) and ¢.2050C>T:p.(Arg684Trp).
Functional testing of the p.R684W and p.H596R variants
showed a ~25% and 55% reduction in activity compared
to wild type in a yeast model, suggesting that they repre-
sent hypomorphic variants with intermediate activities.”
Patient E2 was an 11-year-old male who requires support
while walking, and has severe dysarthria which manifested
at 2 years of age with febrile seizures.” This individual
experienced episodes of polymyoclonus lasting from 12 to
24 hours and involving limbs, abdomen, and facial mus-
cles with further worsening of ataxia at 4 years of age.”
He had only moderate cognitive delays and MRI show
signs of mild progressive cerebellar atrophy.” His brother
(Patient E3) was 9 years of age and uniquely presented at
3 years with a sleep disorder.” He developed a pervasive
behavioral disorder following a single episode of tremor
and polymyoclonus at 18 months of age.” Brain MRI was

P.R. Blackburn et al.

normal at age 4 and reportedly showed some mild cere-
bellar atrophy by age 6. These two patients show some
similarities to P1 and P2 in our study, who were also
found to carry the c¢.2050C>T:p.(Arg684Trp) variant in
addition to a previously unreported 2153T>C:
p.(1le718Thr) variant.” Given the mild clinical presenta-
tions in both families sharing the p.R684W and support-
ive functional evidence from Sharkia et al. showing only
minor reductions in ACO2 activity, it is highly likely that
this and other hypomorphic variants will be identified in
patients without classic ICRD.

Enzyme activity of ACO2 in patient tissues or variant-
specific assays in vitro has been utilized to evaluate vari-
ant pathogenicity and has been suggested to correlate
with phenotype.” Differences in in vitro enzyme testing
methodologies between studies, including use of different
substrates or methods to distinguish ACO2 from ACOIl
activity, complicate evaluation of the measured enzyme
activity and its association with clinical phenotype
(Table 2). In a limited number of total cases, patients
with variants that result in reduced expression of a largely
functional ACO2 enzyme result in milder phenotypes
than variants resulting in greatly reduced activity
(Table 2). The lowest enzyme activity described, ~5% in a
patient who died at 57 days, is still comparably greater
than the inhibition threshold for other enzymopathies,
such as lysosomal storage diseases (Table 2). ACO2
threshold effects may be apparent during times of inter-
current illness when some patients have demonstrated
worsening ataxia.”>”’

Several studies now demonstrate ACO2 variants can
result in overall reduction in the max respiratory rate by
O, consumption rate testing (Table 2).>>7 A single report
of a 3-year-old with compound heterozygous alterations
in ACO2 demonstrated mitochondrial DNA depletion of
50% compared with controls, raising the possibility that
ACO?2 deficiency may impair mitochondrial maintenance
(Table 2).* In yeast, aconitase (acol) has been shown to
be important in mtDNA maintenance and this function is
independent of the enzymatic role of acol." Mitochon-
drial depletion has not been examined in all cases thus
far and may provide an explanation for inconsistencies
between the degree of residual enzyme activity and the
observed phenotypic severity (Table 2).

Metabolite testing has not revealed a diagnostic pattern
on traditional biochemical tests, including urine organic
acid and plasma amino acid profiles.” Abela et al. studied
plasma metabolites from patients with ACO2 variants and
identified a putative metabolic signature focusing primarily
on patients with an ICRD phenotype.*” This pattern was
seen in an aggregate analysis, leaving individual patient sen-
sitivity and specificity to be determined. It may stand that
measurement of Krebs cycle intermediates in plasma may
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add clinical value in cases with ACO2 variants, since these
metabolites are not perturbed in urine.>’

In summary, these five new cases significantly expand
the mutational and clinical spectrum associated with this
disorder. Importantly we propose that hypomorphic vari-
ants may be associated with a more mild disease presenta-
tion and may manifest primarily in the context of febrile
illness. Many patients have been reported to develop epi-
sodic worsening of ataxia or other clinical features in the
setting of febrile illness. Both P1 and P2 were initially sus-
pected to have an immunodeficiency disorder and have
been treated with monthly IVIg for several years, which
may have helped control their ataxia and other symp-
toms. With further study, IVIg may represent a possible
supportive therapy for some patients that reduces the fre-
quency of infections, which have been reported to worsen
clinical symptoms in some patients. Given our combined
findings, we propose unifying the diverse clinical presen-
tations under the collective term, ACO2-related disorders.
Additionally, it is important to recognize milder forms of
the disorder, which may escape detection due to atypical
disease presentation and may be amenable to supportive
therapies.
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Figure S1. Visual representation of the change in vibra-
tional entropy energy between all wild-type (WT) and
missense ACO2 mutations (MUT) described to date. Sim-
ulations were performed using a homology model (PDB:
1b0j.1.A) of human mitochondrial aconitate hydratase
(Q99798) from the SWISS-MODEL Repository (SMR)
and generated by the SWISS-MODEL homology modeling
pipeline.

Figure S2. A zoomed-in visualization of the predicted
interatomic interactions for WT and MUT residues for all
missense ACO2 variants described to date. WT and MUT
residues are shown as sticks and colored in light green
along with surrounding residues which are involved in
any type of interactions.

Table S1. List of all variants in ACO2 and associated clin-
ical phenotypes, population frequency, and in silico pre-
dictions for pathogenicity.

Table S2. A table summary of the predicted variation in
free energy (AAG) and vibrational entropy (AAS) is
shown for each missense variant in ACO2 described to
date.

Data S1. Description of supplementary materials and
methods with supplemental references.

1028 © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association



