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SUMMARY
The utility of the urinary proteome in infectious diseases remains unclear. Here, we analyzed the proteome
and metabolome of urine and serum samples from patients with COVID-19 and healthy controls. Our data
show that urinary proteins effectively classify COVID-19 by severity.We detect 197 cytokines and their recep-
tors in urine, but only 124 in serum using TMT-based proteomics. The decrease in urinary ESCRT complex
proteins correlates with active SARS-CoV-2 replication. The downregulation of urinary CXCL14 in severe
COVID-19 cases positively correlates with blood lymphocyte counts. Integrative multiomics analysis sug-
gests that innate immune activation and inflammation triggered renal injuries in patients with COVID-19.
COVID-19-associated modulation of the urinary proteome offers unique insights into the pathogenesis of
this disease. This study demonstrates the added value of including the urinary proteome in a suite of multio-
mics analytes in evaluating the immune pathobiology and clinical course of COVID-19 and, potentially, other
infectious diseases.
INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic threatens

hundreds of millions of people in the world. Over 137 million

people have been infected by severe acute respiratory syn-

drome-coronavirus-2 (SARS-CoV-2), with over 5.5 million of

deaths globally (Worldometer, 2021) as of January 9th, 2022.

Approximately 80% of patients with COVID-19 are not severely

ill, displaying mild symptoms with a good prognosis. The re-

maining 20% of patients develop severe illness requiring inten-

sive care, including oxygen therapy and/or assisted ventilation

(WHO, 2020b). The ability to identify early infected patients who

will or will not progress to severe disease relieves the overall

burden and improves the effectiveness of clinical care but de-

mands fundamental understanding of the molecular pathogen-

esis of COVID-19.
This is an open access article under the CC BY-N
Multiple serological alterations exhibit specific changes in se-

vere COVID-19, such as interleukin-6 (IL-6), d-dimer (d-D),

glucose, thrombin time, fibrinogen, C-reactive protein (CRP),

and blood lymphocyte count (Gao et al., 2020; Qin et al., 2020;

Tan et al., 2020). Systematic screening of proteins, metabolites,

and lipids has uncovered aberrant regulation of physiological

processes, including the complement system, macrophage

functions, and platelet degranulation in the sera of severe cases

(Shen et al., 2020; Wu et al., 2020). Combinations of these blood

analytes could be used to classify the severity of COVID-19

(Messner et al., 2020; Shen et al., 2020).

Urine is derived from the peripheral circulation and is a more

accessible source for diagnosing several diseases (Adachi

et al., 2006; Barratt and Topham, 2007). It has been reported

that multiple urinary biochemical analytes, including glucose

(GLU-U), proteinuria (Rui et al., 2020), urine b2-microglobulin,
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and liver-type fatty acid-binding proteins (Katagiri et al., 2020),

correlated with COVID-19 severity. Proteomic studies of urine

have been used to discover novel disease biomarkers, such as

recurrent urinary tract infections (Muntel et al., 2015; Vitko

et al., 2020) and familial Parkinson’s disease (Virreira Winter

et al., 2021). Proteomic analysis of the urine of 6 patients with

COVID-19 and 32 healthy controls identified 214 uniquely altered

proteins in COVID-19 urine (Li et al., 2020). Tian et al. (2020) re-

ported the downregulation of immune-related proteins such as

tyrosine phosphatase receptor type C, leptin, and tartrate-resis-

tant acid phosphatase type 5 by analyzing the urine proteome of

14 patients with COVID-19 and 23 controls. These studies sug-

gest the potential value of urinary proteins in understanding

host responses in COVID-19. However, the sample sizes of these

studies were relatively small. What remains unclear are the asso-

ciation of blood and urinary proteins and the interplay between

proteins and metabolites. While several metabolomic studies of

COVID-19 serum have been reported (Heer et al., 2020; Shen

et al., 2020; Thomas et al., 2020; Wu et al., 2020), whether and

how urinary metabolites aremodulated in COVID-19 is unknown.

In this study, we systematically investigated the proteome and

metabolome of COVID-19 urine andmatched serum specimens.

Our data show the modulation of proteins and metabolites in

COVID-19 urine and sera, which uncover immune responses to

SARS-CoV-2. We uncovered intriguing disparities between urine

and serum proteomes. Integrative analysis of the proteome and

metabolome revealed evidence of renal injuries induced by im-

mune dysregulation. This study presents proof-of-principle evi-

dence for the feasibility of using urine as an additional and infor-

mative biospecimen for understanding the pathogenesis of

COVID-19 and other infectious diseases.

RESULTS

Proteomic and metabolomic profiling of COVID-19 urine
and sera
A cohort of 71 patients with COVID-19 comprising 23 severe

cases and 48 non-severe cases were recruited for this study.

Another 17 non-COVID-19 cases with flu-like symptoms such

as cough and fever and 27 healthy controls were enrolled as con-

trols (Figure 1A; Table 1; Table S1). Age and gender were

matched between cases and controls. Proteomic analyses

were performed on matched serum and urine samples from 50

patients with COVID-19 (39 non-severe and 11 severe), 17

non-COVID-19 cases, and 23 healthy controls (Figures S1A–

S1C; Table S1). In addition, 106 urine samples (27 healthy con-

trols, 15 non-COVID-19, 44 non-severe, and 20 severe) and 75

serum samples (24 healthy controls, 15 non-COVID-19, 30

non-severe, and 6 severe) from 106 individuals were obtained

for metabolomic analysis (Figure S1C; Table S1).

Peptide yields from serum samples were not significantly

different among the four groups (healthy, non-COVID-19, non-

severe, and severe), indicating the reproducibility of our sample

preparation method (Figure 1B). However, peptide yields from

urine specimens were significantly higher in severe and non-se-

vere cases than from healthy controls (Figure 1B). This observa-

tion confirms a report of proteinuria in patients infected with

SARS-CoV-2 (Su et al., 2020).
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We identified and quantified 16,148 peptides and 1,494 pro-

teins from sera using tandemmass tag (TMT)-based proteomics,

while 19,732 peptides and 3,854 proteins were identified from

urine using similar methodology (Figures 1C and 1D; Table S2;

STAR Methods). The proteomic depth of urine specimens

achieved in this study exceedsmost other published studies (Ta-

ble S3) and is reasonably deep to encompass most urinary pro-

teins. Moreover, we characterized 1,033 urine metabolites and

903 serummetabolites in patients with COVID-19 (Figure 1E; Ta-

ble S2). The serum and urine proteome dataset showed minimal

batch effects (Figures S1D and S1E). The median coefficients of

variance (CVs) of the quality control (QC) samples were 13% for

proteomic data and 3.5% for metabolomic data, indicating the

robust quality of our data (Figure 1F).

80% of detectable serum proteins were detected in
urine
We compared the proteins thus quantified frommatched pairs of

serum and urine specimens. Overall, the number of proteins

identified in urine was�2.5 times greater than that in sera. Eighty

percent of proteins identified in sera (i.e., 1,195 proteins) were

also detected in urine (Figure 1D), indicating that a majority of

serum proteins are detectable in urine. In contrast, our data

showed that the numbers of quantified metabolites in sera and

urine are similar (Figure 1E; 903 versus 1,033). Unlike proteins,

however, 62% of serum metabolites (i.e., 557 metabolites)

were detectable in urine (Figure 1E). The discrepancy in protein

and metabolite detection is probably due to differences in their

abundance and stability in sera and urine.

It is generally assumed that the molecular weight (MW) cutoff

for glomerular filtration is 30–50 kDa (Haraldsson et al., 2008),

but whether other proteins beyond that weight range can be de-

tected in urine remains unclear. The MW distribution analysis of

matched urine and serumproteomes in our data showed theMW

ranges of proteins in serum and urine were approximately iden-

tical to that in the human proteome (Figure 1G), indicating that

urinary proteins are not limited by low MW. More proteins in

the urinary proteome had relatively low sequence coverage (Fig-

ure 1H), suggesting that low-abundance proteins are more

readily detectable in the urine.

Analysis of the subcellular localization of proteins identified in

serum and urine showed that secreted proteins constituted the

largest proportion of the serum proteome (31%), followed by

membrane proteins (24%) and cytoplasmic proteins (18%) (Fig-

ure 1I). In contrast, cytoplasmic proteins (26%) and membrane

proteins (21%) were themost abundant protein groups in the uri-

nary proteome, while the proportion of secreted proteins was

only 16% (Figure 1J). Of interest was the higher proportion of nu-

clear proteins in urine than in serum (13% versus 8%) (Figures 1I

and 1J). This suggests that the urinary proteome thus measured

contained more intracellular compartment proteins released

from tissues, compared to the serum proteome at similar limits

of detection.

Machine learning model using urinary proteins
identified severe COVID-19 cases
Proteins circulating in the blood have been used to build machine

learning models to classify COVID-19 severity (Messner et al.,
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Figure 1. Overview of the serum and urine proteomics and metabolomics data

(A) Study design. Four groups—healthy control (n = 27), non-COVID-19 control (n = 17), patients with non-severe COVID-19 (n = 48), and patients with severe

COVID-19 (n = 23)—were included in this study.

(B) Peptide yields of the 4 groups in serum and urine samples.

(C–E) Number of characterized and overlapped peptides (C), proteins (D), and metabolites (E) in serum and urine.

(F) Coefficients of variation (CVs) of the protein abundance from control samples by proteomics and metabolomics.

(G) Molecular weight (MW) distributions of quantified proteins in the serum, the urine, and the entire human proteome.

(H) Sequence coverage distribution of each quantified protein in serum and urine.

(I and J) Subcellular localization composition of proteins identified in the (I) serum and (J) urine.

p value between two groups were calculated by two-sided unpaired Student’s t test and adjusted by the Benjamini and Hochberg correction. Adjusted p values:

*p < 0.05; **p < 0.01; ***p < 0.001. H, healthy; n-S, non-severe COVID-19; S, severe COVID-19.

See also Figures 2, 3, S1, S2, and S6–S8.

Article
ll

OPEN ACCESS
2020; Shen et al., 2020). However, the invasive nature of blood

sampling limits the wide application of blood-based tests. Here,

we investigated whether urinary proteins could be used in ma-

chine learning modeling for classifying COVID-19 severity. Based

on the rank of themeandecrease in accuracy, we selected the top

20 proteins in the serum and urine data, respectively (Figures 2A
and 2C). The top 20 serum proteins were related to platelet

degranulation, acute phase response, and immune cell prolifera-

tion, consistent with published reports (Chen and John Wherry,

2020; Messner et al., 2020; Shen et al., 2020) (Figure 2B). The

top 20 urinary proteins were involved in cell adhesion, cell devel-

opment, secretion, digestion, and extracellular matrix or structure
Cell Reports 38, 110271, January 18, 2022 3



Table 1. Demographics and baseline characteristics of COVID-19 patients

Variables

Healthy control

(n = 27)

Non-COVID-19

(n = 17)

COVID-19

Total (n = 71) Non-severe (n = 48) Severe (n = 23)

Sex, no.(%)

Male 18 (66.7) 9 (52.9) 46 (64.8) 32 (66.7) 14 (60.9)

Female 9 (33.3) 8 (47.1) 25 (35.2) 16 (33.3) 9 (39.1)

Age, year

Mean ± SD 47.1 ± 9.8 54.5 ± 19.6 48.6 ± 14.5 44.6 ± 13.7 56.8 ± 12.7

Median (IQR) 48.0 (40.0–53.0) 59.0 (40.0–69.0) 51.0 (36.0–59.0) 44.0 (36.0–54.8) 56.0 (47.0–65.0)

Range 30.0–72.0 15.0–85.0 4.0–77.0 4.0–70.0 33.0–77.0

BMI, kg/m2

Mean ± SD 24.4 ± 2.7 21.7 ± 2.3 24.9 ± 3.0 24.4 ± 3.2 25.9 ± 2.3

Median (IQR) 24.3 (22.2–26.9) 22.0 (19.2–23.7) 24.9 (22.8–27.0) 24.4 (22.0–26.8) 25.8 (24.6–27.2)

Range 20.5–29.1 17.7–25.1 16.0–31.3 16.0–30.7 22.2–31.3

Symptoms, no. (%)

Fever 10 (58.8) 46 (64.8) 28 (58.3) 18 (78.3)

Cough 7 (41.2) 28 (39.4) 17 (35.4) 11 (47.8)

Headache 3 (17.6) 5 (7.0) 3 (6.3) 2 (8.7)

Fatigue 2 (11.8) 5 (7.0) 2 (4.2) 3 (13.0)

Pharyngalgia 3 (17.6) 3 (4.2) 3 (6.3) 0 (0.0)

Expectoration 5 (29.4) 6 (8.5) 4 (8.3) 2 (8.7)

Diarrhea 0 (0.0) 3 (4.2) 2 (4.2) 1 (4.3)

Chest tightness 4 (23.5) 0 (0.0) 0 (0.0) 0 (0.0)

Chest CT, no. (%)

Involvement of chest radiographs 3 (17.6) 67 (94.4) 44 (91.7) 23 (100.0)

Comorbidity, no. (%)

Hypertension 3 (17.6) 9 (12.7) 6 (12.5) 3 (13.0)

Diabetes 1 (5.9) 7 (9.9) 5 (10.4) 2 (8.7)

Respiratory system 2 (11.8) 3 (4.2) 0 (0.0) 3 (13.0)

Other endocrine system 0 (0.0) 4 (5.6) 1 (2.1) 3 (13.0)

Chronic kidney disease 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Digestive system 0 (0.0) 3 (4.2) 2 (4.2) 1 (4.3)

Oxygenation index, mmHg

Mean ± SD 458.4 ± 123.4 483.9 ± 126.7 391.9 ± 85.0

Median (IQR) 440.5 (380.9–502.4) 447.6 (319.1–528.6) 361.1 (323.8–469.0)

Range 295.2–890.5 319.1–890.5 295.2–490.0

Treatment, no. (%)

Oxygen inhalation 3 (17.6) 62 (87.3) 39 (81.3) 23 (100)

Antibiotics 7 (41.2) 7 (9.9) 5 (10.4) 2 (8.7)

Antiviral drug 3 (17.6) 71 (100.0) 48 (100.0) 23 (100.0)

Immunoglobulin 0 (0.0) 14 (19.7) 1 (2.1) 13 (56.5)

Methylprednisolone 2 (11.8) 20 (28.2) 7 (14.6) 13 (56.5)

Chinese medicine 0 (0.0) 71 (100.0) 48 (100.0) 23 (100.0)

CT, computed tomography; IQR, interquartile range; SD, standard deviation.
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organization related to biological processes (Figure 2D). We

further explored the power of these top 20 urinary proteins for

classifying the severity compared to that of sera. By increasing

the number of proteins in the model, we optimized 20 random for-

est models for each specimen type and evaluated the perfor-
4 Cell Reports 38, 110271, January 18, 2022
mance of the respective classifier in terms of accuracy and area

under the curve (AUC) after internal cross-validation, as detailed

in the STARMethods. Our data showed that urine-derivedmodels

performed aswell as those fromsera (Figure 2E). As the number of

features in the model exceeded the top 4, the accuracy of the
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(legend on next page)
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models for both sample types rose beyond 0.9, and the AUC was

higher than 0.95 (Figure 2E).

To further evaluate the performance of such urinary proteins

for classifying COVID-19 severity, we trained a model using the

20 urinary proteins above and tested it on an independent

TMT-labeled urinary proteomic dataset of 13 patients with

COVID-19 (Table S2) and a label-free data-independent acquisi-

tion (DIA) urinary proteomics dataset (Tian et al., 2020) of 14 pa-

tients with COVID-19. The AUC values of the model were 0.89

and 0.80 in the 2 datasets, and the accuracy values were 0.69

and 0.71, respectively (Figures S1F and S1G). We also trained

a logistic regression model using the 20 urinary proteins

described above and tested it on an independent dataset of 4

patients with COVID-19 whose urine samples were collected at

different time points (Figure 2F). For severe COVID-19 cases,

the severity prediction value trended lower when samples were

collected at later time points after hospital admission (Figure 2F).

These data further support the utility of our urinary protein model

for predicting progression to clinical severity in early infection.

Our data showed that urinary proteomics can be as informa-

tive as that of sera in terms of classifying and predicting

COVID-19 severity. Considering its non-invasive nature and

easy accessibility, urine could be a widely used sample source

for COVID-19 management. Nevertheless, more independent

validation is required before this could become the clinical stan-

dard of care.

301 proteins showed opposite expression patterns in
urine and sera
We examined the correlation between serum and urine proteo-

mic data in COVID-19 cases. A total of 24 proteins showed nega-

tive correlation (Pearson’s correlation coefficient <�0.3, p <

0.05) and 60 proteins showed positive correlation (Pearson’s

correlation coefficient >0.3, p < 0.05) (Figure S1H).

Interestingly, we found that 301 proteins (i.e., 25% of the 1,195

proteins) identified in both urine and matched sera, showed

opposite expression patterns in urine and serum in mean relative

protein abundance levels among healthy, non-severe, and se-

vere groups (Figure 2G). Blood proteins are filtered by the

glomerulus and reabsorbed by the renal tubules before urine is

formed. In addition, proteins may be released into urine from

the urinary tract. Levels of most proteins vary greatly within the

nephron during glomerular filtration and tubular reabsorption.

Two important regulators involved in tubular reabsorption identi-

fied in our urine proteome,megalin (LRP2) (Figure 2H) and cubilin

(CUBN) (Figure 2I), were both downregulated in the urine, indi-
Figure 2. Identification of severe and non-severe COVID-19 cases at th

(A and C) The top 20 feature proteins in serum (A) or urine (C) proteomics data sele

(B and D) The biological process involved in the top 20 urine (B) or serum (D) pro

clusterProfiler R package.

(E) Line chart shows the accuracy and AUC values of the 20 serum or urine mod

important variables in the serum and urine data.

(F) Severity prediction value of 4 patients with COVID-19 at different urine sampl

(G) Heatmap shows 301 proteins identified in both serum and urine with opposite

257 proteins that are upregulated in serum but downregulated in urine and 44 p

intensity values of proteins were Z score normalized.

(H and I) The relative abundance of LRP2(H) and CUBN (I) in urine. The y axis me
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cating potential dysregulation of reabsorption. Decreased con-

centrations of LRP2 and CUBN in urine were further confirmed

by parallel reaction monitoring (PRM)-based targeted mass

spectrometry (MS) assay and enzyme-linked immunosorbent

assay (ELISA), as shown in Figure S1I. In addition, the ligand pro-

teins transported by LRP2 and CUBN, such as selenoprotein P

(SELENOP), plasminogen activator, urokinase (PLAU),

epidermal growth factor (EGF), galactosidase alpha (GLA), and

apolipoprotein-H (APOH), were also downregulated in urine

(Norden et al., 2002) (Figure S1J). Thus, the tubular reabsorption

process appears dysregulated in the patients with COVID-19, re-

sulting in a downregulation pattern of certain urinary proteins.

From these collective findings, we hypothesize that the intricate

process of protein transport from blood to urine and disordered

tubular reabsorption in patients with severe COVID-19 may ac-

count for the divergent presence of these 301 proteins in serum

and urine. This discrepancy of serum-urine protein expression,

as discovered here in patients with COVID-19, may also be pre-

sent in other disorders, which awaits further investigation.

197 cytokines and their receptors identified in urine,
while 124 identified in sera
Uncontrolled inflammatory innate responses have caused cyto-

kine storm in patients with COVID-19, contributing to high mor-

tality (Cao, 2020). In this study, we identified 124 cytokines and

their receptors in serum and 197 in urine, totaling 234 cytokines

and receptors. They were grouped into 6 types, namely chemo-

kines, interferons, ILs, transforming growth factor-b (TGF-b) fam-

ily, tumor necrosis factor (TNF) family, and other cytokines (Fig-

ures 3A and S2A; STAR Methods). Eighty-seven cytokines were

present in both biofluids (Figures S2B and S2D).

We identified 33 significantly dysregulated cytokines and re-

ceptors from COVID-19 serum (Figure 3A, track 3), and 68 cyto-

kines and receptors from COVID-19 urine (Figure 3A, track 6).

These modulated cytokines and receptors were enriched for

the STAT3 pathway and hepatic fibrosis (Figure S2C). Most cyto-

kines and receptors in urine (i.e., 136 of 197, 69%) were downre-

gulated in patients with COVID-19 compared to healthy controls

(Figure 3A, track 7), while 77 of 124 cytokines (62%) were upre-

gulated in the serum of patients with COVID-19 (Figure 3A,

track 4).

Cytokines produced by immune cells mediate diverse immune

processes. In our data, 31 cytokines were involved in the func-

tions of multiple immune cell types (Figure 3A, track 9), as

described in the STAR Methods. Serum PPBP, TGFB1, and

PF4 showed the highest Spearman’s rank correlation coefficient
e proteomics level

cted by random forest analysis and ranked by the mean decrease in accuracy.

teins were annotated by Gene Ontology (GO) database and visualized by the

els. The features in each model were selected from top n (number of feature)

ing times.

expression patterns in different patient groups. The 301 proteins are a union of

roteins that are downregulated in serum but upregulated in urine. The relative

ans the protein expression ratio by TMT-based quantitative proteomics.
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Figure 3. Cytokines characterized in the urine and serum

(A) Circos plot integrating the relative expression and cytokine-immune cell relationship of 234 cytokines and their receptors. Track 1, the outermost layer,

represents 234 cytokines and their receptors, which are grouped into six classes. Track 2 shows the cytokines detected from our urine and/or serum proteomics

data, as indicated by different colored dots. Tracks 3 and 6, cytokines from the urine or serum, with a cutoff of p < 0.05 when comparing healthy donors and non-

severe and severe cases using one-way ANOVA, were regarded as statistically significant. Tracks 4 and 7 represent serum or urine cytokine abundance

(legend continued on next page)
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(r) with platelet counts, but were not significantly perturbed in

COVID-19 cases (Figures 3B and S2G). Interestingly, the con-

centration of CXCL14 in urine, confirmed by PRM and ELISA

(Figure S2H), showed the most significant correlation with

lymphocyte counts of COVID-19 cases (Figure 3B). CXCL14

was detected only in urine and was significantly downregulated

in severe cases (Figure 3C), consistent with the reduction in

lymphocyte counts (Figure 3D). CXCL14 has been reported to

enhance T cell activation and proliferation (Chen et al., 2010).

As lymphopenia is characteristic of severe COVID-19 (Tan

et al., 2020), urinary CXCL14 may be a biomarker of COVID-19

severity. Moreover, urinary IL34 and CCL14 also showed signif-

icant correlation with lymphocyte counts and were downregu-

lated in severe cases (Figures 3B and S2I); both are worth inves-

tigating further as additional biomarkers of disease severity.

In summary, more dysregulated cytokines and receptors were

discovered in COVID-19 urine than in serum. Urinary CXCL14,

together with IL-34 and CCL14, are potential biomarkers reflect-

ing the lymphocyte counts of patients with COVID-19 and may

be used to monitor the severity of COVID-19 disease.

Dysregulated ESCRT super-complex suggests virus
replication
From the 1,195 proteins identified in both COVID-19 urine and

sera (Figure 1D), we found 330 proteins that were differentially

expressed in either serum or urine compared to healthy controls

(Table S4). Defining criteria of differentially expressed proteins

(DEPs) are outlined in the STAR Methods. Eighteen virus

budding-related DEPs were dysregulated in urine but not in

sera. Of note, all 18 proteins were downregulated in patients

with COVID-19. Sixteen of the 18 proteins were selected for tar-

geted proteomic analysis using PRM on 73 unfractionated urine

specimens (Table S2; Figure S5A). Twelve PRM-detected pro-

teins showed a strong correlation (p < 0.01) with TMT data (Fig-

ure S5B), confirming the downregulation of these proteins in se-

vere cases (Figure 4A). Thirteen of the 18 proteins belong to the

endosomal sorting complexes required for transport (ESCRT)

super-complex (Figures 4A and 4B). Our data showed suppres-

sion of the major components of ESCRT-I (TSG101, VPS28, and

VPS37D), ESCRT-II (VPS36, SNF8, and VPS25) (Hurley and Han-

son, 2010), and the ESCRT-III CHMP protein family including

CHMP1B, CHMP2A, CHMP3, CHMP4A, CHMP4B, CHMP4C,

and CHMP5 (Adell and Teis, 2011) (Figure 4A). The intriguing sig-

nificant decrease in ESCRT super-complex proteins was

observed only in urine, plausibly suggesting intense consump-

tion of the ESCRT super-complex during active replication of

SARS-CoV-2 viruses in severe cases since the budding of envel-

oped viruses depends on the function of the host cell ESCRT

complex. We further explored the correlation of these 18 DEPs

with the cycle threshold (CT) of SARS-CoV-2 reverse transcrip-

tase-polymerase chain reaction (RT-PCR) tests. Figure S5C

shows positive correlation of the virus budding-related proteins
distribution in COVID-19 (includes non-severe and severe) group and healthy grou

severe and non-severe groups. Track 9, the inner circle, shows the immune cells

(B) Spearman’s rank correlation coefficients between serum or urine cytokines a

(C) Expression pattern of CXCL14 in the urine.

(D) Lymphocyte count in healthy donors and COVID-19 cases.
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VPS28, CHMP4B, CHMP2A, CHMP4A, VPS4A, VPS4B,

TSG101, and PDCD6IP with CT values (r > 0.4, p < 0.05), which

supports the potential association of urinary virus budding-asso-

ciated proteins with COVID-19 viral load in vivo. The ESCRT su-

per-complex proteins were not detected in the serum proteomic

data, probably due to their relatively low abundance or instability

in blood. The urine PRM assays established in this study could

be further developed into potential clinical assays for COVID-

19 monitoring.

Imbalanced CDC42-RHOA-RAC1 molecular switches
indicate disrupted immune system and renal injury
Our data showed consistent upregulation or downregulation of

148 serum proteins, 580 urinary proteins, 161 serum metabo-

lites, and 138 urinary metabolites of healthy controls compared

with patients with non-severe COVID-19 who progressed to se-

vere COVID-19 (Figures S4B–S4E; Table S4). The dysregulated

proteins in serum were enriched in 23 pathways and those in

urine in 108 pathways. Interestingly, 20 pathways from the serum

data also appeared in the urine data (Figure 4C; Table S5), sug-

gesting that the most dysregulated pathways detected in serum

could also be detected in urine. Twenty-one proteins frequently

occurred in 16 of the 20 shared pathways (Figure 4D). Of note,

CDC42, RAC1/RAC2, and RHOA from the Rho GTPase family

stood out as themost dominantly dysmodulated proteins in urine

and/or serum (Figures 4C and S6A). In our proteomic data, RAC1

was detected only in urine and RAC2was detected only in serum

(Figure S6A). Concentrations of CDC42, RAC1, and RHOA in

urine were further confirmed by PRM and ELISA (Figure S6B).

RhoGTPase also functions as a key regulator of lymphocytes

in adaptive immunity. It participates in the development and

migration of T cells (Saoudi et al., 2014) (Figure 4D) and also reg-

ulates signal transduction evoked in the presentation of path-

ogen-derived antigens and in cytokine and chemokine receptor

signaling (Bros et al., 2019; Reif and Cantrell, 1998) (Figure 4D).

CDC42, RHOA and RAC1 act as molecular switches in the dy-

namic regulation of actin cytoskeleton in podocytes (Figure 4D),

which are essential in maintaining glomerular permselectivity

(Perico et al., 2016). RHOA enhances the contraction of actin fi-

bers, while RAC1/CDC42 are antagonistic, promoting cell move-

ment by lamellipodia/filopodia formation (Saleem and Welsh,

2019). Fine modulation of the GTPases is required for themotility

of podocytes, and disruption of this process may lead to glomer-

ular sclerosis and renal damage (Saleem and Welsh, 2019). In

addition, podocyte-actin dynamics requires substantial ATP

consumption (Imasawa and Rossignol, 2013). Our data showed

that adenosine, a product of ATP metabolism, was significantly

reduced in the urine of severe cases (Figures 4D and S6C), sug-

gesting the possible impairment of podocyte motility, dysfunc-

tion of immune system, and renal injury.

Standard clinical laboratory tests showed that urine creatinine,

specific gravity, and the estimated glomerular filtration rate
p. Tracks 5 and 8 represent serum or urine cytokine abundance distribution in

related to each cytokine inferred by immuneXpresso.

nd immune cells.
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(eGFR) decreased, while urine pH increased significantly in the

severe cases (Figure S6C), suggesting some degree of renal

dysfunction (Ronco et al., 2019). Significant reduction of cyclic

AMP (cAMP) in patients with renal injuries has been reported,

probably due to impaired glomerular filtration (Mocan et al.,

1998). Urinary cAMP is a sensitive biomarker for the onset of

acute renal failure and subsequent recovery (Vitek et al., 1977).

In our study, both eGFR and urinary cAMP of severe cases

were significantly reduced (Figures S6D and S6E), consistent

with renal impairment in severe COVID-19, and which may partly

account for the discrepancy of protein dysregulation patterns in

urine and serum.

Activation of reactive oxygen species (ROS) and
impaired immune cells in COVID-19
The dysregulated metabolites in COVID-19 urine and serum

were enriched in 10pathways based on Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Table S5), including tryptophan

biosynthesis and metabolism (Figure 4E; Table S5). There are

three metabolic pathways for tryptophan. The first results in

tryptamine through the action of aromatic-L-amino acid decar-

boxylase. The second pathway forms serotonin through the ac-

tion of tryptophan hydroxylase. The third pathway converts

>95% of free tryptophan to N-formylkynurenine (NFK), which is

further metabolized into kynurenine and 3- hydroxyanthranilate

by kynureninase. Activation of the kynurenine pathway could

prevent hyperinflammation and induce long-term immune toler-

ance through the generation of T regulatory (Treg) cells andmod-

ulation of immune phenotypes of dendritic cells (Sorgdrager

et al., 2019). In our data, tryptamine and serotonin were downre-

gulated and 3-hydroxyanthranilate and kynurenine were upregu-

lated in the urine samples of patients with COVID-19 (Figures

S6F and S6G). These results indicated that serotonin and trypt-

aminemetabolic pathwayswere suppressed, while NFK produc-

tion was enhanced to trigger the activation of anti-inflammatory

mechanisms in patients with COVID-19.

Like other viral infections, SARS-COV-2 infection has been re-

ported to trigger oxidative stress by generating an imbalance be-

tween the oxidant and antioxidant systems in vivo (Cecchini and

Cecchini, 2020; Ntyonga-Pono, 2020). Taurine, hypotaurine, and

1-methylnicotinamide (1-MNA) were significantly downregulated

in COVID-19 serum (Figures 4F and S6H). Taurine and hypotaur-

ine have antioxidant effects that can protect immune cells from

oxidative stress damage (Learn et al., 1990; Marcinkiewicz and

Kontny, 2014). 1-MNA inhibits ROS generation and has anti-in-

flammatory actions on vascular endothelium (Biedro�n et al.,

2008). Against this background suggestive of oxidative stress,

multiple antioxidant enzymes such as SOD3 and GPX4 were
Figure 4. Dysregulated proteins and metabolites in the serum and urin

(A) Virus budding-related DEPs uniquely regulated in the urine were identified by

(B) Schematic diagram of the virus budding process.

(C) The top 21 regulated proteins are ranked by the frequency with which they are

urine by ingenuity pathway analysis (IPA).

(D) Schematic diagram of the dynamic balance of Rho GTPases. The imbalanc

damage.

(E) DEPs and differentially expressed microRNAs (DEMs) were involved in the 10

(F) Schematic diagram of metabolites participating in the oxidative stress in COV
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also found to be downregulated in the urine of severe COVID-19

cases in the proteomic data (Figures 4F and S6H). Plasmalogen,

which regulates inflammation (Wallner and Schmitz, 2011) and

neutralizes reactive oxygen molecules (Broniec et al., 2011), was

downregulated in the COVID-19 serum (Figure 4F and S6I).

In the COVID-19 urine, some significantly changed metabo-

lites related to ROS were also identified, such as downregulated

N-acetylcysteine (NAC) and upregulated quinolinate (Figures 4E,

4F, and S6J). NAC functions in the nicotinate and nicotinamide

metabolism pathway and is a precursor of the antioxidant gluta-

thione, which can improve cell-mediated immunity against influ-

enza virus (Shi and Puyo, 2020). Quinolinate mediates ROS gen-

eration by complexing with Fe2+ (Lugo-Huitrón et al., 2013).

Quinolinate can induce inflammation by increasing TNF-a (Block

and Schwarz, 1994) and IL-6 expression (Schiefer et al., 1998).

Activated macrophages are known to produce more quinolinate

after an inflammatory response (Heyes, 1993).

Taken as a whole, the metabolomic data point to widely acti-

vated ROS production, which could lead to a variety of im-

mune-mediated tissue injuries in patients with COVID-19.

Inflammation-induced renal injuries as revealed by
multiomics data
The 20 pathways prominent in both serum and urine were related

mainly to immunity (Table S6). We found that most immunity-

related pathways were downregulated in urine but upregulated

in serum, except for protein kinase A signaling, coagulation sys-

tem, acute phase response signaling, and liver X receptor (LXR)/

retinoid X receptor (RXR) activation, which were upregulated in

both serum and urine (Table S6). Protein kinase A signaling

was reported to be involved in the innate immunity of activated

macrophage (Wan et al., 2007) and autophagy (Stephan et al.,

2009). Inhibition of LXR/RXR has proatherogenic effects of

arsenic inmacrophages (Padovani et al., 2010). The interplay be-

tween inflammation and coagulation has been studied exten-

sively (Levi and van der Poll, 2010).

We then analyzed all of the urine and serum proteomic and

metabolomic data to explore whether COVID-19-induced

inflammation could have led to immune-related renal injuries

(Figure 5A). We identified multiple dysregulated pathways

involved in inflammation in agreement with the literature

(Schulte-Schrepping et al., 2020; Shen et al., 2020) (Table S5).

Our dataset enabled the discovery of more enriched pathways

that were missed in other studies with relatively fewer protein

identifications (Messner et al., 2020; Shen et al., 2020). In the

23 enriched serum pathways found in this study (Table S5), the

leukocyte extravasation signaling pathway stood out for its

activation level (Z score 2.6) (Figure 5A; Table S5). Vascular
e of patients with COVID-19

untargeted TMT 16plex proteomics and confirmed by PRM.

enrolled in the overlapped 16 out of 20 pathways between the serum and the

e affects the functional integrity of glomerular podocytes and results in renal

KEGG pathways.

ID-19.
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Figure 5. The hypothetic model of immune dysregulation and increased ROS that induces renal injuries in patients with severe COVID-19

(A) Pathways are displayed in square boxes, proteins are displayed in circles, whilemetabolites are displayed in hexagons. The Z score of the activity of a pathway

is displayed as dots beside the respective pathway in a red (for serum) or blue (for urine) box, with its size representing the log10(p value) of each pathway and its

(legend continued on next page)
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cell adhesion protein 1 (VCAM-1) and intercellular adhesion

molecule 1 (ICAM-1), which participate in leukocyte extravasa-

tion (Muller, 2013), were upregulated in COVID-19 sera (Figures

5A, 5B, and S7A). Inflammation may initiate coagulation, an

innate immune process (Esmon, 2005). F5 and F9 are key pro-

teins in coagulation (Franchini and Mannucci, 2011; Segers

et al., 2007), and both were upregulated in the sera of patients

with COVID-19 (Figures 5A, 5C, and S7A). Coagulation may

also activate downstream fibrosis (Suárez-Álvarez et al., 2016).

Renal fibrosis is the main cause of chronic renal disease, and

Rho guanosine triphosphatase (GTPase) is highly related to

this fibrotic process. The Rho pathway is essential for the func-

tion of glomerular podocytes by modulating the actin cytoskel-

eton (Perico et al., 2016). The Rho pathway-related proteins,

namely RAC1, RAC2, and TGFBR3, were dysregulated in both

serum and urine (Figures 5A, 5D, S6A, and S7A), suggesting their

potential for inducing renal fibrogenesis. The decreased levels of

serum metabolites, retinol, and butyrate support this hypothesis

(Figures 5A and S7A). Retinol derivatives (retinoids) can protect

damaged podocytes through anti-inflammatory and anti-fibrotic

effects, thereby repairing renal injuries (Mallipattu and He, 2015).

Butyrate, which is mainly produced by gut microbes, has been

proposed as a potential therapeutic agent for decreasing sys-

temic inflammation and ameliorating renal damage (Felizardo

et al., 2019). Reduced serum retinol and butyrate levels of pa-

tients with COVID-19 suggests immune-related renal damage.

In urine, multiple pathways are also enriched based on DEPs

(Figures 5A and 5E). These pathways include ephrins and Eph re-

ceptor signaling (Coulthard et al., 2012; Wu et al., 2019), sphin-

gosine-1-phosphate signaling (Lee et al., 2011), and adrenome-

dullin signaling pathways (Kubo et al., 1998), all of which are

involved in the renal injury process. Ephrins signal through Eph

receptors EphB2, EphB3, EphB4, and EphB6, and affect renal

reabsorption (Ogawa et al., 2006), and they were all significantly

downregulated in COVID-19 urine (Figures 5A, 5E, and S7B).

Sphingosine-1-phosphate receptor 3 (S1PR3) mediates sphin-

gosine-1-phosphate signaling and is downregulated in the urine

of patients with severe COVID-19. Another evidence for possible

renal damage in patients with COVID-19 comes from the down-

regulated receptor activity-modifying protein 3 (RAMP3) (Figures

5A, 5E, and S7B), a critical protein for the activation of adreno-

medullin receptors (Kuwasako et al., 2001).

In addition, several known protein ormetabolite biomarkers for

renal injuries are present in the current proteomic and metabolo-

mic datasets. Our data showed a decline in urinary EGF (Figures

5A and S7B), suggesting renal damage in patients with COVID-

19 (Li et al., 2018). NAC and quinolinate, as described above,

are related to ROS and renal damage. They were dysregulated

in COVID-19 urine (Figures 5A and S6G). Increased core fucose

levels may contribute to the pathogenesis of renal fibrosis (Shen
color representing the Z score value. Relative protein or metabolite expression is l

by Rho.

(B) Serum DEPs involved in the acute phase response and leukocyte extravasat

(C) Serum DEPs involved in the coagulation system.

(D) Serum DEPs involved in the actin cytoskeleton and Rho signaling.

(E) Urine DEPs involved in the ephrin receptor signaling, sphingosine-1-phospha

proteins are shown in the pie chart.
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et al., 2013), and the fucose level was upregulated in COVID-19

urine.We also observed increased urate and decreased citrate in

urine (Figures 5A and S7C), consistent with previous findings in

chronic kidney disease (Kalantari and Nafar, 2019). These find-

ings suggest that patients with COVID-19 may sustain renal

impairment related to immune dysfunctions and are manifested

in many altered proteins and metabolites in urine.

DISCUSSION

In this study, we have shown urine to be a useful specimen for

understanding the pathogenesis of COVID-19 and monitoring

its clinical progression. The datasets from this study are a

resource characterizing changes of 3,854 proteins and 1,033

metabolites in the COVID-19 urine, as well as the changes of

1,494 proteins and 903 metabolites in the COVID-19 serum.

Interestingly, while 80% of detectable serum proteins were

measured in urine, only 31% of urinary proteins were detected

in serum. The range of protein MWs identified in urine and sera

was similar, indicating that the excretion and secretion of urinary

proteins were not restricted to those of low MW.

We found 301 overlapping serum and urinary proteins that

showed opposite expression patterns. Despite the discrepancy,

urinary proteins can be used to effectively classify COVID-19

severity, with an accuracy comparable to that when using serum

proteins.

Urinary proteins offer unique insights into the pathogenesis of

COVID-19 compared with blood proteome. The downregulation

of key reabsorption regulators in renal tubules, such as LRP2 and

CUBN, and their ligands, including SELENOP, PLAU, EGF, GLA,

and APOH, point to disrupted renal reabsorption in patients with

COVID-19. Urine contains more detectable cytokines than

serum. Dysregulation of urinary CXCL14, as well as IL-34 and

CCL14, correlated with blood lymphocyte counts.

ESCRT, a super-protein complex that facilitates virus budding,

was downregulated in COVID-19 urine, suggesting active con-

sumption of ESCRT for virus replication. Due to its relatively

low abundance, this protein complex was absent in our serum

proteomic data.

CDC42, RAC1, and RHOA proteins from the Rho GTPase fam-

ily are the most dominantly modulated proteins in COVID-19,

which could contribute to impaired adaptive immunity and renal

injuries. Activated ROS was found in COVID-19, which may

result in damage to immune cells. Furthermore, integrative anal-

ysis of proteomic and metabolomic data suggests that renal in-

juries may be induced by abnormal inflammatory responses.

Targeted MS-based protein quantification, such as multiple re-

action monitoring (MRM)-MS and parallel reaction monitoring

(PRM)-MS, is the commonly used validation method in prote-

omics. In this study, PRM-MS results showed that four proteins,
abeled beside the respective molecule. aRho, regulation of actin-based motility

ion signaling.

te signaling, and adrenomedullin signaling. The relative expression values of
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namely CUBN, CXCL14, RHOA, and RAC1, were significantly

downregulated in severe cases (Figures S1I, S2H, and S6B).

LRP2 and CDC42 also showed a declining trend, although they

were not statistically significant. ELISA showed similar results,

but did not achieve statistical significance (Figure S1I). This may

be because ELISA is an antibody-based chromogenic reaction

whose performance is crucially dependent on antibody quality

(sensitivity and specificity), while PRM-MS is antibody indepen-

dent and provides more precise quantification of proteins. Never-

theless, ELISA remains the main method for semi-quantitative

protein analysis in clinical laboratories due to its ease of use.

Overall, this study presents a comprehensive proteomic and

metabolomic analysis of paired serum and urine samples from

patients with COVID-19 and demonstrates that selected urinary

proteins may be used for the classification of COVID-19 severity.

Evidence for dysregulated immune responses and renal injuries in

patients with COVID-19 uncovered in this study should be further

investigated to advance COVID-19 diagnosis and therapy. Our

approach more generally supports the utility of urine as an infor-

mative biospecimen to understand disease pathogenesis and

develop new therapeutic strategies for infectious diseases.

Limitations of the study
In this study,�35%non-COVID-19 cases and 37%patients with

COVID-19 had comorbidities such as hypertension and diabetes

(Table 1). We cannot completely exclude the effects of comor-

bidities on changes in the proteomic or metabolomic data. How-

ever, we took care to ensure that COVID-19 and non-COVID-19

patient groups had equivalent burdens of comorbidities. The

opposite protein expression patterns observed between urine

and serum (Figure 2G) may be a partial result of disrupted renal

reabsorption. However, the present study did not directly

confirm this with independent evidence. Due to the limited inde-

pendent cohort size, the predictive nature of the 20-protein

signature awaits further verification.
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Lugo-Huitrón, R., Ugalde Muñiz, P., Pineda, B., Pedraza-Chaverrı́, J., Rı́os, C.,

and Pérez-de la Cruz, V. (2013). Quinolinic acid: an endogenous neurotoxin

with multiple targets. Oxid. Med. Cell Longev. 2013, 104024. https://doi.org/

10.1155/2013/104024.

Mallipattu, S.K., and He, J.C. (2015). The beneficial role of retinoids in glomer-

ular disease. Front. Med. (Lausanne) 2, 16. https://doi.org/10.3389/fmed.

2015.00016.

Marcinkiewicz, J., and Kontny, E. (2014). Taurine and inflammatory diseases.

Amino Acids 46, 7–20. https://doi.org/10.1007/s00726-012-1361-4.

McInnes, L., Healy, J., andMelville, J. (2018). UMAP: uniformmanifold approx-

imation and projection for dimension reduction. arXiv, 1802.03426.

Messner, C.B., Demichev, V., Wendisch, D., Michalick, L., White, M., Freiwald,

A., Textoris-Taube, K., Vernardis, S.I., Egger, A.-S., Kreidl, M., et al. (2020). Ul-

tra-high-throughput clinical proteomics reveals classifiers of COVID-19 infec-

tion. Cell Syst. 11, 11–24.e14. https://doi.org/10.1016/j.cels.2020.05.012.

Mocan, M.Z., Erem, C., and Ulusoy, S. (1998). Urinary cAMP activity in chronic

renal failure. Int. Urol. Nephrol. 30, 215–222. https://doi.org/10.1007/

bf02550580.

Muller, W.A. (2013). Getting leukocytes to the site of inflammation. Vet. Pathol.

50, 7–22. https://doi.org/10.1177/0300985812469883.

Muntel, J., Xuan, Y., Berger, S.T., Reiter, L., Bachur, R., Kentsis, A., and Steen,

H. (2015). Advancing urinary protein biomarker discovery by data-independent

acquisition on a quadrupole-orbitrap mass spectrometer. J. Proteome Res.

14, 4752–4762. https://doi.org/10.1021/acs.jproteome.5b00826.

http://refhub.elsevier.com/S2211-1247(21)01783-6/sref5
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref5
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref5
https://doi.org/10.1016/j.freeradbiomed.2011.01.002
https://doi.org/10.3390/cells8070733
https://doi.org/10.1038/s41577-020-0308-3
https://doi.org/10.1016/j.mehy.2020.110102
https://doi.org/10.4049/jimmunol.0900525
https://doi.org/10.4049/jimmunol.0900525
https://doi.org/10.1038/s41577-020-0402-6
https://doi.org/10.1038/s41577-020-0402-6
https://doi.org/10.1016/j.ajpath.2012.06.043
https://doi.org/10.1016/j.ajpath.2012.06.043
https://doi.org/10.1111/j.1365-2141.2005.05753.x
https://doi.org/10.1111/j.1365-2141.2005.05753.x
https://doi.org/10.1096/fj.201901080R
https://doi.org/10.1111/j.1365-2125.2010.03899.x
https://doi.org/10.1111/j.1365-2125.2010.03899.x
https://doi.org/10.1002/jmv.25770
https://doi.org/10.1002/jmv.25770
https://doi.org/10.1152/physrev.00055.2006
https://doi.org/10.1152/physrev.00055.2006
https://doi.org/10.1101/2020.04.17.047480
https://doi.org/10.1101/2020.04.17.047480
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref19
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref19
https://doi.org/10.1038/nrm2937
https://doi.org/10.1016/j.biocel.2013.06.013
https://doi.org/10.1016/j.biocel.2013.06.013
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref22
https://doi.org/10.2217/bmm-2019-0008
https://doi.org/10.2217/bmm-2019-0008
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref24
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref24
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref24
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1159/000045172
https://doi.org/10.6026/97320630002005
https://doi.org/10.6026/97320630002005
https://doi.org/10.1074/jbc.M108369200
https://doi.org/10.1074/jbc.M108369200
https://doi.org/10.1038/nbt.4152
https://doi.org/10.1038/nbt.4152
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref30
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref30
https://doi.org/10.1111/j.1440-1797.2010.01386.x
https://doi.org/10.1111/j.1440-1797.2010.01386.x
https://doi.org/10.1097/CCM.0b013e3181c98d21
https://doi.org/10.1007/s00467-018-3988-1
https://doi.org/10.1016/j.urine.2021.02.001
https://doi.org/10.1016/j.urine.2021.02.001
https://doi.org/10.1155/2013/104024
https://doi.org/10.1155/2013/104024
https://doi.org/10.3389/fmed.2015.00016
https://doi.org/10.3389/fmed.2015.00016
https://doi.org/10.1007/s00726-012-1361-4
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref38
http://refhub.elsevier.com/S2211-1247(21)01783-6/sref38
https://doi.org/10.1016/j.cels.2020.05.012
https://doi.org/10.1007/bf02550580
https://doi.org/10.1007/bf02550580
https://doi.org/10.1177/0300985812469883
https://doi.org/10.1021/acs.jproteome.5b00826


Article
ll

OPEN ACCESS
Norden, A., Lapsley, M., Igarashi, T., Kelleher, C., Lee, P., Matsuyama, T.,

Scheinman, S., Shiraga, H., Sundin, D., Thakker, R., et al. (2002). Urinary meg-

alin deficiency implicates abnormal tubular endocytic function in Fanconi syn-

drome. J. Am. Soc. Nephrol. 13, 125–133.

Ntyonga-Pono, M.P. (2020). COVID-19 infection and oxidative stress: an un-

der-explored approach for prevention and treatment? Pan Afr. Med. J. 35,

12. https://doi.org/10.11604/pamj.2020.35.2.22877.

Ogawa, K., Wada, H., Okada, N., Harada, I., Nakajima, T., Pasquale, E.B., and

Tsuyama, S. (2006). EphB2 and ephrin-B1 expressed in the adult kidney regu-

late the cytoarchitecture of medullary tubule cells through Rho family

GTPases. J. Cell Sci. 119, 559–570. https://doi.org/10.1242/jcs.02777.

Padovani, A.M., Molina, M.F., andMann, K.K. (2010). Inhibition of liver x recep-

tor/retinoid X receptor-mediated transcription contributes to the proathero-

genic effects of arsenic in macrophages in vitro. Arteriosc. Thromb. Vasc.

Biol. 30, 1228–1236. https://doi.org/10.1161/atvbaha.110.205500.

Pang, Z., Chong, J., Li, S., and Xia, J. (2020). MetaboAnalystR 3.0: toward an

optimized workflow for global metabolomics. Metabolites 10. https://doi.org/

10.3390/metabo10050186.

Perico, L., Conti, S., Benigni, A., and Remuzzi, G. (2016). Podocyte-actin dy-

namics in health and disease. Nat. Rev. Nephrol. 12, 692–710. https://doi.

org/10.1038/nrneph.2016.127.

Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K.,

Wang,W., and Tian, D.S. (2020). Dysregulation of immune response in patients

with COVID-19 in Wuhan, China. Clin. Infect. Dis. https://doi.org/10.1093/cid/

ciaa248.

Reif, K., and Cantrell, D.A. (1998). Networking Rho family GTPases in lympho-

cytes. Immunity 8, 395–401. https://doi.org/10.1016/s1074-7613(00)80545-2.

Ronco, C., Bellomo, R., and Kellum, J.A. (2019). Acute kidney injury. Lancet

394, 1949–1964. https://doi.org/10.1016/s0140-6736(19)32563-2.

Rui, L., Qingfeng, M., Huan, H., Hanwen, S., Fang, L., Kailang,W.,Wei,W., and

Chengliang, Z. (2020). The value of urine biochemical parameters in the predic-

tion of the severity of coronavirus disease 2019. Clin. Chem. Lab. Med. 58,

1121–1124. https://doi.org/10.1515/cclm-2020-0220.

Saleem, M.A., and Welsh, G.I. (2019). Podocyte RhoGTPases: new therapeu-

tic targets for nephrotic syndrome? F1000Res 8. https://doi.org/10.12688/

f1000research.20105.1.

Saoudi, A., Kassem, S., Dejean, A., and Gaud, G. (2014). Rho-GTPases as key

regulators of T lymphocyte biology. Small GTPases 5. https://doi.org/10.4161/

sgtp.28208.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Serum samples Taizhou Hospital This paper (Table S1_Patient ID)

Urine samples Taizhou Hospital This paper (Table S1_Patient ID)

Chemicals, peptides, and recombinant proteins

Triethylammonium bicarbonate buffer (TEAB) Sigma-Aldrich Cat # T7408

Urea Sigma-Aldrich Cat # U1250

Tris (2-carboxyethyl) phosphine (TCEP) Adamas-beta Cat # 61820E

Iodoacetamide (IAA) Sigma-Aldrich Cat # I6125

Trypsin Hualishi Tech Cat # HLS TRY001C

Lys-C Hualishi Tech Cat # HLS LYS001C

Trifluoroacetic acid (TFA) Thermo Fisher Scientific Cat # 85183

Water Thermo Fisher Scientific Cat # W6-4

Acetonitrile Thermo Fisher Scientific Cat # A955-4

Formic acid (FA) Thermo Fisher Scientific Cat # A117-50

Ammonium hydroxide solution Sigma-Aldrich Cat # 221228

Methanol Sigma-Aldrich Cat # 3486

Critical commercial assays

TMTpro 16plex reagents Thermo Fisher Scientific Cat # A44520

Creatinine Beckman Cat # OSR6178

Glucose Beckman Cat # GL7210

SARS-CoV-2 nucleic acid detection kit-1 Shanghai Zhijiang Cat # Z-RR-0479-02025

SARS-CoV-2 nucleic acid detection kit-2 Shanghai Zhijiang Cat # Z-RR-0479-02-50

SARS-CoV-2 nucleic acid detection kit-3 Shanghai Zhijiang Cat # Z-RR-0479-02AT-5002025

Urine creatinine Beckman Coulter Cat # OSR6178

Urine pH value Guilin URIT Cat #56208349

Urine specific gravity Guilin URIT Cat #56208349

High SelectTM Top-14 Abundant Protein

Depletion Mini Spin Columns

Thermo Fisher Scientific Cat #A36370

SOLAm Thermo Fisher Scientific Cat # 62209-001

Human Low Density Lipoprotein

Receptor Related Protein 2

(LRP2)ELISA Kit

Bioswamp Co., Ltd Cat # HM12145

Human Cubilin (CUBN) ELISA Kit Bioswamp Co., Ltd Cat # HM12367

Human Breast And Kidney Expressed

Chemokine (BRAK)ELISA Kit

Bioswamp Co., Ltd Cat # HM10258

Human Ras Homolog Gene Family,

Member A (RHOA)ELISA Kit

Bioswamp Co., Ltd Cat # HM11399

Human Cell Division Cycle Protein 42

(CDC42) ELISA Kit

Bioswamp Co., Ltd Cat # HM12354

Human Ras Related C3 Botulinum

Toxin Substrate 1 (Rac1) ELISA Kit

Bioswamp Co., Ltd Cat # HM11359

Human Low Density Lipoprotein

Receptor Related Protein 2

(LRP2)ELISA Kit

Bioswamp Co., Ltd Cat # HM12145

Human Cubilin (CUBN) ELISA Kit Bioswamp Co., Ltd Cat # HM12367

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mass spectrometry data https://www.iprox.org PXD030662

Data analysis codes https://zenodo.org/ https://doi.org/10.5281/zenodo.5642579

Software and algorithms

Xcalibur Thermo Fisher Scientific Cat # OPTON-30965

Proteome Discoverer Version 2.4.1.15 Thermo Fisher Scientific N/A

R version 4.0.2 R Project https://www.r-project.org

Ingenuine Pathway Analysis QIAGEN Digital Insights N/A

IMMPORT Northrop Grumman Information

Technology Health Solutions

https://www.immport.org/

UniProt UniProt Consortium https://www.uniprot.org/
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RESOURCE AVAILABILITY

Lead contact
Further information should be directed to and will be fulfilled by the Lead Contact Tiannan Guo (guotiannan@westlake.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The proteomics raw data have been deposited at ProteomeXchange Consortium and are publicly available as of the date of

publication. Accession numbers are listed in the key resources table.

d All original codes have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient information
This study included 71 patients with COVID-19 who were hospitalized in Taizhou Public Health Center from February to April 2020.

The samples from this study are from a clinical trial that our team initiated and registered in the Chinese Clinical Trial Registry with an

ID of ChiCTR2000031365. Samples were collected from residual samples after medical test. This study and waiver of Informed

Consent have been approved by the Ethical/Institutional Review Board of Taizhou Hospital and Westlake University. Consents

from patients were waived by the boards.

All COVID-19 patients were classified into four categories (scores 3-6) according toWorld Health Organization ordinal scale (WOS)

(WHO, 2020a). In this study, patients scored as 3 or 4 were defined as non-severe patients, and patients scored as score 5 or 6 were

defined as severe patients (Table S1). We also included 17 non-COVID-19 cases, who had clinical symptoms similar to COVID-19,

including fever and/or cough, but the nucleic acid test results were negative, and 27 healthy examinees as the control group (Fig-

ure 1A; Table S1). Among the patients with COVID-19, 64.8% showed fever, 39.4% had cough symptoms, 94.4% had lung imaging

changes. Hypertension and diabetes were the main underlying diseases, accounting for 12.7% and 9.9% of all patients with COVID-

19, respectively. All patients took antiviral drugs and traditional Chinese medicine (TCM) treatment. Besides, 81.3% of patients

received oxygen treatment, and 10.4% of patients were treated with antibiotics (Table 1).

The fasting venous blood and the first-morning midstream urine of all subjects were collected in the morning. The venous blood

samples were centrifuged at 1500 g for 10 min to separate the serum. The urine samples were centrifuged at 400 g for 5 min. The

serum and urine supernatants were collected into fresh tubes and were frozen at -80�C for further analysis.

For proteomics analysis, paired serum and urine samples from 90 subjects including 23 healthy donors, 17 non-COVID-19 cases,

39 patients with non-severe COVID-19 and 11 patients with severe COVID-19 were collected. We also collected 13 urine samples

from COVID-19 patients as a test cohort. For metabolomics analysis, 106 urine samples from 27 healthy donors, 15 non-COVID-

19 cases, 44 patients with non-severe COVID-19 and 20 patients with non-severe COVID-19 were collected.
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METHOD DETAILS

Paired serum and urine proteome analysis
Serum samples were inactivated and sterilized at 56�C for 30 min and processed as reported previously with some modifications

(Shen et al., 2020). Ten mL of serum for each sample was depleted using High Select Top-14 Abundant Protein Depletion Mini

Spin Columns according to the manufacturer’s instructions. The eluates were denatured in 50 mL buffer (8 M urea in 100 mM triethy-

lammonium bicarbonate, TEAB) and were enriched using a 3 kDa Millipore super filtration membrane column. The protein lysates

were reduced and alkylated with 10 mM tris (2-carboxyethyl) phosphine (TCEP) and 40 mM iodoacetamide (IAA) in darkness for

30min at 30�C. The solution was further diluted with 200 mL of 100mMTEAB. Then the protein was digested firstly with 2 mg of trypsin

at 32�C for 4 hours, followed by the second digestion using 2 mg of trypsin at 32�C for overnight. The reaction was stopped by adding

30 mL 10% trifluoroacetic acid (TFA).

Urine samples were inactivated and sterilized at 56�C for 30min and 500 mL urine sample was then precipitated overnight with cold

acetone (urine: acetone = 1:4, v/v, -20�C). The precipitated urine samples were centrifuged at 3000 g for 5 min. The pellet was re-

suspended in 200 mL 8M urea in 100 mM TEAB. The protein lysates were reduced and alkylated with 10 mM TCEP and 40 mM

IAA in darkness for 30 min at 30�C. The solution was further diluted with 200 mL of 100 mM TEAB. The digestion was completed

by using an enzyme mixture of 5 mg of trypsin and 1 mg of Lys-C at 32�C for 12 h and the reaction was stopped by adding 110 mL

10% trifluoroacetic acid (TFA).

The serum and urine peptides were labeled by TMTpro 16 plex reagents . Before TMTpro 16plex labeling, a batch design procedure

was performed to minimize the batch effect. We randomly divided four different groups of samples into 6 batches for TMTpro 16plex

labeling,with each batch containing the identical number of samples. A pooled samplewas labeledwith TMT channel 126 and included

in each group as the quality control. In each batch, the peptides were fractionated and analyzed as described before (Shen et al., 2020)

withminor modifications. In brief, the TMT samples were fractionated by the DIONEXUltiMate 3000 RSLCnano System (Thermo Fisher

Scientific, San Jose, USA) coupled with an XBridge Peptide BEH C18 column (300 Å, 5 mm, 4.6 mm *250 mm) (Waters, Milford, MA,

USA). The samples were separated using a gradient from 5% to 35% acetonitrile (ACN) in 10mM ammonia (pH = 10.0) at a flow rate of

1 mL/min. Peptides were separated into 60 fractions and combined into 30 fractions. The fractions were then dried and redissolved in

2%ACN/0.1% formic acid (FA) ofMSgrade. The re-dissolved peptideswere analyzedwith the sameU3000HPLC systemcoupled to a

Q Exactive HF hybrid Quadrupole-Orbitrap (Thermo Fisher Scientific, San Jose, USA) in data dependent acquisition (DDA) mode. For

each fraction, peptides were loaded onto a pre-column (3 mm, 100 Å, 20mm*75mm i.d.) and then analyzedwith a 60min LCgradient at

a flow rate of 300 nL/min (analytical column: 1.9 mm, 120 Å, 150 mm*75 mm i.d.; Buffer A: 2% ACN and 0.1% FA; Buffer B: 98% ACN

and 0.1% FA). The gradient was uniformly changed from 5% to 28% buffer B.

ForMS acquisition, them/z range ofMS1was 350-1,800 Dawith the resolution at 60,000, AGC target was set at 3e6, andmaximum

ion injection time (max IT) is 50 ms. Top 15 precursors were selected for MS/MS experiment, with the resolution of 45,000, AGC at

2e5, as well as the max IT of 120 ms. The isolation window of selected precursor was 0.7 m/z.

Metabolome analysis
Ethanol was added to the urine and serum samples and shaken vigorously to inactivate any potential viruses, then dried in a biosafety

hood. Each 100 mL of serum or urine was extracted by adding 300 mL of methanol extraction solution. And the protein precipitate was

removed by centrifugation and the supernatant contained metabolites of different chemical nature. To ensure the quantity and

reliability of metabolite detection, non-targeted metabolomics assays were performed on four platforms as described previously

with the same LC-MS/MS data acquisition parameters (Shen et al., 2020).

All UPLC-MS/MS methods were performed on ACQUITY 2D UPLC system (Waters, Milford, MA, USA) and Q Exactive HF hybrid

Quadrupole-Orbitrap (Thermo Fisher Scientific, San Jose, USA) with HESI-II heated ESI source and Orbitrap mass analyzer.

ELISA analysis
All urine samples were centrifuged at 400 g for 5min. LRP2, CUBN, CXCL14, RHOA, CDC42, RAC1were detected by HUMAN ELISA

kits (Wuhan Bioswamp Co., Ltd., Wuhan, China) according to the manufacturer’s instructions. The diluted standards and samples

were all added to appropriate wells and then the HRP-conjugate reagent was added. The mixtures were then incubated for

30 min at 37�C. The wells were aspirated and washed for 5 times. The chromogen solution A and B were added to each well and

incubated for 10 min. The stop solution was added to each well. The absorbance was read on a Thermo Fisher Scientific Multiskan

FC microplate reader at 450 nm (Thermo Fisher Scientific, USA). The final concentration of protein was corrected by the concentra-

tion of the total protein respectively in each sample for statistical analysis. For validation of DEPs by ELISA, 29 urine samples were

chosen from all 71 patients with COVID-19 including 21 non-severe and 8 severe. We recollected urine samples from 18 healthy do-

nors due to the shortage of previous samples.

PRM analysis
The expression of 16 virus budding related proteins in Figure 4A was verified by PRM. Unfractionated urine peptides were separated

at 300 nL/min along with a 30 min gradient and scheduled acquisition for 50 peptides (including 11 iRT peptides) by Q Exactive HF

Hybrid Quadrupole-Orbitrap Mass Spectrometer as descript previously(Zheng et al., 2020).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Database search for quantification
For proteomics data analysis, MS raw data were searched using Proteome Discoverer (Version 2.4.1.15, Thermo Fisher Scientific)

against amanually annotated and reviewedHomo sapiens protein FASTA database (SwissProt, 27 April 2020). The enzyme digestion

was set to full-specific trypsin with twomissed cleavages. Static modifications were set to TMTpro of lysine residues and N-terminus

peptides, and carbamidomethylation of cysteine. Variable modifications were set to oxidation of methionine and acetylation of

N-terminus peptides. Precursor ion mass tolerance was set to 10 ppm, and product ion was 0.02 Da. The peptide-spectrum-match

allowed 1% target false discovery rate (FDR).

The protein abundance ratios of target samples to the pooled sample within each batch were used as the relative protein abun-

dance for data analysis.

For metabolomics data analysis, metabolites were identified by searching an in-house library of more than 3,300 standards whose

data entries are generated by running purified compound standards through the experimental platform. Metabolite’s abundance in

serum or urine sample were quantified by in-house software. All the metabolites were identified within three strict criteria as

described previously (Shen et al., 2020): narrow window retention index (RI), mass deviation less than 10 ppm and MS/MS spectra

with high forward and reverse scores. For serum metabolomics data, the metabolite abundance was used to data mining. For urine

metabolomics data mining, to reduce the effects caused by urine sample heterogeneity, the metabolite abundance was normalized

by creatinine abundance.

Quality control analysis
The quality control analysis for proteomics and metabolomics data was as described previously (Shen et al., 2020) with minor mod-

ifications. For proteomics analysis, serum or urine samples from four groups were randomly distributed in six batches. A pooled pep-

tide sample was the control sample labeled by TMT pro-126 in each batch. To ensure proteomics data stability, we first analyzed the

CV values of protein abundance of six pooled urine samples and six pooled serum samples (Figure 1D). Then we checked the dis-

tribution of 90 urine and serum samples in six batches using UMAP with default parameters (Figures S1D and S1E) (McInnes et al.,

2018). Z-Score normalization of relative protein abundance ratio for each sample was used as the input features. Proteins that are

detected in over 80% of all samples were analyzed. For metabolomics analysis, as described previously, we also analyzed the

CV of internal standards intensity in each sample to ensure the reliability of metabolomics data (Figure 1D).

Differential expression analysis and cluster analysis of proteins and metabolites
For more strict analysis, we narrowed the original 1,494 serum proteins, 3,854 urine proteins, 903 serummetabolites and 1,033 urine

metabolites to a refined list of molecules that were detected in over 80% samples. The missing values of the protein matrix were

imputed as zero. Protein or metabolites fold change (FC) between two groups was calculated using the mean relative protein abun-

dance ratio. The p value was calculated by two-sided unpairedWelch’s t-test using relative protein abundance ratio between groups,

followed byBenjamini &Hochberg correction. Proteins ormetabolites with adjusted p value less than 0.05 and absolute log2 (FC) over

0.25 were regards as DEPs or DEMs.

All DEPs or DEMs were obtained from comparing COVID-19 groups (including severe COVID-19 and non-severe COVID-19

groups) with the healthy group, comparing the non-severe COVID-19 group with the severe COVID-19 group, and comparing the

non-COVID-19 groupwith the healthy group (Figures S3B–S3E). To exclude the false positive influence of the non-COVID-19 groups,

we filtered out the DEPs or DEMs between non-COVID-19 and healthy groups (Figure S3A). After filtering, 171 serum proteins, 805

urine proteins, 269 serummetabolites, and 338 urine metabolites were identified. Then the expression pattern in healthy, non-severe

COVID-19, severe COVID-19 groups of these DEPs and DEMs was analyzed by Mfuzz (Kumar and Futschik, 2007). Mfuzz analysis

was performed with default parameters to divide DEPs or DEMs into eight clusters (Figures S4B–S4E). For serumMfuzz analysis, we

selected 148 DEPs in clusters 1, 2, 3 and 4 (Figure S4B) and 161 DEMs in cluster 1, 3, 6 and 7 (Figure S4D) for further pathway enrich-

ment analysis. For urine, we selected 580 DEPs in clusters 1, 3, 5, 6 and 7 (Figure S4C) and 138 DEMs in clusters 2, 6 and 8 for further

pathway enrichment analysis (Figure S4E).

Machine learning
An R package RandomForest (version 4.6.14) was used to select important variables in the serum and urine data and build amachine

learning model to distinguish patients with severe COVID-19 from non-severe ones. For feature selection, 1384 serum proteins and

3737 urine proteins in 39 non-severe and 11 severe COVID-19 cases were selected as input features. Finally, the 20 proteins, whose

mean decrease accuracy ranked top 20, were screened out to build the classification model, and 4-fold cross validation were per-

formed in each model. The AUC of the receiver operating characteristic curve and diagnostic accuracy was used to evaluate metrics

for calculating the performance of the model.

After selecting 20 proteins, we adopt the Logistic Regression (LR) algorithm, within a Python package scikit-learn (version 0.24.2),

to classify non-severe and severe. In LR algorithm, the C and penalty are basic parameters in LR. In this paper, we set the parameter

C =1.0 and penalty = ‘l2’. We built a computational model to predict severe and non-severe and the probability of each sample was

finally obtained.
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Cytokine analysis
We classified the 234 cytokines into six types based on IMMPORT database(Updated: July 2020) (ImmPort, 2020). The one-way

analysis of variance (ANOVA) was used to determine whether the cytokines show statistically significant differences among healthy,

severe, and non-severe groups in serum and urine. According to an online database called immuneXpresso (Kveler et al., 2018), we

matched the association between 234 cytokines and immune cells. 31 cytokines from our data were involved in the function of mul-

tiple immune cells and highlighted in Figure 3A. The correlation of cytokine expression and immune cells count in COVID-19 cases

was calculated by the Spearman’s correlation coefficient. The shinyCircos (Yu et al., 2018) was used to visualize the proteomics data

of Figure 3A.

Pathway enrichment analysis
For subcellular localization of each protein, the online UniProt database (https://www.uniprot.org/) was applied. The DEMs pathway

analysis was performed by MetaboAnalyst (Pang et al., 2020). The Ingenuine Pathway Analysis (IPA) (Krämer et al., 2013) software

was used to enrich DEPs or COVID-19 associated cytokines to signaling pathways. Log2(FC) of DEPs were used as the observation

value for IPA analysis. The p value of IPA analysis was calculated with the right-tailed Fisher’s exact test and was considered signif-

icant if less than 0.05.

ADDITIONAL RESOURCES

This research is part of the work of a clinical trial named ‘‘To explore the pathogenesis and course prediction of novel coronavirus

pneumonia (COVID-19) severe patients’’. This research explored urine biomarkers for severe COVID-19 identification. The clinical

trial was registered in the Chinese Clinical Trial Registry with an ID of ChiCTR2000031365 (https://www.chictr.org.cn/

hvshowproject.aspx?id=25407).
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