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Abstract: Significant progress has been achieved in the past few years for the challenging task of
pedestrian detection. Nevertheless, a major bottleneck of existing state-of-the-art approaches lies in a
great drop in performance with reducing resolutions of the detected targets. For the boosting-based
detectors which are popular in pedestrian detection literature, a possible cause for this drop is that in
their boosting training process, low-resolution samples, which are usually more difficult to be detected
due to the missing details, are still treated equally importantly as high-resolution samples, resulting in
the false negatives since they are more easily rejected in the early stages and can hardly be recovered
in the late stages. To address this problem, we propose in this paper a robust multi-resolution
detection approach with a novel group cost-sensitive boosting algorithm, which is derived from the
standard AdaBoost algorithm to further explore different costs for different resolution groups of the
samples in the boosting process, and to place greater emphasis on low-resolution groups in order to
better handle the detection of multi-resolution targets. The effectiveness of the proposed approach is
evaluated on the Caltech pedestrian benchmark and KAIST (Korea Advanced Institute of Science
and Technology) multispectral pedestrian benchmark, and validated by its promising performance
on different resolution-specific test sets of both benchmarks.

Keywords: pedestrian detection; multi-resolution; group cost-sensitive boosting

1. Introduction

Object detection is a hot and challenging topic in the computer vision and multimedia
community [1]. As an important task in this domain, pedestrian detection has received special interest
because of its considerable applications in practice, such as video surveillance, crowd understanding,
tracking, assistant driving, and robot navigation. Owing to lots of effort and many different detection
approaches proposed in the literature, impressive progress has been achieved in the past few years.
Nevertheless, it is still difficult to detect multi-resolution pedestrians in images and videos (as shown in
Figure 1), and existing approaches suffer from their great performance drop with reducing resolution of
the detected targets. For example, state-of-the-art detectors in the literature nowadays can achieve
less than 1% of a mean miss rate for the detection of pedestrians taller than 80 pixels in the Caltech
pedestrian benchmark [2], while the mean miss rate significantly increases to more than 50% for
the detection of pedestrians who are 30–80 pixels high. Meanwhile, it is required to achieve robust
detection of low-resolution targets in certain circumstances. For example, accurate detection of
low-resolution pedestrians is very important in assistant driving systems so that necessary time can be
provided to take the reactions.
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Figure 1. Example images and ground truth annotations in the Caltech pedestrian benchmark.
Note that the resolutions of the pedestrians are in a wide range.

Because of both high effectiveness and high efficiency, the boosting-based approaches are popular
in pedestrian detection literature for detector training [2]. The main idea is to linearly train a series of
weak classifiers and then combine them to construct a strong classifier. In the boosting process,
each training sample is assigned with a weight which is used to calculate its corresponding classification
cost, and is updated iteratively according to the classification results in each iteration so that the
wrongly classified samples can be better emphasized. In the case of pedestrian detection, the truth
is compared to the huge number of negative windows, where only small number of positive targets
need to be detected. Therefore, the positive samples should possess greater weights during training
so that a higher detection rate can be achieved. To that end, the researchers in the community
have proposed several cost-sensitive boosting algorithms [3–5] where the false negatives are given
more penalties than the false positives so that more importance is put on the positive samples.
However, these algorithms are not optimal for multi-resolution detection, since they still treat all
positive samples equally and ignore their intra-class variations. Due to the missing details of the
appearances for low-resolution pedestrians, the features extracted from low-resolution samples are
usually less discriminative than that from high-resolution ones, leading to the consequence that
low-resolution pedestrians could be regraded as false negatives since they are more easily rejected
during boosting in the early stages and can hardly be recovered in the late stages. Consequently,
the trained detectors are possibly biased towards high-resolution pedestrians and leads to poorer
performance on low-resolution pedestrians.

In order to address this problem, we propose in this paper a new group cost-sensitive boosting
algorithm for robust multi-resolution pedestrian detection. In particular, we integrate the proposed
algorithm with two representative detection frameworks: Locally Decorrelated Channel Features
(LDCF) [6] and Convolutional Channel Features (CCF) [7], and propose a multi-resolution LDCF
approach and a multi-resolution CCF approach, respectively. The proposed approaches can
explore different costs for different resolution groups of the samples in the boosting process, and
put greater importance on low-resolution pedestrians in order to better handle the detection of
multi-resolution targets.

The main contributions of this work can be summarized as follows:

• Different from the existing approaches that treat all positive samples equally and ignore their
intra-class variations in the boosting process, we propose a new group cost-sensitive boosting
algorithm to further explore different costs for different resolution groups in positive set, so that
low-resolution pedestrians can be better emphasized in the training process, leading to better
detection in multi-resolution cases.

• We integrate the proposed algorithm with two representative detection frameworks: one is
based on the classical hand-crafted features (LDCF) and the other is based on the popular
deep-learning features (CCF), so that its effectiveness and generalization capability can be
better validated.



Sensors 2019, 19, 780 3 of 23

• We evaluate the proposed approaches on two challenging pedestrian detection benchmarks
(the Caltech pedestrian dataset and the KAIST multispectral pedestrian dataset), and the results
show their promising performances compared to other state-of-the-art approaches on different
resolution-specific test sets.

A preliminary version of this work appeared in [8]. This paper significantly extends it in the
following ways. Firstly, we only consider the case of two resolution groups in the proposed boosting
algorithm in [8], while in this paper we extend it to a generalized case of N resolution groups, so that
the proposed approach can be more easily applied in other specific problems. Secondly, besides
the LDCF detection framework as the baseline in [8], we also integrate in this paper the proposed
algorithm with the CCF detection framework, which is based on the popular deep-learning features,
in order to further improve detection performance and better validate its effectiveness. Thirdly,
we add in the Appendix A of this paper a detailed proof of the key solution in the proposed group
cost-sensitive boosting algorithm. Finally, besides the Caltech pedestrian benchmark used in [8],
we conduct more experimental evaluation on an additional KAIST (Korea Advanced Institute of
Science and Technology) multispectral pedestrian benchmark to validate the effectiveness of the
proposed approach more extensively.

The remainder of the paper is organized as follows. After reviewing the related work in Section 2,
we present the details of the proposed group cost-sensitive boosting algorithm for multi-resolution
detection in Section 3. Then Section 4 reports the experimental evaluation for the effectiveness of the
proposed approach. Finally, we conclude the paper in Section 5.

2. Related Work

Pedestrian detection has attracted attention for decades and has achieved impressive progress
thanks to many effective detection techniques proposed in the literature [2]. However, only limited
attention has been paid in the literature [9–12] on the problem of multi-resolution detection. In [9],
a multi-resolution model of pedestrians was proposed consisting of a rigid HOG (Histogram of
Oriented Gradient) template used to score low-resolution instances and a deformable part-based model
used to score high-resolution instances. The motivation lies in that low-resolution instances usually
lose lots of visual detail due to their small scales, meaning that a rigid HOG template is sufficient to
characterize their global appearance features. On the contrary, high-resolution instances contain more
detailed information; thus, a more complex part-based model could be applied to capture more detailed
features from different parts and to improve accuracy. In [10], the authors propose training multiple
models for different scales to perform multi-scale detection. Different from the traditional approaches
that train N models, each for an individual scale, which is highly computational-cost centered, the key
idea of the authors is to reduce the number of models for feature computation by a factor K and to
resize images at training time instead of at test time. The computed N/K models will be used at test
time to approximate the models in the remaining N-N/K scales. The main focus of this work is on
detection speedup more than on detection accuracy. In [11], the authors propose an approach of using
scale-independent features and one single classifier for all pedestrian scales. For image representation,
HOG, LBP (Local Binary Patterns), and LUV color descriptors are adopted and the codebook maps
are calculated based on the bag-of-visual-words model of each descriptor. These maps are then
decomposed into channels for each individual word to obtain the proposed word channels feature.
For multi-scale detection, one single classifier is trained based on the scale-independent classification
features computed on word channels, and is applied on all sliding window scales. The authors in [12]
take pedestrian detection in different resolutions as different but related problems, and propose a
multi-task model to jointly consider their relations and differences. They first map pedestrians in
different resolutions to a common space via resolution-aware transformations, and then train a shared
detector in that space to perform multi-scale pedestrian detection. Nevertheless, this method relies on
the deformable part-based model, and thus has relatively high computational complexity.
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In order to achieve more efficient detection, the boosting-based approaches are popular for training
detectors. Several cost-sensitive boosting algorithms have been proposed in the literature to address
the problem of sample imbalance, and can be classified into two categories: one is class cost-sensitive
boosting (denoted as CCS boosting) such as Asymmetric-AdaBoost [3], AdaCost [13], CSB0-CSB2 [14],
AdaC1-AdaC3 [4], and cost-sensitive boosting [5]; and the other is sample cost-sensitive boosting
(denoted as SCS boosting) [15]. In CCS boosting, the cost is determined by the type of classification
errors, i.e., misclassifying a sample into different classes will lead to different costs. In SCS boosting,
the cost is determined by the samples, i.e., different samples will lead to different costs, no matter
whether their types of classification errors are the same or not. Nevertheless, these two kinds of
methods share the same main idea of putting more costs on the misclassified positive samples by
modifying the weight update rules in boosting, so that false negatives are more penalized than false
positives. However, although these algorithms distinguish positive samples from negative ones in
the boosting process, they still ignore the possible variations inside the positive set. Different from
these methods, our proposed approach is based on a new group of cost-sensitive boosting (denoted as
GCS boosting) which explores different costs for different resolution groups in the positive set during
boosting in order to better handle the detection in multi-resolution situations. Note that the proposed
approach is related to both CCS boosting and SCS boosting, as shown in Figure 2, and can be considered
as a generalized form of them. In the special case of a decreasing group number where all positive
samples are treated as one group, GCS boosting will be simplified to CCS boosting, while in the special
case of increasing group numbers to treat each positive sample as an individual group, GCS boosting
will scale up to SCS boosting.
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Figure 2. Comparison of different cost-sensitive boosting strategies.

3. Multi-Resolution Detection via Group Cost-Sensitive Boosting with Channel Features

In this section, we present the details of the proposed multi-resolution detection approach with a
new group cost-sensitive boosting algorithm, which is derived from the standard AdaBoost algorithm
by further exploring different costs for different resolution groups of the samples in the boosting
process, so that low-resolution groups can obtain greater importance and more emphasis in order to
achieve better detection of multi-resolution targets.

3.1. Baseline Detection Frameworks

We consider in this paper two representative detection frameworks as a baseline: one is Locally
Decorrelated Channel Features (LDCF) [6], which is based on the classical hand-crafted HOG and color
features, and the other is Convolutional Channel Features (CCF) [7], which is based on the popular
deep-learning features.
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3.1.1. Locally Decorrelated Channel Features (LDCF)

Given an input image, the LDCF approach calculates several image channels as a feature at first,
where each image channel is a per-pixel feature map—in other words, the output pixels are calculated
with their corresponding input pixels. Then, by applying a feature transform, the correlations in
local image patches are removed. The idea is to replace the expensive oblique splits by the efficient
orthogonal splits on locally decorrelated data in decision trees. In total, we calculated 10 feature
channels, including one channel of the normalized gradient magnitude, six channels of the histogram of
oriented gradients, and three channels of LUV color, and then applied four decorrelating filters for
each channel, and finally obtained 40 locally decorrelated channels as features. To train detectors, we
adopted the AdaBoost algorithm to train a certain number of decision trees on these channel features
and then combined them to construct a strong classifier. More details of the LDCF approach can be
referred to [6].

3.1.2. Convolutional Channel Features (CCF)

The CCF approach generally has similar workflow to the traditional channel-feature-based
approaches, like the aforementioned LDCF, in that it consists of two components: image feature
extraction, and classifier learning via boosting. However, the main difference lies in that CCF takes
advantage of the recently developed deep-learning techniques, and replaces the hand-crafted HOG and
color features used in the conventional channel-feature-based approaches by the deep-learning-based
convolutional features in order to obtain performance improvements by utilizing better image
representations. For the feature extraction component, CCF extends multiple channel features to
low-level feature maps transferred from the first few layers of a CNN model pre-trained on an
ImageNet image dataset. For the classifier learning component, CCF trains an ensemble of decision
trees in a boosting manner, with each node in decision trees dependent on one pixel value in the
candidate feature maps. To perform the detection, the learned decision tree model is applied on dense
image patches and the output of each decision tree is accumulated to get the final result. Specifically,
the “conv3-3” layer in the VGG-16 model is adopted as the final feature representation, and a sliding
window strategy is applied during detection. More details of the CCF approach is referred to in [7].

3.1.3. Detection via AdaBoost

To facilitate understanding of the following description, a formal definition of the problem of
detection via AdaBoost is given as follows: we first list in Table 1 the terms that will appear
in the following equations, and describe how they are related to the multi-resolution pedestrian
detection problem.

Given a number of samples {(xi, yi)}n
i=1 for detection, where x = (x1, . . . , xN)

T ∈ X = RN is
the feature representation of samples, and y ∈ Y = {−1, 1} is the class label of samples, a detector
(or so-called binary classifier) is defined as a function h that can map each feature x to its corresponding
class label y, and is usually implemented as follows:

h(x) = sgn[ f (x)] (1)

where f (x) is a predictor, sgn[·] is the sign function which will be 1 if f (x) ≥ 0, and will be −1
otherwise. If the detector can minimize the risk EX,Y[Loss(x, y)], where Loss(x, y) is a loss function to
measure the classification error of the samples, then it will be considered as optimal. Recall that in the
baseline LDCF and CCF approaches, the following loss function is adopted in the AdaBoost algorithm:

Loss(x, y) =

{
0, if h(x) = y
1, if h(x) 6= y

(2)
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and a predictor f (x) is learned by linearly combining the weak learners as follows:

f (x) =
M

∑
m=1

αmgm(x) (3)

where αm is a set of weights for different weak learners and gm(x) = sgn[φm(x)− tm] is a set of decision
stumps with φm(x) being a feature response and tm being a threshold.

Table 1. A list of the terms that appear in our approach.

Term Definition Meaning in Pedestrian Detection Problem

x Feature representation of a sample Image region that needs to be classified as pedestrian or not

y Class label of a sample Its value will be 1 if the corresponding image region x is
pedestrian, otherwise 0

h(x) Detector (binary classifier) Get label y given image region x

f (x) Predictor (strong classifier learned via boosting) Output score given image region x (x will be pedestrian if
score is positive, otherwise non-pedestrian)

Loss Loss function
A measurement for wrong detections (pedestrian region is
classified as non-pedestrian or background region is classified
as pedestrian)

g(x) Weak classifier in boosting learning Simple classifier to decide if an image region is pedestrian
(only slightly better than random)

α Weight of each weak classifier

ω Weight of each sample Its value will be increased if detection is wrong, otherwise
decreased

C Costs in group cost-sensitive loss function Different cost values are assigned to measure wrong detections
in different resolution pedestrian samples

G Groups of different resolution samples Image regions are divided into groups according to different
resolution pedestrians in it

Ω Sum of weights of samples in each resolution group

err Classification error Total loss of detections in each resolution pedestrian group

Particularly, the predictor f (x) can be learned by the gradient descent with respect to the following
exponential loss:

EX,Y[exp(−y f (x))] (4)

and we iteratively select the weak learners so that the classification error is minimized at each iteration:

gm(x) = arg min
g

(err(m)) (5)

where

err(m) =
n

∑
i=1

ω
(m)
i [1− I(yi = gm(xi))] (6)

is the total classification error, and I(·) is an indicator function, as follows:

I(y = a) =

{
1, if y = a
0, if y 6= a

(7)

We calculated the weight of each weak learner as:

αm =
1
2

log

(
1− err(m)

err(m)

)
(8)
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and updated the weight ω
(m)
i of each sample so that at the next iteration, the importance of the wrongly

classified samples was increased, and the importance of the correctly classified samples was decreased:

ω
(m+1)
i = ω

(m)
i exp(−yiαmgm(xi)) (9)

3.2. Group Cost-Sensitive Boosting Algorithm

Note that the loss function defined in Equation (2) is cost-insensitive because of the same costs of
the false positives (y = −1, h(x) = 1) and the false negatives (y = 1, h(x) = −1) in this function.
In order to deal with the multi-resolution detection in a better way, a new group cost-sensitive
AdaBoost algorithm is proposed by exploring the different importance of the samples from different
resolution groups so that low-resolution samples, which are usually harder to be detected, can have
more emphasis in the boosting process.

3.2.1. Group Cost-Sensitive Loss

In order to assign different importance to samples of different resolution, the positive samples were
further divided into N groups (G1, G2, . . . , GN) according to their different resolutions (here we assume
the groups are sorted in a resolution-ascending order, i.e., the samples in GN had larger resolution
than the samples in GN − 1). Then, a group cost-sensitive loss function was proposed as follows:

Loss(x, y) =



0, if h(x) = y
C f p, if y = −1, h(x) = 1
C f n1, if y = 1, h(xG1) = −1
C f n2, if y = 1, h(xG2) = −1
...

...
C f nN , if y = 1, h(xGN) = −1

(10)

where C∗ > 0. In this loss function, different scenarios are respectively considered, including correct
detections (h(x) = y), false positives (y = −1, h(x) = 1), false negatives (miss detections) of samples
in a resolution group G1 (y = 1, h(xG1) = −1), false negatives of samples in a resolution group G2
(y = 1, h(xG2) = −1), . . ., and false negatives of samples in a resolution group GN (y = 1, h(xGN) = −1).
Note that in the case of C f n1 = C f n2 = . . . = C f nN , this group cost-sensitive loss will be equivalent to
the standard class cost-sensitive loss.

As for the values of the costs C f p and C f n1, C f n2, . . . , C f nN , they are determined based on different
specific tasks. For pedestrian detection, our intuition indicates that C f n1, C f n2, . . . , C f nN should be
greater than C f p, since miss detections are usually more difficult to be recovered than false positives,
and C f n1 should be greater than C f n2, since lower-resolution samples are usually more difficult to be
detected than higher-resolution ones, and so on for the case of C f n(N−1) and C f nN . We will choose the
optimal values of these costs experimentally via cross-validation. Then, when the values of C f p and
C f n1, C f n2, . . . , C f nN are specified, we calculate the group cost-sensitive exponential loss as follows:

EX,Y

[
I′(y = 1, x ∈ xG1) exp(−yC f n1 f (x))

+ I′(y = 1, x ∈ xG2) exp(−yC f n2 f (x))

+ · · ·
+ I′(y = 1, x ∈ xGN) exp(−yC f nN f (x))

+I′(y = −1, x ∈ x) exp(−yC f p f (x))
]

(11)
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where I′(·) is an indicator function similar to Equation (7) but in an extended form:

I′(y = a, x ∈ b) =

{
1, if y = a and x ∈ b
0, others

(12)

3.2.2. Group Cost-Sensitive Adaboost

Given the expected loss in Equation (11), the proposed group cost-sensitive AdaBoost algorithm
is then derived by the gradient descent on its empirical estimate. Now we have a set of training
samples {(xi, yi)}n

i=1, the predictor f (x) as in Equation (3) and different resolution groups which are
defined as follows:

G+1 = {i|yi = 1, xi ∈ xG1}
G+2 = {i|yi = 1, xi ∈ xG2}

...

G+N = {i|yi = 1, xi ∈ xGN}
G− = {i|yi = −1}

(13)

At each iteration m in the boosting process, the selected weak learner consists of an optimal step αm

along the direction gm of the largest descent of the expected loss in Equation (11), and is expressed as:

(αm, gm) = arg min
α,g ∑

i∈G+1

ω
(m)
i exp(−C f n1αg(xi))

+ ∑
i∈G+2

ω
(m)
i exp(−C f n2αg(xi))

+ · · ·+ ∑
i∈G+N

ω
(m)
i exp(−C f nNαg(xi))

+ ∑
i∈G−

ω
(m)
i exp(C f pαg(xi))

(14)

The optimal step α along the direction g is the solution of the following (Here we apply the
gradient descent method to compute it; that is, we consider the output of the classifier for each training
sample as a point ( f (x1), . . . , f (xn)) in n-dimensional space, where each axis corresponds to a training
sample, each weak learner g(x) corresponds to a vector of fixed orientation and length, and the goal is
to reach the target point (y1, . . . , yn) or any region where the value of the loss function is less than the
value at that point in the least number of steps. Thus, we can perform the gradient descent optimization
method to find g(x) with the steepest gradient and choose α to minimize test error, and this can be
done efficiently with the standard scalar search procedures. See detailed proof in the Appendix A):

2C f n1 · err+1 · cosh(C f n1α)− C f n1 ·Ω+1 · e−C f n1α

+2C f n2 · err+2 · cosh(C f n2α)− C f n2 ·Ω+2 · e−C f n2α

+ · · ·

+2C f nN · err+N · cosh(C f nNα)− C f nN ·Ω+N · e−C f nN α

+2C f p · err− · cosh(C f pα)− C f p ·Ω− · e−C f pα = 0

(15)
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with

Ω+1 = ∑
i∈G+1

ω
(m)
i , Ω+2 = ∑

i∈G+2

ω
(m)
i , · · · ,

Ω+N = ∑
i∈G+N

ω
(m)
i , Ω− = ∑

i∈G−
ω
(m)
i

(16)

err+1 = ∑
i∈G+1

ω
(m)
i [1− I(yi = g(xi))]

err+2 = ∑
i∈G+2

ω
(m)
i [1− I(yi = g(xi))]

...

err+N = ∑
i∈G+N

ω
(m)
i [1− I(yi = g(xi))]

err− = ∑
i∈G−

ω
(m)
i [1− I(yi = g(xi))]

(17)

After calculating the step α and the direction g, we can calculate the total loss of the weak learner
(α, g) as follows:

errT =(
eC f n1α(g) − e−C f n1α(g)

)
· err+1 + e−C f n1α(g)Ω+1

+
(

eC f n2α(g) − e−C f n2α(g)
)
· err+2 + e−C f n2α(g)Ω+2

+ · · ·

+
(

eC f nN α(g) − e−C f nN α(g)
)
· err+N + e−C f nN α(g)Ω+N

+
(

eC f pα(g) − e−C f pα(g)
)
· err− + e−C f pα(g)Ω−

(18)

and select the direction of the largest descent so that the minimum loss is obtained:

gm = arg min
g

(errT) (19)

Finally, we update the weight ω
(m)
i of each sample xi at the next iteration m + 1 according to the

following rules:

ω
(m+1)
i =



ω
(m)
i e−C f n1αmgm(xi), if i ∈ G+1

ω
(m)
i e−C f n2αmgm(xi), if i ∈ G+2

...
...

ω
(m)
i e−C f nN αmgm(xi), if i ∈ G+N

ω
(m)
i eC f pαmgm(xi), if i ∈ G−

(20)
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Briefly speaking, we define the possible descent directions using a set of weak learners {gk(x)}K
k=1,

and obtain the optimal step α along each direction by solving Equation (15), which can be done
efficiently with the standard scalar search procedures. The loss associated with the weak learner is
then calculated as in Equation (18) when the step α and direction g are given, and the weak learner
is selected in Equation (19) as the best one so that the minimum loss is achieved. We present in
Algorithm 1 a summary of the proposed group cost-sensitive AdaBoost algorithm.

Algorithm 1 Group Cost-Sensitive AdaBoost Algorithm

Input: Training set {(xi, yi)}n
i=1 where xi is the feature vector of the sample and yi ∈ {1,−1} is the class

label, costs {C f n1, C f n2, . . . , C f nN , C f p} for different groups, the set of weak learners {gk(x)}K
k=1,

and the number M of weak learners in the final classifier.
Output: Strong classifier h(x) for multi-resolution detectors.

1: Initialization: Set of uniformly distributed weights for each group:

2: ω
(0)
i =

1
2|G+1|

, ∀i ∈ G+1; ω
(0)
i =

1
2|G+2|

, ∀i ∈ G+2; · · · ; ω
(0)
i =

1
2|G+N |

, ∀i ∈

G+N ; ω
(0)
i =

1
2|G−|

, ∀i ∈ G−.

3: for m = {1, . . . , M} do
4: for k = {1, . . . , K} do
5: Compute parameter values as in Equations (16), (17) with g(x) = gk(x);
6: Obtain the value of αk by solving Equation (15);
7: Calculate the loss of the weak learner (αk, gk(x)) as in Equation (18).
8: end for
9: Select the best weak learner (αm, gm(x)) with the minimum loss as in Equation (19);

10: Update the weights ωi according to Equation (20).
11: end for
12: return h(x) = sgn

[
∑M

m=1 αmgm(x)
]
.

3.3. Multi-Resolution Detectors

By integrating the proposed group cost-sensitive AdaBoost algorithm into the baseline LDCF
and CCF frameworks, respectively, i.e., replacing the standard AdaBoost algorithm used in LDCF
and CCF by the proposed group cost-sensitive AdaBoost algorithm, a new group cost-sensitive LDCF
detector and a new group cost-sensitive CCF detector (denoted as “GCS-LDCF” and “GCS-CCF” in the
following experiments, respectively) can be obtained to better handle the detection in multi-resolution
conditions. To perform multi-resolution pedestrian detection, we applied the proposed detectors on
each test image with a multi-scale sliding window strategy, and adopted non-maximal suppression to
merge multiple nearby detections to obtain the final detection results.

4. Experimental Evaluation

To evaluate the proposed approaches, we conducted the experiments on two standard datasets:
the Caltech pedestrian detection benchmark [2], and the KAIST multispectral pedestrian detection
benchmark [16].

The Caltech benchmark is by far the largest and the most challenging pedestrian dataset, by taking
a video around 10 h long (640 × 480, 30 Hz) from a vehicle driving through regular traffic in an
urban environment. This dataset contains a large number of pedestrians, i.e., a total number of
350,000 annotated bounding boxes and 2300 unique pedestrians. However, it is challenging due to
realistic occlusion frequency and many low-resolution pedestrians.
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The KAIST benchmark is a multispectral pedestrian dataset. Different from the Caltech benchmark
that contains only color images, this benchmark captures the additional thermal images and consists of
95 k color-thermal pairs (640× 480, 20 Hz) taken from a vehicle. All the pairs are manually annotated
(person, people, cyclist) for the total of 103,128 dense annotations and 1182 unique pedestrians.
The annotation includes temporal correspondence between bounding boxes which are similar to the
Caltech benchmark.

4.1. Experimental Setup

The common experimental setups are followed on each of two benchmarks: For Caltech,
its training set (set00–set05) is used to train the detectors, and its test set (set06–set10) is used to
obtain the detection results; for KAIST, its training set (set00–set05) is used to train the detectors and
the detection results are reported on its test set (set06–set11). For detector training, we chose the image
regions labeled as “persons” that were non-occluded with different resolutions as positive samples,
and chose the patches of random sizes at random locations in the training images without pedestrians
as negative samples.

The important parameters of the proposed approach during training were set as follows:
we considered two resolution groups (N = 2)—low-resolution samples (30–80 pixels high in Caltech,
30–115 pixels high in KAIST) and high-resolution samples (taller than 80 pixels in Caltech, taller than
115 pixels in KAIST), as defined in each of two benchmarks. As for the optimal value of the costs
for different resolution groups, they were selected from C f p = 1, C f n2 ∈ [C f p : 0.1 : 10] and
C f n1 ∈ [C f n2 : 0.1 : C f n2 + 10] experimentally by cross-validation. To construct a strong classifier,
4096 weak classifiers were trained and combined via the proposed boosting algorithm, and a pool of
random candidate regions from image samples were used to construct the nodes of these decision
trees. The multi-scale models were used to increase scale invariance, and three bootstrapping stages
were applied with 25,000 additional hard negative samples each time.

To evaluate the results, we used the ground truth annotations and evaluation code available on
the website of the Caltech benchmark (www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/)
and the KAIST benchmark (https://sites.google.com/site/pedestrianbenchmark/), respectively.
For both benchmarks, the same per-image evaluation methodology was adopted—that is, the miss
rate vs. FPPI (False-Positive-Per-Image) curves were used to compare the results. In addition,
to compare different approaches more conveniently, we also calculated their summarized performances
in terms of the log-average miss rate, which is the average of the miss rates at several fixed FPPI points
(The mean miss rate at 0.0100, 0.0178, 0.0316, 0.0562, 0.1000, 0.1778, 0.3162, 0.5623 and 1.0000 FPPI).
evenly distributed in the log-space from 10−2 to 100. Different test subsets are available on two
benchmarks to evaluate detectors in different conditions. In order to validate the effectiveness of
the proposed approach for multi-resolution detection, we mainly conducted the experiments on
several resolution-specific subsets: for Caltech, including the popular “Reasonable” (pedestrians of
≥50 pixels high and less than 35% occluded), “Large-Scale” (pedestrians of ≥100 pixels high and
non-occluded), “Near-Scale” (pedestrians of ≥80 pixels high and non-occluded), and “Medium-Scale”
(pedestrians of 30–80 pixels high and non-occluded); for KAIST, including the popular “Reasonable All”
(pedestrians of ≥55 pixels high and less than 50% occluded), “Near-Scale” (pedestrians of ≥115 pixels
high and non-occluded), “Medium-Scale” (pedestrians of 45–115 pixels high and non-occluded), and
“Far-Scale” (pedestrians of ≤45 pixels high and non-occluded).

www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
https://sites.google.com/site/pedestrianbenchmark/
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4.2. Comparison with Popular Approaches on the Caltech Benchmark

The proposed approaches are compared on the Caltech benchmark with many popular pedestrian
detection approaches in the literature, including (the detailed definitions of the following short forms
can be found in www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/) VJ [17], HOG [18],
ChnFtrs [19], ConvNet [20], FPDW [21], LatSVM [22], pAUCBoost [23], RandForest [24], SDN [25],
DBN-Mut [26], Franken [27], JointDeep [28], InformedHaar [29], LDCF [6], ACF-Caltech+ [6],
SpatialPooling [30], SpatialPooling+ [31], Katamari [32], LFOV [33], NAMC [34], DeepCascade [35],
SCCPriors [36], Checkerboards [37], DeepParts [38], and CompACT-Deep [39]. The results of these
approaches were obtained directly from the same website as the evaluation code. Note that some
recent methods, such as AdaptFasterRCNN [40], SA-FastRCNN [41], F-DNN2 [42], TLL-TFA [43],
and SDS-RCNN [44] were not considered in comparisons since they require additional external data
(e.g., ImageNet, CityPersons, Cityscapes, TudBrussels, ETH) to train their deep models.

For the results, the miss rate vs. FPPI curves and their corresponding log-average miss rates
(reported in the figure legend) of different approaches on four test sets of the Caltech benchmark are
shown in Figure 3. Due to the space limitation, only the results of top 15 approaches plus the classic
VJ and HOG are presented in the figure. It can be clearly seen that: (1) The proposed GCS-LDCF
obviously performs better than its baseline LDCF on four test sets, i.e., 4.60 percentage points better
on the “Reasonable” set, 4.59 percentage points better on the “Large-Scale” set, 4.62 percentage
points better on the “Near-Scale” set, and 2.29 percentage points better on the “Medium-Scale” set,
respectively. (2) The proposed GCS-CCF also clearly outperforms its baseline CCF on four test sets, i.e.,
4.35 percentage points better on the “Reasonable” set, 1.17 percentage points better on the “Large-Scale”
set, 1.52 percentage points better on the “Near-Scale” set, and 2.60 percentage points better on the
“Medium-Scale” set, respectively. (3) These are positive demonstrations that the proposed approaches
truly benefit from exploring different costs for the sample groups with different resolutions by the group
cost-sensitive AdaBoost algorithm in the training process; (4) according to the miss rate vs. FPPI curves
and the log-average miss rates on four test sets, the proposed GCS-CCF approach outperforms most
other popular approaches, validating that it is an effective method for pedestrian detection, especially
in multi-resolution occasions; (5) note that some well-performing approaches utilize additional motion
or context information or multiple-feature combinations to aid detection (e.g., the CompACT-Deep
approach [39] combines the ACF, SS, CB, LDA, and CNN features to learn cascades; the Checkerboards+
approach [37] uses the flow-based motion features from [45]), while the proposed approach in this
paper focuses on pedestrian detection in static images and does not take such kinds of information
into consideration. Nevertheless, utilizing motion and context information or additional features in
the proposed approach for further improvement is a potential area for future research.
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Figure 3. Cont.

www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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Figure 3. Comparison with popular approaches on the Caltech benchmark.

4.3. Comparison with Popular Approaches on the KAIST Benchmark

The proposed approaches were also compared on the KAIST benchmark with some popular
pedestrian detection approaches. Since the KAIST benchmark is a recently released pedestrian dataset,
the results in the literature are not as many as the Caltech benchmark. Thus, we mainly made
comparisons with several baseline approaches proposed in [16]. Also note that, different from the
Caltech benchmark, the KAIST benchmark is a multispectral pedestrian dataset (color channels +
thermal channel); thus, the baseline approaches extend the popular ACF framework [46] to
handle both color and additional thermal channels. To make fair comparisons, we therefore
also extend the proposed GCS-LDCF and GCS-CCF approaches to “GCS-LDCF+T+THOG” and
“GCS-CCF+T+THOG”, respectively, with additional thermal channels by following the same method
as explained in Section 3.2 in [16].

Figure 4 presents the miss rate vs. FPPI curves and their corresponding log-average miss rates
(reported in the figure legend) of different approaches on four test sets of the KAIST benchmark.
We can observe that: (1) The best-performing approach in [16] is ACF+T+THOG. By replacing the
ACF detector with the LDCF detector and the CCF detector, our baseline LDCF+T+THOG and
CCF+T+THOG already outperforms the ACF+T+THOG approach on four test sets. (2) The proposed
GCS-LDCF+T+THOG approach also performs better than the baseline LDCF+T+THOG on four
test sets (4.47 percentage points better on “Reasonable All”, 2.81 percentage points better on the
“Near Scale”, 5.49 percentage points better on the “Medium-Scale”, and 2.93 percentage points better
on the “Far Scale”, respectively). (3) The proposed GCS-CCF+T+THOG approach further outperforms
the baseline CCF+T+THOG on four test sets (3.05 percentage points better on “Reasonable All”,
1.29 percentage points better on the “Near Scale”, 2.76 percentage points better on the “Medium Scale”,
and 0.74 percentage points better on the “Far Scale”, respectively). (4) These results validate the
effectiveness of the proposed group cost-sensitive boosting algorithm, and show that it also provides
an effective way for multi-resolution pedestrian detection in multispectral conditions.
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Figure 4. Comparison with popular approaches on the KAIST benchmark.

4.4. Discussion: Influence of Group Number

The number of resolution groups is an important factor in the proposed approaches, and there
is no prior knowledge about the optimal number of groups. Therefore, we empirically selected the
best number of groups on the Caltech and KAIST benchmarks, respectively, by changing the group
number (N) from 0 to 4 in the proposed GCS-LDCF and GCS-CCF approaches, and comparing their
performances. N = 0 means that we do not distinguish false negatives from false positives in wrong
detections, which equals to the original LDCF and CCF approaches. N = 1 means that we consider
all positive samples as a group and assign different costs for false negatives and false positives,
respectively, which equals to the standard cost-sensitive setting. N > 1 means that we further divide
positive samples into different resolution groups and assign different costs for them. Specifically, when
N = 2, the positive samples are divided into group 1 (30–80 pixels high in Caltech, 30–115 pixels
high in KAIST) and group 2 (taller than 80 pixels in Caltech, taller than 115 pixels in KAIST); when
N = 3, the positive samples are divided into group 1 (30–50 pixels high in Caltech, 30–55 pixels high
in KAIST), group 2 (50–80 pixels high in Caltech, 55–115 pixels high in KAIST), and group 3 (taller
than 80 pixels in Caltech, taller than 115 pixels in KAIST); and when N = 4, the positive samples are
divided into group 1 (less than 30 pixels high in Caltech, less than 30 pixels high in KAIST), group
2 (30–50 pixels high in Caltech, 30–55 pixels high in KAIST), group 3 (50–80 pixels high in Caltech,
55–115 pixels high in KAIST), and group 4 (taller than 80 pixels in Caltech, taller than 115 pixels in
KAIST).
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The results are shown in Figure 5. We can observe that: (1) The performances with one group
are better than the performances with no group, indicating the positive effect of distinguishing false
negatives from false positives in wrong detections when training. (2) When the group number is
increased from 1 to 2, the performances are also clearly improved, validating the effectiveness of
the proposed group cost-sensitive boosting algorithm. (3) The performance gains become slight
when the group number continues to increase from 2 to 3, and shows no improvement when the
group number changes from 3 to 4. We think the main reasons for this may lie in that when we
increase the group number, more positive samples with low resolution are divided and considered;
however, according to [2], pedestrians less than 50 pixels high are very difficult to recognize, and
for pedestrians below 30 pixels, even human annotators have difficulty in identifying them reliably.
Moreover, the number of pedestrian samples below 30 pixels in both datasets is small. Therefore, very
low-resolution samples (less than 50 pixels high) in Caltech and KAIST are in the minority and naturally
difficult to detect, and thus can hardly provide help in the proposed approaches, which is why we
chose group number N = 2 in previous experiments. Overall, we can learn that the optimal number of
resolution groups could depend on the specific detection tasks, as well as the data distribution of the
specific datasets.
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Figure 5. Influence of group number in GCS-LDCF and GCS-CCF on the Caltech and KAIST
benchmarks, respectively.

4.5. Discussion: Performance on Very Low-Resolution Samples

There are reasons why not only the proposed approaches, but also all the other ones perform
poorly on very low-resolution pedestrian samples, as shown in Figures 3d and 4d. According to the
authors’ claim in [2], pedestrians less than 50 pixels tall in the Caltech benchmark are very difficult to
recognize due to the missing appearance details, and for the pedestrians around 30 pixels, even human
annotators have difficulty in identifying them reliably. This is also the case in the KAIST benchmark,
since it is constructed in a similar way to Caltech. That is why there are “Reasonable” settings in both
benchmarks (pedestrians taller than 50 pixels in Caltech and taller than 55 pixels in KAIST), because
the pedestrians less than 50 pixels tall are naturally very difficult to detect. Therefore, the detection
performances of all the approaches for these samples are far from satisfactory. This also can explain
why the performances in Figure 4d are even poorer (>80% mean miss rate) than those in Figure 3d
(>50% mean miss rate), since the samples in Figure 4d contain only the pedestrians less than 45 pixels
tall, which are naturally very difficult to detect, but the samples in Figure 3d contain the pedestrians
between 30 and 80 pixels tall, where the parts which are 30–50 tall are difficult to detect, while the
parts which are 50–80 tall are relatively easier to detect.
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As for our proposed approaches, according to the results in Figure 3d, GCS-LDCF and GCS-CCF
still outperform the baseline LDCF and CCF (2.29 and 2.60 percentage points, respectively, which are
relatively clear improvements considering the small performance gap between different approaches),
and we believe the benefits come from the pedestrian samples of 50–80 pixels tall which provide
actual help in the proposed group cost-sensitive boosting algorithm. However, due to other pedestrian
samples that are 30–50 pixels tall which are difficult to detect and thus can hardly provide help in the
proposed algorithm, the overall performances of GCS-LDCF and GCS-CCF are still not good enough
in this case.

Overall, based on the experimental results, we can say that the proposed approaches could truly
provide performance gain on low-resolution pedestrian samples (50–80 pixels tall). But for very
low-resolution pedestrian samples (less than 50 pixels tall), since their detection is naturally a hard
problem, there are still no good solutions for solving it, and the proposed approaches are clearly not
the best solutions, but at least provide an effort to address this problem.

4.6. Runtime Analysis

In this section, we compare the runtime of the proposed approaches with other methods in
the literature using video frames from the Caltech benchmark. The frames had a resolution of
640× 480 pixels, and the runtime was measured by averaging the runtime over multiple frames
with the “Reasonable” settings. The runtimes of other approaches were obtained from [2], where
runtimes of all detectors were normalized to the rate of a single modern machine, so that all times
were directly comparable. In Figure 6, we plot log-average miss rate versus runtime for each approach.
Note that symbols closer to the bottom-right corner indicate that the corresponding approaches possess
both better accuracy and faster runtime speed. We can see that the proposed GCS-LDCF approach
runs faster than most other detectors, and runs as fast as the original LDCF approach but improves
its accuracy by almost 5 percentage points. As for the proposed GCS-CCF approach, its runtime
speed is almost the same as the original CCF approach. Due to the sliding-window mechanism and
deep-learning-based feature computation in a huge number of windows, their runtime speed is now
around 0.5 fps. However, considering their good detection accuracy compared to other approaches, and
the fact that acceleration techniques used in Fast R-CNN [47] are also applicable to CCF and GCS-CCF,
it is very valuable and has the possibility of further improving their runtime speed. This will be done
in our work in the future.
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5. Conclusions

In this paper, we proposed a new group cost-sensitive boosting algorithm for handling
multi-resolution pedestrian detection. Different from the traditional boosting-based approaches where
low-resolution samples are treated with equal importance as high-resolution ones, thus resulting in
false-negatives since they are more easily rejected in the early stages during boosting, the proposed
approach extends the standard AdaBoost algorithm by further exploring different costs for different
resolution groups of the samples in the boosting process, and placing greater emphasis on
low-resolution samples, which are usually more difficult to be detected, in order to better handle the
detection in multi-resolution conditions. The effectiveness of the proposed approach has been validated
by its promising performance compared to other popular methods on different resolution-specific test
sets of the Caltech pedestrian benchmark and the KAIST multispectral pedestrian benchmark.

Future work includes the extension of the proposed group cost-sensitive boosting algorithm to the
application of general object detection, and the utilization of additional motion and context information
or other powerful features in the proposed approach for further performance improvement, as well as
acceleration of the GCS-CCF approach while keeping its high detection accuracy.
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Appendix A. Proof of the Conclusion in Equation (15)

Given the expected loss as in Equation (11), the indicator function as in Equation (7) and the
extended indicator function as in Equation (12), the group-sensitive cost function can be expressed as:

J[ f ] =EX,Y

[
I′(y = 1, x ∈ xG1)e

−C f n1 f (x)

+ I′(y = 1, x ∈ xG2)e
−C f n2 f (x)

+ · · ·

+ I′(y = 1, x ∈ xGN)e
−C f nN f (x)

+I′(y = −1, x ∈ x)eC f p f (x)
]

and by adding the weak learner αg(x) to the predictor f (x), we have:

J[ f + αg] =

EX,Y

[
I′(y = 1, x ∈ xG1)e

−C f n1 f (x)e−C f n1αg(x)

+ I′(y = 1, x ∈ xG2)e
−C f n2 f (x)e−C f n2αg(x)

+ · · ·

+ I′(y = 1, x ∈ xGN)e
−C f nN f (x)e−C f nN αg(x)

+I′(y = −1, x ∈ x)eC f p f (x)eC f pαg(x)
]
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Since J[ f + αg] is minimized if and only if the argument of the expectation is minimized for all x,
the direction of the largest descent and optimal step size can be obtained by:

(αm,gm(x)) = arg min
α,g(x)

{

EY|X

[
I′(y = 1, x ∈ xG1)e

−C f n1 f (x)e−C f n1αg(x)

+ I′(y = 1, x ∈ xG2)e
−C f n2 f (x)e−C f n2αg(x)

+ · · ·

+ I′(y = 1, x ∈ xGN)e
−C f nN f (x)e−C f nN αg(x)

+ I′(y = −1, x ∈ x)eC f p f (x)eC f pαg(x)|x
]}

The expectation can be expressed as follows:

EY|X

[
I′(y = 1, x ∈ xG1)e

−C f n1 f (x)e−C f n1αg(x)

+I′(y = 1, x ∈ xG2)e
−C f n2 f (x)e−C f n2αg(x)

+ · · ·

+I′(y = 1, x ∈ xGN)e
−C f nN f (x)e−C f nN αg(x)

+ I′(y = −1, x ∈ x)eC f p f (x)eC f pαg(x)|x
]

=EY|X

[
I′(y = 1, x ∈ xG1)I(g(xG1) = 1)e−C f n1 f (x)e−C f n1α

+I′(y = 1, x ∈ xG1)I(g(xG1) = −1)e−C f n1 f (x)eC f n1α

+I′(y = 1, x ∈ xG2)I(g(xG2) = 1)e−C f n2 f (x)e−C f n2α

+I′(y = 1, x ∈ xG2)I(g(xG2) = −1)e−C f n2 f (x)eC f n2α

+ · · ·

+I′(y = 1, x ∈ xGN)I(g(xGN) = 1)e−C f nN f (x)e−C f nN α

+I′(y = 1, x ∈ xGN)I(g(xGN) = −1)e−C f nN f (x)eC f nN α

+I′(y = −1, x ∈ x)I(g(x) = 1)eC f p f (x)eC f pα

+ I′(y = −1, x ∈ x)I(g(x) = −1)eC f p f (x)e−C f pα|x
]

=EY|X[
I′(y = 1, x ∈ xG1)I(g(xG1) = −1)e−C f n1 f (x)(eC f n1α − e−C f n1α)

+I′(y = 1, x ∈ xG1)e
−C f n1 f (x)e−C f n1α

+I′(y = 1, x ∈ xG2)I(g(xG2) = −1)e−C f n2 f (x)(eC f n2α − e−C f n2α)

+I′(y = 1, x ∈ xG2)e
−C f n2 f (x)e−C f n2α

+ · · ·

+I′(y = 1, x ∈ xGN)I(g(xGN) = −1)e−C f nN f (x)(eC f nN α − e−C f nN α)

+I′(y = 1, x ∈ xGN)e
−C f nN f (x)e−C f nN α

+I′(y = −1, x ∈ x)I(g(x) = 1)eC f p f (x)(eC f pα − e−C f pα)

+ I′(y = −1, x ∈ x)eC f p f (x)e−C f pα|x
]
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=PY|X(1|xG1)e
−C f n1 f (x) I(g(xG1) = −1)(eC f n1α − e−C f n1α)

+PY|X(1|xG1)e
−C f n1 f (x)e−C f n1α

+PY|X(1|xG2)e
−C f n2 f (x) I(g(xG2) = −1)(eC f n2α − e−C f n2α)

+PY|X(1|xG2)e
−C f n2 f (x)e−C f n2α

+ · · ·

+PY|X(1|xGN)e
−C f nN f (x) I(g(xGN) = −1)(eC f nN α − e−C f nN α)

+PY|X(1|xGN)e
−C f nN f (x)e−C f nN α

+PY|X(−1|x)eC f p f (x) I(g(x) = 1)(eC f pα − e−C f pα)

+PY|X(−1|x)eC f p f (x)e−C f pα

thus the direction of the largest descent and optimal step size can be obtained by:

(αm,gm(x)) = arg min
α,g(x)

{

P′Y|X(1|xG1)I(g(xG1) = −1)(eC f n1α − e−C f n1α)

+ P′Y|X(1|xG1)e
−C f n1α

+ P′Y|X(1|xG2)I(g(xG2) = −1)(eC f n2α − e−C f n2α)

+ P′Y|X(1|xG2)e
−C f n2α

+ · · ·

+ P′Y|X(1|xGN)I(g(xGN) = −1)(eC f nN α − e−C f nN α)

+ P′Y|X(1|xGN)e
−C f nN α

+ P′Y|X(−1|x)I(g(x) = 1)(eC f pα − e−C f pα)

+P′Y|X(−1|x)e−C f pα
}

where

P′Y|X(1|xG1) =PY|X(1|xG1)e
−C f n1 f (x)/Psum

P′Y|X(1|xG2) =PY|X(1|xG2)e
−C f n2 f (x)/Psum

...

P′Y|X(1|xGN) =PY|X(1|xGN)e
−C f nN f (x)/Psum

P′Y|X(−1|x) =PY|X(−1|x)eC f p f (x)/Psum

with

Psum =PY|X(1|xG1)e
−C f n1 f (x) + PY|X(1|xG2)e

−C f n2 f (x)

+ · · ·+ PY|X(1|xGN)e
−C f nN f (x)

+ PY|X(−1|x)eC f p f (x)



Sensors 2019, 19, 780 20 of 23

are the posterior estimates associated with each sample. Hence, the weak learner with the minimum
cost can be obtained by:

(αm,gm(x)) = arg min
α,g(x)

EX

{
P′Y|X(1|xG1)I(g(xG1) = −1)(eC f n1α − e−C f n1α)

+ P′Y|X(1|xG1)e
−C f n1α

+ P′Y|X(1|xG2)I(g(xG2) = −1)(eC f n2α − e−C f n2α)

+ P′Y|X(1|xG2)e
−C f n2α

+ · · ·

+ P′Y|X(1|xGN)I(g(xGN) = −1)(eC f nN α − e−C f nN α)

+ P′Y|X(1|xGN)e
−C f nN α

+ P′Y|X(−1|x)I(g(x) = 1)(eC f pα − e−C f pα)

+P′Y|X(−1|x)e−C f pα
}

Given the definitions in Equations (16) and (17), and by replacing the expectations with the sample
averages, we have:

(αm,gm) = arg min
α,g{(

eC f n1α − e−C f n1α
)
· err+1 + e−C f n1αΩ+1

+
(

eC f n2α − e−C f n2α
)
· err+2 + e−C f n2αΩ+2

+ · · ·

+
(

eC f nN α − e−C f nN α
)
· err+N + e−C f nN αΩ+N

+
(

eC f pα − e−C f pα
)
· err− + e−C f pαΩ−

}
Given the direction of the largest descent g(x), and by setting the derivative with respect to α to zero:

∂

∂α
= C f n1

(
eC f n1α + e−C f n1α

)
· err+1 − C f n1e−C f n1αΩ+1

+C f n2

(
eC f n2α + e−C f n2α

)
· err+2 − C f n2e−C f n2αΩ+2

+ · · ·

+C f nN

(
eC f nN α + e−C f nN α

)
· err+N − C f nNe−C f nN αΩ+N

+C f p

(
eC f pα + e−C f pα

)
· err− − C f pe−C f pαΩ− = 0

thus the optimal step size α is the solution of:

2C f n1 · err+1 · cosh(C f n1α)− C f n1 ·Ω+1 · e−C f n1α

+2C f n2 · err+2 · cosh(C f n2α)− C f n2 ·Ω+2 · e−C f n2α

+ · · ·

+2C f nN · err+N · cosh(C f nNα)− C f nN ·Ω+N · e−C f nN α

+2C f p · err− · cosh(C f pα)− C f p ·Ω− · e−C f pα = 0
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