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Abstract

Identification of risk factors of treatment resistance may be useful to guide treatment selec-

tion, avoid inefficient trial-and-error, and improve major depressive disorder (MDD) care.

We extended the work in predictive modeling of treatment resistant depression (TRD) via

partition of the data from the Sequenced Treatment Alternatives to Relieve Depression

(STAR*D) cohort into a training and a testing dataset. We also included data from a small

yet completely independent cohort RIS-INT-93 as an external test dataset. We used fea-

tures from enrollment and level 1 treatment (up to week 2 response only) of STAR*D to

explore the feature space comprehensively and applied machine learning methods to model

TRD outcome at level 2. For TRD defined using QIDS-C16 remission criteria, multiple

machine learning models were internally cross-validated in the STAR*D training dataset

and externally validated in both the STAR*D testing dataset and RIS-INT-93 independent

dataset with an area under the receiver operating characteristic curve (AUC) of 0.70–0.78

and 0.72–0.77, respectively. The upper bound for the AUC achievable with the full set of fea-

tures could be as high as 0.78 in the STAR*D testing dataset. Model developed using top

30 features identified using feature selection technique (k-means clustering followed by χ2

test) achieved an AUC of 0.77 in the STAR*D testing dataset. In addition, the model devel-

oped using overlapping features between STAR*D and RIS-INT-93, achieved an AUC of >
0.70 in both the STAR*D testing and RIS-INT-93 datasets. Among all the features explored

in STAR*D and RIS-INT-93 datasets, the most important feature was early or initial treat-

ment response or symptom severity at week 2. These results indicate that prediction of TRD

prior to undergoing a second round of antidepressant treatment could be feasible even in

the absence of biomarker data.
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Introduction

Treatment resistant depression (TRD) and relapse/recurrence of major depressive episodes

(MDE) are important sources of morbidity and mortality. Early Identification of risk factors of

resistance using baseline characteristics and initial response may be useful to guide treatment

selection, avoid inefficient trial-and-error, alter disease course, and improve major depressive

disorder (MDD) care. The term initial and early response are used interchangeably in this arti-

cle and its refers to response at 2 weeks.

In the literature, there are multiple TRD definitions[1] and staging models such as the Anti-

depressant Treatment History Form (ATHF), the Thase and Rush Model, the European Stag-

ing Model, the Massachusetts General Hospital Staging Model, the Maudsley Staging Model

(MSM), [2] and the Dutch Measure for quantification of TRD (DM-TRD), an extension of

MSM.[3] From the health authority’s perspective, the September 17, 2009 Committee for

Medicinal Product for Human Use (CHMP) Concept Paper on “The Need For Revision of

Note for Guidance on Clinical Investigation of Medicinal Products In The Treatment of

Depression With Regard To Treatment Resistant Depression” stated that “In a clinical prag-

matic view a patient has been considered suffering from TRD when consecutive treatment

with two products of different pharmacological classes, used for a sufficient length of time at

an adequate dose, fail to induce a clinically meaningful effect (inadequate response).” How-

ever, since there is no evidence supporting switching of treatment within one class is less effec-

tive than switch to a different pharmacologic class, the May 23, 2013 CHMP Guideline on

“clinical investigation of medicinal products in the treatment of depression” stated that “For

the purpose of this guideline TRD is considered, when treatment with at least two different

antidepressant agents (of the same or a different class) prescribed in adequate dosages for ade-

quate duration and adequate affirmation of treatment adherence showed lack of clinically

meaningful improvement in the regulatory setting.” We adopted the spirit of 2013 CHMP defi-

nition in this study. A failed antidepressant trial could be defined by either failure to respond

(less than 50% reduction in depression severity score) or failure to reach remission (such as

having the 16-item Quick Inventory of Depressive Symptomatology, clinician-rated (QIDS-

C16) score > 5 [4]). The risk factors for TRD as reviewed by Bennabi et al., 2014 [5] include

clinical risk factors such as comorbid anxiety disorder, current suicidal risk, non-response to

the first antidepressant received in the patient’s lifetime and presence of melancholic features

[6]; bipolarity, early onset of first depressive episode, high rate of depressive recurrences, and

lack of full remission after a previous episode [7]; low reward dependence and low coopera-

tiveness [8]; high neuroticism, low extraversion, low openness, and low conscientiousness [9].

In addition, a subset of patients with diagnosis of "unipolar" treatment resistant depression

may have a bipolar diathesis[10].

Although there are many studies using baseline clinical risk factors/symptom clusters and/

or early treatment response to predict longer term antidepressant treatment outcome within

the same treatment regime in clinical ascertained samples [11–14], the studies using baseline

clinical characteristics and initial response to earlier treatment regime to predict response to

next treatment option are limited. Perlis et al. [15] developed a clinical decision tool to predict

the risk of TRD based on clinical or socio-demographic variables available by or readily ame-

nable to self-report using a logistic regression model with area under the receiver operating

characteristic curve (AUC) AUC exceeding 0.71 in training, testing, and validation datasets, all

derived from the Sequenced Treatment Alternatives to Relieve Depression (STAR�D). In the

work by Perlis et al., non-TRD and TRD subjects were defined as individuals reaching remis-

sion with a first or second pharmacological treatment trial and those not reaching remission

despite two trials, respectively. In our proposed work, we extended the work by Perlis et al., via

Cross trial TRD prediction
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partitioning the data from STAR�D cohort into the training and the testing dataset, and

included a completely independent cohort RIS-INT-93 as an external test dataset. In addition,

we explored the definition of non-TRD and TRD as individuals responding with a first or sec-

ond treatment trial and those not responding despite two trials, respectively. In the work by

Perlis et al., performance of three machine learning models, namely, naïve Bayes classifier, sup-

port vector machine (SVM), and random forest, was less consistent. In our work, we further

explored other machine learning models such as XGBoost, l2 penalized logistic regression, gra-

dient boosted decision tree (GBDT), the elastic net and compared their performance in the

prediction of TRD.

Methods

Cohorts

STAR�D cohort. The multicenter antidepressant effectiveness STAR�D study (Clinical-

Trials.gov number NCT00021528) has been described elsewhere.[16, 17] Briefly, patients

meeting DSM-IV criteria for MDD went through four levels of treatment options, for up to 12

weeks in length at each level. A patient exited the study and had the option to enter a naturalis-

tic follow up study if achieving remission at the end of each level of treatment. Otherwise the

patient had the option to enter the next level of treatment. All subjects signed written informed

consent before participation, with the protocol approved by institutional review boards at par-

ticipating institutions.

RIS-INT-93 cohort. Data were drawn from a Janssen clinical study RIS-INT-93 (Clinical-

Trials.gov number NCT00044681)[18]. Patients met DSM-IV criteria for MDD and had history

of resistance to therapy with antidepressant medication and were treated (open-label) prospec-

tively with citalopram for up to 6 weeks. Since the first level of antidepressant failure was retro-

spective, baseline (week 0) and early response at week 2 from the level 2 prospective treatment

was used in TRD modeling. All subjects signed written informed consent before participation,

with the protocol approved by institutional review boards at participating institutions.

Design

STAR�D training and testing, and an external test dataset. Data from the STAR�D

cohort was divided into the training and the testing datasets. The training dataset was drawn

from ~80% of the STAR�D data from regional centers 1–8, 10–12), while the testing dataset

was drawn from the rest (~20%) of the STAR�D data from regional centers 13–15 also termed

as the hold-out testing dataset. Internal cross-validation was performed using the STAR�D

training dataset to tune model parameters. Data from RIS-INT-93 cohort served as an inde-

pendent external test dataset.

Target variable for predictive modeling. The predictive modeling objective is to differ-

entiate TRD from non-TRD as early as possible. Non-TRD and TRD subjects were defined by

remission as individuals reaching remission after Level one or Level two of treatment trials

and those not reaching remission despite two trials, respectively; and by response as individu-

als responding after Level one or Level two of treatment trials and those not responding despite

two trials, respectively. For the STAR�D cohort, remission was defined as a score of< = 5 on

QIDS-C16 (primary analysis) or Quick Inventory of Depressive Symptomatology, Self-Report

(QIDS-SR16, secondary analysis) at last observation carried forward (LOCF). Response was

defined as a reduction of> = 50% in baseline QIDS-C16 or QIDS-SR16 score. For both remis-

sion and response criteria, patients must have a QIDS score greater than 5 at week 0 (baseline)

of treatment level one, and remained in the study for at least four weeks. Only data from the

first two levels of treatment were used in the STAR�D study.

Cross trial TRD prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0197268 June 7, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0197268


For RIS-INT-93, remission was defined as a score of< = 7 on HAM-D17, while response

was defined as reduction of> = 50% in baseline HAM-D17 score after 6 weeks of citalopram

treatment. Since all patients were retrospectively reported to have failed one round of antide-

pressant treatment, all non-remitters/non-responders from the prospective treatment were

classified as TRD, while others were classified as non-TRD. In addition, subjects must remain

in the study for at least six weeks to be included in the analysis.

Input features for predictive modeling. Three sets of features were included in the

modeling, the full set of features (n~700) (referred to later as full set of features), the top n fea-

tures from feature selection technique (referred to later as the top n features), and the set of 22

overlapping features between the STAR�D and RIS-INT-93 datasets (referred to later as over-

lapping features).

Full set of features: All the features from enrollment including information from Cumula-

tive Illness Rating Scale (CRS), demographics (DM), psychiatric history (PHX), medication

history (MHX), the Patient Rated Inventory of Side Effects (PRISE), Psychiatric Diagnostic

Screening Questionnaire (PDSQ), as well as baseline and week 2 of level 1 treatment which

include records from Clinic Visit Form, QIDS-C16, QIDS-SR16). Each attribute related to med-

ications was expanded into as many features as number of medications that appeared in the

data with each feature representing information collected on a specific mediation. Additional

features were derived based on prior knowledge and included in predictive modeling. For

comorbid condition, any anxiety disorder (including posttraumatic stress disorder, panic

disorder with or without agoraphobia, specific phobia, social phobia, and general anxiety dis-

order) was derived. In addition, studies suggest that the unidimensional subscales of the multi-

dimensional HAM-D17,[19, 20] which capture the core depressive symptoms, outperform the

full HAM-D17. We included five unidimensional subscales as discussed by Boessen et al.,[21]

including the Bech melancholia scale,[22–24], the Maier-Phillipp severity subscale,[25–27] the

Santen Subscale,[28] the Gibbons’ global depression severity scale,[29] and the 7-item abbrevi-

ated version (HAM-D7).[30] The five factors derived from HAM-D17 (retardation (the sum of

the scores for items 1, 7, 8 and 14, with a score ranging from 0 to 14), anxiety/somatization

(the sum of the scores for items 10, 11, 12, 13, 15, and 17, with a score ranging from 0 to 18),

sleep disturbance (the sum of scores for items 4, 5, and 6, with a total score ranging from 0 to

6), depression, guilt association) was also included as candidate features and tested if any of

them was a better predictor than HAM-D17 item-level data or full HAMD score. Both IDS-C30

and HAM-D17 were only measured at level entry and exit, while QIDS-C16 and QIDS-SR16

were measured every two weeks, we derived an exploratory variable IDS-C5 that was definable

from QIDS-C16 and overlapped with five out of the six items defining IDS-C6/HAM-D6[24,

31], the Bech melancholia scale. Out of the six items (mood sad, involvement, fatigue, anxious

mood, outlook (self), and psychomotor slowing) defining IDS-C6, all except anxious mood

was definable from QIDS-C16 or QIDS-SR16. We included percentage change of IDS-C5 and

QIDS-C16 at week 2, QIDS-C16 at week 2 in the predictive model as well. For each data set, we

eliminated all the features that have a variance less than 10−8 across the selected set of samples.

After this preprocessing, we were left with around 700 starting features for each dataset.

Top n features: All machine learning approaches did not apply feature selection prior to

model fitting. Many of the features were correlated with each other (such as QIDS-C16 was

correlated with QIDS-SR16 and HAM-D17) and most of the machine learning approaches con-

sidered in this work do not handle correlated features well. To mitigate this and to facilitate

model interpretation and application, we applied two strategies to select limited sets of features

for machine learning models. The primary feature selection strategy was using a similar

approach as proposed in Bühlmann et al.[32]. It is a two-step process and it as follows:

Cross trial TRD prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0197268 June 7, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0197268


Step 1: K-means clustering was first applied to all features to group features into k groups

(k = 50, 75, and 100 in our experiment). The feature closest to the centroid of each cluster was

chosen as the representative feature for the cluster.

Step 2: To this end, a χ2 score as proposed by Liu et al [33] was calculated as a measure of

feature importance to select top n features for model creation. Its implementation is available

at http://featureselection.asu.edu/software.php. The method discretizes each numeric attribute

based on χ2 statistics and continuously merges the intervals of each attribute while keeping the

inconsistency rate under certain threshold. We adopted this method due to the ordinal nature

of majority of the features such as depression symptom severity score as measured by QIDS-

C16 and HAM-D17 and those measuring how depression affects patients’ daily life as exempli-

fied by items from Work and Social Adjustment Scale (WSAS) which gives a quantitative eval-

uation of to what extent depression impairs activities related to social and work life. The χ2

statistics was calculated using the STAR�D training dataset or the 90% of the training dataset

(during 10-fold cross-validation procedure within the training data set for optimization of

model parameters). This procedure was applied for each of the target outcome and for each

feature clustering configuration (k = 50, 75, 100). This feature selection strategy is called clus-

tering- χ2 throughout the article.

The second feature selection strategy was using the elastic net technique [34, 35] and it cor-

responds to n features with non-zero beta coefficient while optimizing the number of non-

zero beta coefficient to ~30. This feature selection strategy is termed as ELNET features

throughout the article. As optimizing elastic net to approximately 30 features could result in

sub-optimal performance, we selected top n features optimized according to the model’s per-

formance (area under the receiver operating characteristics curve (AUC)) via 10-fold internal

cross-validation in the training dataset and the results were comparable. If not explicitly stated,

the ELNET features refers to the ~30 features selected by elastic net.

Overlapping features: There were 22 overlapping (but not exhaustive list of) features

between STAR�D and RIS-INT-93 (week 0 17 HAMD item score, week 0 HAM-D17 total

score, HAM-D retardation subtotal score, percentage change of HAM-D17 total score at week

2 from baseline, any anxiety disorders, and recurrent depression) and represented the third set

of features for the prediction of TRD.

Predictive modeling

Machine learning methods. Five different machine learning approaches including l2
penalized logistic regression [36, 37] random forest [38] GBDT, XGBoost, and the elastic net

were applied in this study. The implementations of l2 penalized logistic regression, random

forest, GBDT, the elastic net available from scikit-learn [39] and XGBoost from https://

xgboost.readthedocs.org/en/latest/ were used in this study.

Handling class imbalance. In our prediction tasks, subjects from different categories

(remission vs. non-remission; response vs. non-response as determined by either QIDS-C16 or

QIDS-SR16) were imbalanced to different degrees. A direct application of the machine learning

model introduced above would lead to the obtained model biased towards the majority class.

The class imbalance handling technique that has been used in Nie et al., 2015 [40] was also

applied to the training data in STAR�D cohort. Basically, during the training stage, we used all

the samples from minority class in the training dataset and subsample with replacement an

equal number of samples from the majority class to build one model. We repeated the process

t times and thus obtained t models (t = 30). In obtaining predictions for the test dataset, an

ensemble model prediction corresponding to t models are obtained by averaging t model pre-

dictions (probabilities) and the performance are assessed against the target. (Fig 1).

Cross trial TRD prediction
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Model characterization. Internal cross-validation (10-fold) performance metrics was

reported for the training dataset using full set of features and top n features (n = 2, 3, . . ., k,

where k = 50, 75, and 100 clusters). The model derived from the STAR�D training dataset was

externally tested in a hold-out STAR�D testing dataset. For the overlapping features, the mod-

els trained using the STAR�D training dataset was both internally cross-validated in the train-

ing dataset and externally validated in the hold-out STAR�D testing data and an independent

RIS-INT-93 dataset using machine learning approaches. Relevant descriptions of model per-

formance including AUC, sensitivity, specificity, accuracy, balanced accuracy, positive predic-

tive value (PPV), and negative predictive value (NPV) were determined.

Permutation test. To make sure that the observed model performance is not obtained by

chance, the target label was randomly permutated 1,000 times in the START�D training data-

set. The model’s training on the STAR�D training dataset with permuted target labels and the

prediction process in STAR�D testing dataset was repeated for 1,000 times giving rise to a null

Fig 1. Schematic diagram showing the predictive modeling process. The STAR�D training dataset was used to create 30 subsamples with equal ratios of cases and

controls and 30 models were constructed using the entire training dataset. The 30 models were used to predict the outcome for the independent STAR�D test dataset

and RIS-INT-93 dataset and the predicted outcome were average across 30 models.

https://doi.org/10.1371/journal.pone.0197268.g001

Cross trial TRD prediction
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distribution of AUC values. The observed AUC value was plotted in reference to the null AUC

distribution, and a permutation p-value was calculated. [41]

Interpretation of the relationship between features and outcome via multiple logistic

regression procedure. Classical logistic regression with forward selection was used to facili-

tate model interpretation, although only linear relationship could be captured in the model.

With this approach, only the top n features from the STAR�D training data (n = 30 from clus-

tering-χ2) were included in the model as candidates for forward selection. The features selected

were included in a multiple logistic regression model and features with p-value less than 0.1

were examined to understand the relationship between features and outcome. Classical logistic

regression was fitted using PROC LOGISTIC via SAS 9.2 (SAS Institute Inc., Cary, NC).

Results

Using the remission criteria, there were 501 TRD cases and 1463 non-TRD controls from the

STAR�D training dataset and 141 TRD cases and 349 non-TRD controls from the STAR�D

testing dataset using QIDS-C16 assessment (primary analysis, S1 Table). For RIS-INT-93, there

were 200 TRD cases and 25 non-TRD controls definable using HAM-D17. Using the responder

criteria, there were 411 TRD cases and 1797 non-TRD controls from the STAR�D training

dataset and 104 TRD cases and 470 non-TRD controls from the STAR�D testing dataset using

QIDS-C16 assessment. For RIS-INT-93, there were 190 TRD cases and 35 non-TRD controls

definable using HAM-D17.

To reduce the correlation between features, we used k-means clustering to group features

into clusters and select a candidate feature representing each cluster. To explore the approxi-

mate number of top features that should be included in the predictive model without com-

promising on the model performance, the top n features (n = 2, 3, . . ., 75) from k-means

clustering (k = 75 for k-means clustering, as results from k = 50 and 100 were comparable) were

used to train, test the model (as shown in Fig 2) and the model’s performance plateaued at ~10–

30 predictors. The variance of AUC obtained from internal cross-validation in the STAR�D

training dataset for each fold was averaged across 30 models corresponding to 30 subsamples.

The variance for the top n (n = 30) features was 3.9%, 3.3%, and 3.3% for random forest, l2
penalized logistic regression, and GBDT, respectively. The results for full set of features and the

top n features (n = 30) were reported for subsequent analysis. We also used the ELNET features

generated by elastic net (optimizing for number of features = ~30) and compared the results to

the earlier top n features. In addition, the results for the overlapping features was also reported.

For TRD phenotype defined by remission criteria using QIDS-C16 assessment, the AUC for

the 10-fold internal cross-validation in the training dataset ranged from 0.73 to 0.79 with the

full set of features with GBDT performing the best (S1A Fig). The out of bag (OOB) score for

random forest was 0.71. The model derived from the training data was externally validated in

the STAR�D test dataset with the AUC ranging from 0.70 to 0.78 for all different machine

learning approaches and is shown in Fig 3 and S1D Fig. The permutation testing for all the

machine learning approaches is shown in Fig 4. Model AUC, accuracy, specificity, sensitivity,

PPV, and NPV for selected models were also reported in Table 1, S2 Table, and S3 Table using

predicted target (ranging from -1 to 1) with 0 as a threshold for classifying predicted target.

The full set of features represented the upper bound of model performance using all clinical

variables. To remove the correlated structure among the features, the AUCs for the top n fea-

tures (n = 30) (from the k-means clustering procedure were 0.76–0.77 in the STAR�D training

data (S1B Fig) and 0.75–0.77 in the STAR�D testing data (S1E Fig). To test if the model could

be generalized to a completely independent dataset, namely, RIS-INT-93, the overlapping fea-

tures were both internally cross-validated in the STAR�D training data (10-fold cross-

Cross trial TRD prediction
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validation AUC 0.70–0.71, S1C Fig) and externally validated in the STAR�D hold out testing

data (AUC 0.70–0.73, S1F Fig) and the independent RIS-INT-93 dataset (AUC 0.72–0.77, S1G

Fig). Confusion matrix for GBDT model in STAR�D test dataset and independent dataset

RIS-INT-93 was also reported in S4 Table. Similar results were observed for target variable

using responder criteria defined using QIDS-C16 assessment (S2 Fig) and for target variable

using remission and responder criteria defined QIDS-SR16 assessment (S3 Fig and S4 Fig).

Overall, the models achieved AUC> = 0.7 in at least one machine learning approaches across

the STAR�D testing dataset and RIS-INT-93 dataset and was independent of the phenotype

definition by remission or response criteria or using QIDC-C16 or QIDS-SR16 assessment,

although the performance of TRD using remission criteria generally was better than that using

response criteria and the performance of the full set of features and the top n features outper-

formed that of the overlapping features as expected. For simplicity of reporting, we reported

models with TRD defined using remission criteria and QIDS-C16 assessment moving forward

if not explicitly stated. Results from alternative models could be found in the supplemental

content. The results for the ELNET features (elastic net optimized for number of features =

~30 for ease of comparison with the top n features selected by clustering-χ2) were comparable

and described in S5 Table.

The top groups of features identified to be important based on the clustering- χ2 score and

most consistent between outcome definitions (remission and response) and symptom severity

measurements (QIDS-C16 and QIDS-SR16) were represented by: QIDS total score at week 2

(self-reported and clinician-rated QIDS total score were strongly correlated and grouped

together with percentage change in symptom severity score at week 2 from week 0 into the

same cluster by k-means clustering procedure, see S6 Table for top 20 groups of features

Fig 2. AUC for models containing top 2 to 75 representative predictors from k-means cluster (k = 75) was plotted against the number of predictors for each of the

machine learning methods in the STAR�D training and test datasets, respectively. Remission status was used to define TRD using QIDS-C16 data.

https://doi.org/10.1371/journal.pone.0197268.g002
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clustered using k-means clustering), Quality of Life Enjoyment and Satisfaction Questionnaire

(QLESQ) total score, Work and Social Adjustment Scale (WSAS) total score, and Short Form

Health Survey (SFHS, SF-12) Physical component. The top n (n = 10) representative features

from clustering- χ2 were also shown in Fig 5 and S5 Fig. They represented the feature impor-

tance in a univariate sense. The ELNET features (S7 Table) and were largely consistent with

the univariate features of importance except that multiple correlated features were selected as

expected.

To facilitate the interpretation of the relationship between features and target and to con-

sider multiple features simultaneously (in contrast to χ2 statistics), both classical logistic

regression model with forward selection and the elastic net and were evaluated. For the classi-

cal logistic regression, starting from top 30 features from the STAR�D training data, 8 variables

were selected in forward selection procedure and 6 made it to the final logistic regression

model (Table 2, S7 Table). In the STAR�D training dataset, more severe QIDS-C16 symptom

severity total score at week 2 [or higher percentage change in QIDS-C16 at week 2 from base-

line (i.e. less improvement) since both variables were clustered together in k-means clustering

procedure (S6 Table) although QIDS-C16 symptom severity total score at week 0 will add addi-

tional explanatory value if including percentage change at week 2 from week 0 in the model],

Fig 3. Receiver operating characteristic curves in training and test dataset (STAR�D) using the full set of features, top n features (n ~

30), and the overlapping features where remission status was used to define TRD (STAR�D remission status was defined using

QIDS-C16 data, and RIS-INT-93 remission status was defined using HAM-D17).

https://doi.org/10.1371/journal.pone.0197268.g003
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anxiety/chronicity (PDSQ questions), lower level of Physical Health Composite Scores (PCS),

nervous system symptom (PRISE question) and WSAS total score were associated with

increased odds of being TRD (Table 2). For PCS (ranging from 0 to 100), the odds ratio is less

than 1 since a zero score indicates the lowest level of health measured by the scales and 100 indi-

cates the highest level of health. Similar results for TRD defined using responder criteria were

reported in S8 Table. When testing these six variables in the STAR�D testing dataset, all vari-

ables predicted outcome in the same direction as the STAR�D training data and both QIDS-C16

symptom severity total score at week 2 and Physical Health Composite Scores (PCS) reached

statistical significance (p-value< 0.05). For the elastic net, the sign of β coefficient (S8 Table)

was consistent with the directionality of odds ratio and most variables with non-zero β coeffi-

cients were consistent except correlated variables were also grouped in the model.

Lastly, we considered an overly simplified model using early response (defined by having

less than 20% improvement at week 2) to predict TRD outcome. In the STAR�D training data-

set, the model accuracy for predicting TRD is 62 in the STAR�D training data (sensitiv-

ity = 0.52, specificity = 0.77, PPV = 0.75, NPV = 0.54). Model performances in the STAR�D

testing dataset and RIS-INT-93 dataset were comparable and is shown in S9 Table.

Discussion

We developed a series of machine learning models to predict TRD after two trials of treatment

regimens using clinical and socio-demographic data. The models were trained using three sets

of features, namely, all set of features (using all available STAR�D features from enrollment

Fig 4. Permutation process to access the model robustness. The outcome label of the STAR�D training dataset was randomly shuffled 1,000 times and the AUC

distribution of the 1,000 null models were plotted for each machine learning machine method (A) XGBoost, (B) Random Forest, (C) l2 penalized logistic regression, and

(D) GBDT. In all cases, the observed AUC out-perform the random noise from the 1,000 null models.

https://doi.org/10.1371/journal.pone.0197268.g004
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and week 0 (all features) and week 2 (only symptom severity score and percentage change

from baseline were used) of level 1 treatment), top n features (a subset of top 30 representative

features selected by clustering- χ2 and elastic net), and overlapping features (a subset of 22

overlapping features between STAR�D and RIS-INT-93) were externally validated and per-

formed reasonably well with AUC in the range from 0.70 to-0.78 in the STAR�D hold-out test-

ing dataset and 0.74–0.78 in RIS-INT-93 independent dataset. Although the full set of features

provided an upper bound using clinical and socio-demographic features, the large number of

features makes it impractical to deploy the model in a real-world setting. A reduced set of top

n (n = 30) features from clustering- χ2 procedure is more practical if we were to design a new

study and collect features to predict TRD. In order to use data from existing studies as inde-

pendent testing dataset, we could only work with the limitation of overlapping features.

The overall accuracy of the GBDT model using top 30 features (k = 75) was 0.70 for the

STAR�D testing dataset (predicted outcome ranging from -1 to 1, using mid-point 0 as the

Table 1. Model performance (outcome defined by remission using QIDS-C16) in the STAR�D testing dataset and RIS-INT-93.

Model Accuracy Balanced Accuracy Sensitivity Specificity PPV NPV AUC

STAR�D test data set
Random Forest

Full set of features 0.70 0.70 0.69 0.71 0.49 0.85 0.78

Top n features (n = 30)a 0.67 0.68 0.72 0.65 0.45 0.85 0.77

Top n features (n = 31)b 0.70 0.69 0.68 0.71 0.48 0.85 0.76

Overlapping features 0.65 0.66 0.67 0.64 0.43 0.83 0.71

GBDT
Full set of features 0.70 0.70 0.69 0.71 0.49 0.85 0.78

Top n features (n = 30)a 0.70 0.70 0.72 0.68 0.48 0.86 0.77

Top n features (n = 31)b 0.70 0.70 0.68 0.71 0.49 0.85 0.76

Overlapping features 0.66 0.67 0.70 0.64 0.44 0.84 0.71

XGBoost
Full set of features 0.67 0.68 0.72 0.64 0.45 0.85 0.76

Top n features (n = 30)a 0.66 0.67 0.67 0.66 0.44 0.83 0.73

Top n features (n = 31)b 0.67 0.68 0.72 0.65 0.45 0.85 0.76

Overlapping features 0.68 0.68 0.67 0.69 0.47 0.84 0.72

l2 penalized logistic regression
Full set of features 0.63 0.64 0.65 0.62 0.41 0.81 0.69

Top n features (n = 30)a 0.71 0.71 0.68 0.73 0.50 0.85 0.73

Top n features (n = 31)b 0.72 0.71 0.68 0.73 0.51 0.85 0.77

Overlapping features 0.67 0.67 0.68 0.66 0.45 0.84 0.74

Elastic net
Top n features (n = 31)b 0.70 0.68 0.64 0.73 0.49 0.83 0.76

RIS-INT-93 dataset (Overlapping features)
Random Forest 0.86 0.65 0.92 0.36 0.92 0.39 0.73

GBDT 0.82 0.64 0.88 0.40 0.92 0.29 0.71

XGBoost 0.84 0.67 0.89 0.44 0.93 0.33 0.73

l2 penalized logistic regression 0.83 0.64 0.88 0.40 0.92 0.29 0.60

GBDT: gradient boosting decision tree
a clustering- χ2

bELNET features

https://doi.org/10.1371/journal.pone.0197268.t001
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threshold to infer TRD vs. non-TRD status). The accuracy in predicting TRD and non-TRD

were comparable (0.72 and 0.68, respectively), Assuming there may be a population of ambig-

uous subjects who may be difficult to predict based on clinical and socio-demographic features

alone, we focused only on extreme 10 and 20 percentiles of the predicted outcome distribution

Fig 5. variable of importance in statistical learning approaches for outcomes defined by (A) remission status (B) responder status. In both cases, the outcomes were

defined using QIDS-C16. SFHS: Short Form Health Survey (SF-12); WSAS: The Work and Social Adjustment Scale; �from PRISE: The Patient Rated Inventory of Side

Effects, which collected symptoms one had experienced in the past week. Those symptoms may or may not have been caused by the treatment.

https://doi.org/10.1371/journal.pone.0197268.g005
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(of being TRD or being non-TRD). The accuracy for extreme 10 and 20 percentiles for infer-

ring non-TRD was 0.98 (1 error out of 49 subjects) and 0.95 (5 errors out of 98 subjects), while

the accuracy for extreme 10 and 20 percentiles for inferring TRD was 0.69% (15 errors out of

49 subjects) and 0.60 (39 errors out of 98 subjects), respectively, suggesting it is easier to pre-

dict non-TRD than TRD in the STAR�D testing dataset for those especially among those with

extreme predicted outcome. The default choice of using mid-point in predicted probability to

classify subjects is arbitrary and not necessarily the optimal threshold. We prefer to report

AUC as it takes into different threshold cut points into consideration. For a predictive model

to be useful in predicting individual outcome, a pre-specified threshold shall be used. We

therefore also explored a specific cut point such as having a predicted score less than -0.6 pre-

dicts TRD, while having a predicted score great than 0.6 predicts non-TRD. Using these

thresholds, the accuracy for non-TRD and TRD prediction was 0.90 and 0.53, respectively, in

the STAR�D testing dataset. For the model using overlapping features, the overall accuracy of

the GBDT model was 0.82 for RIS-INT-93 dataset. The accuracy in predicting TRD and non-

TRD were 0.88 and 0.40, respectively. Using the same -0.6 and 0.6 for predicting TRD and

non-TRD, the accuracy for TRD and non-TRD prediction was 0.93 (11 errors out of 154 pre-

dictions) and 0.40 (15 errors out of 25 predictions), respectively, in the RIS-INT-93 dataset. It

is unlikely that the model performance and these observations merely reflect the group make

up as STAR�D samples had approximately 2.5 times more non-TRD subjects than TRD sub-

jects, while RIS-INT-93 study had more TRD than non-TRD subjects, as the actual model out-

performed the null models in all cases of the permutation testing.

It is somewhat surprising that the performance of models in the independent RIS-INT-93

dataset was generally somewhat superior to the STAR�D testing dataset. In the STAR�D train-

ing dataset, symptom severity score at week 2 was selected over symptom severity score at

week 0 and percentage change in symptom score, suggesting the closer the symptom measure-

ment is to the future outcome the more predictive the feature is in predicting the future out-

come. In RIS-INT-93, level 1 failure was retrospectively reported and therefore only level 2

measurements were available. Therefore, it is possible that RIS-INT-93 prediction problem

might be an easier test case compared to STAR�D study design. Furthermore, the outcome

Table 2. Predictors from PROC LOGISTIC for TRD phenotype defined using remitter criteria in the STAR�D training and testing datasets.

Effect Dataset Pr > ChiSq Odds Ratio Point

Estimate

Odds Ratio 95% Wald

Confidence Limits

QIDS-C16 total score at week 2 (Level 1) Training� < .0001 1.198 (1.161, 1.236)

Testing� < .0001 1.211 (1.133, 1.294)

SFHS Physical Health Composite Scores Training < .0001 0.978 (0.969, 0.988)

Testing 0.0072 0.972 (0.952, 0.992)

WSAS total score Training < .0001 1.031 (1.016, 1.046)

Testing 0.1072 1.023 (0.995, 1.051)

PDSQ: being in crowded places make one feel fearful, anxious, or nervous because you

were afraid you’d have an anxiety attack in the situation during the past six months

Training 0.0064 1.383 (1.095, 1.747)

Testing 0.0615 1.567 (0.979, 2.508)

PRISE: how bad was the worst nervous system symptoms (headache, tremors, poor

coordination, dizziness) that one has experienced during the past week regardless of cause

(0—not present, 1- tolerable, 2- distressing)

Training 0.0336 1.193 (1.014, 1.403)

Testing 0.1813 1.270 (0.895, 1.802)

PDSQ: did you feel sad or down on most days of the past 2 years? Training 0.0609 1.261 (0.989, 1.608)

Testing 0.1653 1.426 (0.864, 2.354)

�Sample size for final multiple logistic regression model is 501 TRD cases vs. 1463 non-TRD controls in the STAR�D training data, and 141 TRD and 349 non-TRD in

the STAR�D testing data. SFHS: Short Form Health Survey (SF-12). WSAS: The Work and Social Adjustment Scale. PRISE: The Patient Rated Inventory of Side Effects.

PDSQ: Psychiatric Diagnostic Screening Questionnaire™

https://doi.org/10.1371/journal.pone.0197268.t002
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measurement was at week 12 (if there is no missing data or last observation carried forward

(LOCF) but minimally week 4) in STAR�D, while in RIS-INT-93 the outcome measurement

was at week 6 (or earlier but at minimal week 4). In addition, the fewer number of non-TRD

subjects in RIS-INT-93 (25 to 35) as against STAR�D (349 to 470) could also be a potential lim-

itation of the current work. It is therefore important to further validate the models developed

from the STAR�D training to independent studies of different design but preferably two stages

of prospective interventional studies such as the Establishing Moderators and Biosignatures of

Antidepressant Response in Clinical Care (EMBARC)[42–45] and the Canadian Biomarker

Integration Network in Depression (CAN-BIND)[46].
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