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Abstract

Background: Despite the introduction of targeted therapies, most patients with myeloid malignancies will not be
cured and progress. Genomics is useful to elucidate the mutational landscape but remains limited in the prediction
of therapeutic outcome and identification of targets for resistance. Dysregulation of phosphorylation-based
signaling pathways is a hallmark of cancer, and therefore, kinase-inhibitors are playing an increasingly important
role as targeted treatments. Untargeted phosphoproteomics analysis pipelines have been published but show
limitations in inferring kinase-activities and identifying potential biomarkers of response and resistance.

Methods: We developed a phosphoproteomics workflow based on titanium dioxide phosphopeptide enrichment
with subsequent analysis by liquid chromatography tandem mass spectrometry (LC-MS). We applied a novel Kinase-
Activity Enrichment Analysis (KAEA) pipeline on differential phosphoproteomics profiles, which is based on the
recently published SetRank enrichment algorithm with reduced false positive rates. Kinase activities were inferred
by this algorithm using an extensive reference database comprising five experimentally validated kinase-substrate
meta-databases complemented with the NetworKIN in-silico prediction tool. For the proof of concept, we used
human myeloid cell lines (K562, NB4, THP1, OCI-AML3, MOLM13 and MV4-11) with known oncogenic drivers and
exposed them to clinically established kinase-inhibitors.

Results: Biologically meaningful over- and under-active kinases were identified by KAEA in the unperturbed human
myeloid cell lines (K562, NB4, THP1, OCI-AML3 and MOLM13). To increase the inhibition signal of the driving
oncogenic kinases, we exposed the K562 (BCR-ABL1) and MOLM13/MV4-11 (FLT3-ITD) cell lines to either Nilotinib
or Midostaurin kinase inhibitors, respectively. We observed correct detection of expected direct (ABL, KIT, SRC) and
indirect (MAPK) targets of Nilotinib in K562 as well as indirect (PRKC, MAPK, AKT, RPS6K) targets of Midostaurin in
MOLM13/MV4-11, respectively. Moreover, our pipeline was able to characterize unexplored kinase-activities within
the corresponding signaling networks.
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primary patient samples.

Conclusions: We developed and validated a novel KAEA pipeline for the analysis of differential phosphoproteomics
MS profiling data. We provide translational researchers with an improved instrument to characterize the biological
behavior of kinases in response or resistance to targeted treatment. Further investigations are warranted to
determine the utility of KAEA to characterize mechanisms of disease progression and treatment failure using
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Background
Our understanding of the clonal composition of can-
cer has substantially advanced in the last decade but
we are increasingly facing the limitations of genomics
for the prediction of treatment response and the iden-
tification of suitable targets of resistance. Initiated by
the advent of high-throughput next-generation se-
quencing (NGS), considerable effort has been devoted
to investigate the genomes and transcriptomes of
various cancers, including myeloid malignancies [1-3].
These initiatives aimed for a better understanding of
individual’s disease biology, identification of prognos-
tic as well as predictive biomarkers and lead to the
development of targeted treatments according to the
patients’ molecular profiles (precision medicine) [4,
5]. Modern genomics has revolutionized the diagnos-
tic accuracy by its ability to detect previously hidden
DNA sequence variations in high-throughput and at
single-nucleotide resolution [6]. The evolution of bio-
informatics contributed to this development and
allowed to reduce the complexity of the data and
characterize novel biological clusters [7, 8]. Despite
these indisputable achievements of genomics, our un-
derstanding of functional biology remains limited.

Conventional cytogenetic analysis was the first gen-
omic approach that was used for diagnostics and
disease-based risk stratification [9]. As an example,
Chronic myeloid leukemia (CML) was found to be char-
acterized by the BCR-ABLI1 translocation and showed
later to be a paradigmatic disease amenable to functional
cure with tyrosine-kinase inhibitors (TKIs) targeting the
ABL1 kinase [10, 11]. Many other TKIs have entered
clinics for treatment of hematological malignancies
since. These include Ruxolitinib, a janus kinase 1/2 in-
hibitor for Primary Myelofibrosis and Polycythemia Vera
[12], Ibrutinib, a bruton kinase inhibitor for B-cell malig-
nancies [13] and most recently Midostaurin, a multi-
kinase inhibitor for FMS-like tyrosine kinase 3 (FLT3)
mutated acute myeloid leukemia (AML) [14, 15]. In con-
trast to CML, most other hematological neoplasms are
genetically more heterogeneous and progression under
targeted therapies is generally inevitable.

Proteins are biological effectors of the malignant
behavior and assumed to reflect more appropriately

the functional biology of cancer phenotypes. Phos-
phorylation is one of the most important post-
translational modifications of proteins involved in signal
transduction and other important cell functions such as
proliferation and energy metabolism [16, 17]. Dysregula-
tion of phosphorylation-based signaling pathways is fun-
damental for oncogenesis and, therefore, it is not
surprising that kinase-inhibitors are attractive targeted
therapies in a variety of cancers, including hematological
malignancies. Phosphorylation can occur at amino acids
serine (86%), threonine (12%) and tyrosine (1.8%) and is
conferred by an array of protein kinase families [18]. Phos-
phoproteomics represents the phosphorylation status of
the proteome imposed by kinases and phosphatases at a
given time point. There is a growing interest in using kin-
ase inhibitors for the treatment of patients with
hematological neoplasms. However, most patients eventu-
ally progress and the mechanisms remain frequently ob-
scure. To understand the dynamic roles of the different
kinases’ families, multiple groups have attempted to de-
velop different phosphoprotemics approaches to infer the
activities of kinases and relate them to the biological state
(Table 1). Every pipeline has its unique features but none
of these can be currently considered as the optimal
“golden standard”.

In an attempt to increase the specificity of the enrich-
ment, improve the coverage of kinase-substrate database
and provide an interactive visualization of kinases/path-
ways, we set out in developing a novel untargeted Kin-
ase-Activity Enrichment Analysis (KAEA) pipeline (Fig.
1). This pipeline allows inferring kinase- and pathway
activities from differential phosphoproteomics mass
spectrometry (MS) data by employing a recently pub-
lished SetRank enrichment algorithm, which reduces
false positivity rates. Moreover, we use an extensive ref-
erence dataset comprising five experimentally-validated
kinases-substrates databases that were combined with
the NetworKIN in-silico prediction tool. Finally, we apply
the ShinyApp for the interactive visualization of differen-
tial phosphosites, enriched kinases, and pathways com-
bined with a subsequent STRING network analysis.
Here, we show the development and validation of the
KAEA pipeline using human myeloid cell line models
exposed to clinically established kinase inhibitors and
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Table 1 Selection of published kinase activity analysis pipelines using phosphoproteomics data

Software Method Statistic Database Input Visualization
Kinase-Set Calculate the ratio of the means of the z-score PhosphoSitePlus + Pre-processed comma-separated file  KSEA Shiny
Enrichment Analysis  phosphorylated peptide abundances in the NetworkIN with columns of proteins, genes, App
(KSEA) [19, 20] substrate groups relative to their abundances in peptides, phosphosites, p-values
the whole data set and Fold changes
Kinase-Enrichment Calculate significant deviations from the expected  Fisher's NetworKIN + Phospho.ELM  List of gene symbols Web tool
Analysis (KEA) [21] value which is the cardinality of the set of exact test  + MINT + HPRD + Swiss-
substrates that are targeted by specific kinases Prot + PhosphoPoint +Man-
divided by the total number of substrates in the ual annotations
background dataset
Kinase Perturbation  In-house directional hypothesis testing framework  Stouffer's  PhosphoSitePlus Pre-processed comma-separated file  ShinyApp R
Analysis (KinasePA)  for pathway analysis statistics ~ +Phospho.ELM with columns of phosphosites and ~ package
[22] (z-score) fold changes
Knowledge-based Estimate the optimal number of clusters in dataset Fisher's PhosphoSitePlus Time-course data set with columns R package
CLUster Evaluation using K-means based clustering and then identify-  exact test of phosphosites and fold changes
(CLUE) [23] ing the enriched kinases in each cluster at time points
Inference of kinase ~ Non-linear optimization routine to minimize the - PhosphoSitePlus Data set with columns of protein or Matlab
activities from cost function that relates kinase activities and gene names, the sequences of the
phosphoproteomics  affinities to phosphosite measurements measured peptides and data values
(IKAP) [24]
Integrative Inferred  Inference from single biological samples, INKA PhosphoSitePlus + MaxQuant output files Web tool
Kinase Activity combining both kinase- and substrate-centric evi-  score NetworkIN
(INKA) [25] dence metrics
Kinase activity Model the contribution of kinases to cell viability ~ K-score PhosphoSitePlus MaxQuant output files na.
ranking using by the net activity of a kinase which is calculated
phosphoproteomics — as the sum of intensities of its known substrates
(KARP) [26] relative to the sum of intensities of all
phosphorylation sites in the studied dataset.
Proteomics workflow Kinase Activity Enrichment Analysis (KAEA)
Sample collection and - 5 i tall lidated
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Fig. 1 Proteomics workflow and the Kinase-Activity Enrichment Analysis (KAEA) pipeline. For more details see methods section. Manual and
source code are publicly accessible on the github repository (https://github.com/Mahmoudhallal/KAEA)
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discuss the distinguishing features compared to other plot (Fig. 2B) and hierarchical clustering of quantified PS

published pipelines. (Fig. 2C).
KAEA was performed on the five cell lines separately,
Results whereby the other four cell lines were used as base line,

in order to identify relatively over- and underactive ki-
nases. We focused our analysis on K652 (Fig. 2D) and
MOLM13 (Fig. 2E), as these cell-lines are expected to be
driven by the oncogenic kinases BCR-ABL1 and FLT3-
ITD, respectively. In K562, 23 kinases were overactive
and 22 underactive, respectively. ABL was itself not
found enriched, but its downstream kinases were, such

Identification of biologically meaningful kinases in non-
perturbed human myeloid cell lines

In total, 14,590 unique PS were identified and quantified
in the pooled replicates of K562, NB4, THP1, MOLM13
and OCI-AMLS3, respectively (Fig. 2A). Cell lines clus-
tered according to their expected phenotype in erythroid
(K562), promyelocytic (NB4), monocytic (THP1) and
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Fig. 2 The phosphoproteomes of the unperturbed five human myeloid cell lines. A Barplot represents the number of quantified PS in every
replicate before imputation for K562 (red), NB4 (olive-green), THP1 (light green), MOLM13 (magenta), and OCI-AML3 (blue). B PCA distribution of
quantified PS showing phenotypic clusters of cell-lines. C Heatmap of row scaled quantified PS showing equivalent clusters as with PCA. D KAEA
waterfall plot of K562 shows -log10 p-values of overactive (red) and underactive kinases (blue) compared to the other four cell lines. E KAEA
waterfall plot of MOLM13 compared to the other four cell lines. TS: tumor suppressor
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Activated Protein Kinases 3 and 8 (MAPK3/ERK1 and
MAPKS8/JNK1) [27, 28], Casein Kinase 2A (CSKN2A)
[29], and Insulin Like Growth Factor 1 Receptor kinase
(IGF1R) [30]. Additional overactive kinases, which have
not yet been investigated in detail in the context of
BCR-ABLI, included CDC2-Like Kinase 1/2 (CLK1/2),
Glycogen Synthase Kinase 3B (GSK3B), Monopolar
Spindle 1 kinase (MPS1), also known as TTK Protein
Dual Specificity Protein Kinase, and Protein Kinase C
Beta (PRKCB).

In MOLM13, 14 kinases were overactive while 9 were
underactive. FLT3, by itself, was not found enriched, but
its downstream kinases were, such as CDKs, Polo-Like
Kinase 1 (PLK1) [31], p90 Ribosomal Protein S6 Kinase
(RPS6K, RSK-group) [32, 33], Spleen Tyrosine Kinase
(SYK) [34] along with mammalian Target of Rapamycin
(mTOR) [35]. Additional overactive kinases, which have
not yet been investigated in detail in the context of
MOLM13, included Casein Kinase 1E (CSKN1E), Home-
odomain Interacting Protein Kinase 1 (HIPK1), Inhibitor
of Nuclear Factor Kappa B Kinase Subunit Beta (IKBKB),
Tousled Like Kinase 2 (TLK2) and Serum- and
Glucocorticoid-Inducible Kinase 1 (SGK1).

Biologically meaningful overactive kinases were also
identified in the other three cell lines. This included
CSKN2A in PML-RARA driven NB4 cells [36], several
kinases involved in the PRK/CREB-signaling in MLL-
driven THP1 cells [37, 38] and kinases of the AKT1I-
pathway in the mutated NPM1-driven OCI-AML1 cells
[39] (Suppl. Fig. 1).

Collectively, we found overactive ABL and FLT3 down-
stream kinases in K562 and MOLM13, respectively, as
well as additional meaningful kinases in the other three
cell lines as an initial proof of concept for the biological
relevance of the generated output of our KAEA pipeline.

Pharmacological inhibition experiments using specific
myeloid cell lines

We reasoned that using the other four cell lines as back-
ground control was not ideal, as only relative changes
could be enriched interfering with the detection of bio-
logically relevant kinase activities. Therefore, we decided
to perform more specific pharmacological kinase inhib-
ition assays using Nilotinib and Midostaurin in the BCR-
ABL1 driven K562 as well as FLT3-ITD driven
MOLM13/MV4-11 cell lines, respectively.

Identification of direct and indirect Nilotinib targets in the
BCR-ABL1 driven K562 cell line model

We identified in the phosphoproteome of K562 after Nilo-
tinib exposure 4394 protein groups, including 12,617
unique quantified PS (Fig. 3A), of which 7007 and 5610
PS were over- and under-expressed, respectively. Dephos-
phorylation of pCRKL Y207, as downstream reference site
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of ABL1 inhibition, was confirmed using western blot
(WB) and MS (Fig. 3B, C). KAEA identified 24 inhibited
and 13 overactive kinases (Fig. 3D). In contrast, to the ex-
periment performed in the unperturbed cell-lines, here we
were mainly interested in the inhibited kinases. Nilotinib
inhibition involved the expected direct target kinases
Hematopoietic Cell Kinase (HCK), as a member form the
SRC proto-oncogenes, ABL1/2, KIT, SRC, MAPK14/p38a
[40], and Transforming Growth Factor Beta Receptor 2
kinase (TGFBR2) signaling [41]. In addition, there were
other inhibited kinases, which have not yet been investi-
gated in detail in the context of Nilotinib, including RPS6
kinases, MAPK3/ERK1, MAPK1/ERK2, MAPK12/p38y,
PAS Domain-Containing Serine/Threonine-Protein Kin-
ase (PASK), Epidermal Growth Factors Receptor kinases
(EGFR, ERBB2), Calcium/Calmodulin Dependent Protein
Kinase II Gamma (CAMK2G), Mitogen-Activated Protein
Kinase kinases 1/2 (MEK1/2) and PRKCI/PRKCG. Over-
active kinases comprised CDKs, CLK1, casein kinases
(CSNK1D, CSKN2A), microtubule affinity regulating Kin-
ase 2 (MARK?2), PRKCB, CAMK4, as well as the tumor
suppressor Ataxia Telangiectasia Mutated (ATM). We
characterized the kinase-signaling network with their hubs
and interconnected hierarchies using STRING. By this
means, we identified MAPK3/ERK1, MAPKI1/ERK2,
MEK1/2, MAPKI12/p38y, EGFR, PRKCI/PRKCG and
ERBB?2, as interconnected, down-regulated kinases around
the SRC kinase-hub and the tumor suppressors ATM and
CDK1/2 as interconnected, up-regulated kinases (Fig. 3E).
In summary, our KAEA pipeline identified the expected
direct and indirect targets of Nilotinib along with add-
itional, unexplored kinases within a kinase-signaling net-
work in the BCR-ABL driven K562 cell line model.

Identification of indirect Midostaurin targets in the FLT3-ITD
driven MOLM13 cell line model

We identified in the phosphoproteome of MOLM13
(FLT3-ITD heterozygote) after Midostaurin exposure
3385 protein groups including 8321 unique quantified
PS (Fig. 4A), of which 4187 and 4134 were over- and
under-expressed, respectively. Dephosphorylation of
pSTAT5A/B Y694/Y699, as down-stream reference site
for FLT3 inhibition, was confirmed using WB and MS
(Fig. 4B, C). KAEA identified 16 inhibited and 10 over-
active kinases (Fig. 4D). Midostaurin inhibition of FLT3
was not detected but the expected downstream MAP ki-
nases (MAPKI/ERK2, MAPK3/ERK1, MAKS8/JKN1),
RPS6K, AKT1 and PRKCE (against which Midostaurin
was initially developed) [42]. Additionally inhibited ki-
nases, which have not yet been investigated in detail in
the context of Midostaurin, included Intestinal Cell Kin-
ase (ICK), SGK1, Lymphocyte Kinase (LCK), TGFBR2,
EGFR and PASK. Overactive kinases comprised CDKs,
Tousled-Like Kinase 2 (TLK2), CLK1, Casein Kinases
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(CSNK1E, CSNK1A, CSNK2A), and the tumor suppres-
sor ATM. We characterized the kinase-signaling net-
work, where we identified LCK and EGFR as
interconnected, down-regulated kinases and the tumor
suppressors ATM and CDK2 as interconnected, up-
regulated kinases (Fig. 4E). In summary, our KAEA ana-
lysis identified the expected, but mainly indirect targets
of Midostaurin along with additional, unexplored kinases

within a kinase-signaling network in the heterozygote
FLT3-ITD driven MOLM13 cell line model.

Influence of allelic FLT3-ITD burden on Midostaurin kinase
inhibition pattern

As we were not able to identify the direct FLT3 inhib-
ition signal in the MOLM13 cell line model, we wanted
to investigate, whether a higher FLT3-ITD allelic ratio
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could potentially increase sensitivity of our analysis pipe-
line. For this, we used the homozygous FLT3-ITD
MV4-11 cell line to compare the kinase inhibition pat-
terns. We identified in the phosphoproteome of MV4—
11 after Midostaurin exposure 4309 protein groups in-
cluding 10,917 unique PS (Fig. 5A), where 5826 and

50941 PS were over- and under-expressed, respectively.
Similar to MOLM13, dephosphorylation of pSTAT5A/B
Y694/Y699, as downstream reference site for FLT3 in-
hibition, was confirmed using WB and MS (Fig. 5B, C).
KAEA identified 25 inhibited and 14 overactive kinases
(Fig. 5D). Again, Midostaurin inhibition of FLT3 was not
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network of significantly positive (red) and negative (blue) enriched kinases. The magenta edged kinases with asterisks (*) highlight experimentally
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detected but instead, similarly to MOLM13, the ex-
pected, underactive (MAPK1/3/8, AKT/AKT1, RPS6K/
RSK1, SGK-group kinases, PRKCE, TGFBR2, and PASK)
and overactive (CDK, CLK1, CSNK1A, CSNK2A and the
tumor suppressor ATM) kinases. We identified add-
itional, cell-type specific inhibited kinases, which have
not yet been investigated in detail in the context of Mid-
ostaurin. These included SRC, Glycogen Synthase Kinase
(GSK3), MAPK-Activated Protein Kinase 2 (MAPKPK?2),
NIMA-Related Kinase (NEK1), Protein Kinase CAMP-
Activated Catalytic Subunit Alpha (PRKACA), Calcium/

Calmodulin-Dependent ~ Protein  Kinase Type 2
(CAMK2A), Checkpoint Kinase 1 (CHEK1) and Aurora-
Kinase B (AURKB). Additional overactive kinases in-
volved MAPK11, Homeodomain Interacting Protein
Kinase 2 (HIPK2) and Pyruvate Dehydrogenase Kinase 1
(PDHK1). We characterized the kinase-signaling net-
work, where we identified SRC, MAPKAPK?2, PRKACA,
CHEKI1 and AURKB as interconnected, down-regulated
kinases and the tumor suppressors ATM and CDK7 as
interconnected, up-regulated kinases (Fig. 5E). In sum-
mary, our KAEA analysis identified similar Midostaurin
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downstream kinases in the FLT3-ITD hetero- and
homozygote cell line models, supporting the robustness
of our assay. Additionally, we identified also cell-context
dependent kinases within kinase-signaling networks that
warrant further investigations.

Discussion

In our novel KAEA pipeline, we used differential phos-
phoproteomics profiling data for the untargeted infer-
ence of kinase activities in human myeloid cell line
models. KAEA allowed the inference of expected direct
and indirect kinases inhibited by Nilotinib and Midos-
taurin, respectively, and the reconstruction of kinase-
signaling networks in human myeloid cell line models.

For the initial validation of KAEA, we used five unper-
turbed human myeloid cell lines with distinct oncogenic
driver mutations. In a proof of concept, we focused on
K562 and MOLM13, driven by oncogenic kinases ABL1
and FLT3, respectively. As such, we expected higher ac-
tivities of these two kinases and their interconnected
downstream kinases. Intriguingly, we could not detect
the direct BCR-ABL1 and FLT3-ITD kinase activities in
the unperturbed K562 and MOLM13 cell lines. How-
ever, the downstream kinases of ABL1 (MAPK3/ERKI,
MAPKS8/JNK1, CSKN2A, IGFIR) and FLT3 (PLK1,
RPS6K, SYK, mTOR) were significantly enriched in
K562 and MOLM13, respectively. We argued that this
might be caused by the possibly unsuitable use of the
other four cell lines as background, which could have
limited the sensitivity to identify cell-type specific differ-
ences. To increase the sensitivity of the expected kinase-
signals, we decided to perform pharmacological inhib-
ition using clinically established kinase inhibitors.

Nilotinib is a second generation and selective BCR-
ABL1 TKI approved for the treatment of CML [43]. It
has been reported to target mainly BCR-ABL1 but also
other kinases such as KIT and SRC family kinases, which
were significantly inhibited in our Nilotinib-K562 per-
turbation experiment [40]. Our findings were further re-
inforced by the detection of MAPK1/3 and MEK1/2
inhibition, which are all part of the MAPK pathway
downstream of ABL1 and reported to be inhibited also
in CML CD34+ cells [44]. The identification of expected,
direct and indirect Nilotinib targets validates the ability
of our pipeline to detect the biologically relevant kinase
activities and the main kinase-signaling network in the
BCR-ABL1 driven K562 cell line model.

Midostaurin (PKC412) is a multi-kinase inhibitor ap-
proved for the treatment of FLT3-mutant AML [45, 46].
Originally, it was described to inhibit protein kinase C
(PKC) and was subsequently found to inhibit also FLT3
kinase [46, 47]. In our experiments, we noticed similar
inhibition patterns in the hetero- and homozygote
FLT3-ITD cell lines MOLM13 and MV4-11, with
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inhibition of FLT3 downstream kinases (PRKC, MAPK,
AKT, RPS6K). The inhibition of PRKCE underlines the
activity of this drug towards PKC family kinases. How-
ever, we also found some differences in these two cell
line models (SRC, GSK3, CAMK2A, AURKB and RSK1),
which underlines the influences of the FLT3-ITD allelic
ratio as well as the distinct cell-type context. Intri-
guingly, in neither of the two perturbation experiments,
were we able to detect the direct inhibition of the FLT3
signal. We reasoned that this might be caused by insuffi-
cient representation of FLT3 substrates in the MS pro-
file, as only four proteins were represented in our meta-
database (FLT3, PDHK1, SHC1, NPM1). This limitation
could be potentially mitigated by the inclusion of add-
itional experimentally validated kinase-substrate associa-
tions that are involved in the canonical but also
oncogenic FLT3 signaling [48, 49]. However, with the
dephosphorylation of STAT5 by Midostaurin, we dem-
onstrated unambiguously that the oncogenic FLT3 sig-
naling was inhibited in our model system [50]. The
identification of expected, indirect Midostaurin targets
validates the ability of our pipeline to detect the bio-
logically relevant kinase activities as well as the main
kinase-signaling network in the FLT3-ITD driven
MOLM13/MV4-11 cell line models. Interestingly, we
found that casein kinases and the tumor suppressor
ATM were overexpressed in all cell line models, as po-
tentially shared, cellular and DNA stress reaction during
pharmacological exposure [51].

In our pipeline, we used profiling data generated by a
MS phopshoproteomics workflow that was developed
and established at our proteomics core facility. For our
KAEA, we assembled an extensive kinase-substrate
meta-database using five published databases that aggre-
gate experimentally observed kinase-substrate associa-
tions covering the largest amount of information
available from the scientific community. This meta-
database was complemented with the NetworKIN in-
silico kinase-substrate prediction tool, a motif-based kin-
ase substrate inference tool. This meta-database was
used as a reference for the SetRank enrichment algo-
rithm, which represents the currently largest available
evidence as backbone for our KAEA. The SetRank algo-
rithm was used due to its stringent behavior as it re-
duces the false positive rate by avoiding reporting of
kinases that are only significantly enriched due to over-
lapping substrates. It has been previously shown to im-
prove specificity of gene set detection compared to other
methods by addressing overlap and multiple testing
problems [52]. Currently, there is no optimal “golden-
standard” for the inference of kinase activities from
phosphoproteomics data available [53] and different ap-
proaches have been published (Table 1). A formal com-
parison between tools, with determination of their
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accuracy concerning sensitivity and specificity as well as
their strengths and limitations, would be desirable but is
currently not feasible due to the lack of a reference sam-
ple and data standard.

Our KAEA pipeline provided the expected and bio-
logically relevant kinase activities within signaling net-
works of myeloid cell line models, but we do also
acknowledge the potential limitations of our approach.
On the level of shotgun MS, insufficient representation
of the relevant PS can be a limiting factor and is highly
dependent on the quantity, quality and pre-analytical
processing of the samples. Data-Independent-
Acquisition (DIA) libraries could cover all relevant pro-
teotypes of human myeloid cells and potentially be ap-
plied to improve the reproducibility and sensitivity along
with reduction of MS running time. Such libraries are
not yet available for myeloid malignancies but could be
an attractive, standardized reference for the phosphopro-
teomic profiling of patient’s samples in the future [54].
Another relevant limitation is the incompleteness of our
knowledge in substrate-kinase associations. The low rep-
resentation of PS-kinase associations using all currently
published databases was surprising and is a general limi-
tation to the bioinformatics inference of kinase-activities
from differential phosphoprofiles. This renders the ana-
lysis biased towards the more studied kinases and to
those with experimentally observed substrates. The per-
formance will generally improve with the incremental
increase in evidence of kinase-substrate associations. Im-
provements of machine and deep learning algorithms do
also affect prediction of kinase-substrate relations. We
have used NetworKIN, a motif-based in-silico prediction
tool, to increase the coverage of kinase-substrates. How-
ever, we do also acknowledge that such approaches
could add false positive calls as well. Moreover, the STRI
NG network analysis allowed us to identify novel inter-
connections with known kinases along with unexplored
kinases. Focusing on inference of protein kinase activ-
ities neglects the relevance of phosphatases, which roles
remain generally less clear and substantially under-
investigated [55]. A combined protein expression and
phosphorylation analysis would uncover both independ-
ent and concerted changes in protein expression and
phosphorylation [56]. Even if desirable, such approaches
are highly resource intensive and hardly implementable
in a clinical context, because they require a high amount
of proteins, isotope labeling as well as fractionation to
generate sufficient overlapping data for protein
normalization of dynamic changes in PS. We performed
an external validation and analyzed with our pipeline
two published datasets using established kinase inhibi-
tors in human cell lines models (PXD001560,
PXD004442). Our untargeted approach allowed us to
identify the most relevant kinases mentioned in the
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manuscripts along with components of interacting ki-
nases in other pathways that will need additional investi-
gations (additional file 3). In summary, the analysis of
phosphoproteomic profiles has the potential to satisfy an
unmet clinical need in characterizing kinase-activities
and signaling networks. However, all current pipelines
are facing limitations and weaknesses and their outputs
are hypothesis generating for thorough biological
validation.

Conclusions

In this study, we developed and validated an improved
pipeline for the inference of kinase and pathway activ-
ities from differential MS phosphoproteomics profiling
data. Our KAEA is based on a recently published enrich-
ment algorithm approach with reduced false-positive
rates, an extended reference meta-database of kinase-
substrate relations and an interactive visualization tool
for differential PS, enriched kinases, and pathways com-
bined with a subsequent STRING network analysis.
KAEA allowed the inference of expected and novel kin-
ase activities and their corresponding signaling networks
in established human myeloid cell line models. With our
pipeline, we provide researchers and clinicians an instru-
ment to monitor biological behavior of kinases in re-
sponse or resistance to targeted treatment. Further
investigations are warranted and ongoing to determine
the utility of our pipeline to characterize mechanisms of
disease progression and treatment failure.

Methods

Cell lines

Human myeloid cell lines K562 (89,121,407, Sigma Al-
drich), THP1 (88,081,201, Sigma Aldrich), NB4 (ACC
207, Leibniz Institute DSMZ), MOLM13 (ACC 554,
Leibniz Institute DSMZ), OCI-AML3 (ACC 582, Leibniz
Institute DSMZ) and MV4-11 (ACC 102, Leibniz Insti-
tute DSMZ) were used for our experiments (Suppl.
Table 1). The cell lines were cultured in triplicates (qua-
druplicates for THP1 and OCI-AML1) in suspension
using RPMI-1640 (Gibco) supplemented with 10% fetal
calf serum (FCS, BioConcept AMIMED) and 1%
Penicillin-Streptomycin (15,140,122, Gibco). 20 x 10°
cells were harvested for proteomics analysis.

Antibodies and chemicals

Monoclonal phospho-Stat5a/b Tyr694/Tyr699
(pSTAT5A/B Y694/Y699: 9359 C11C5, Cell Signaling
Technology), polyclonal phospho-CrkL Tyr207 (pCRKL
Y207: 3181, Cell Signaling Technology), Beta-Actin anti-
body (sc-47,778, Santa Cruz) were used for western blot-
ting (WB). Nilotinib (AMN107, Sigma Aldrich) and
Midostaurin/PKC412 (M1323, Sigma Aldrich) were



Hallal et al. BMC Cancer (2021) 21:789

prepared as 10 mM stock solution in DMSO and stored
at - 80°C.

Perturbation experiments

Concentration gradient and time course experiments
were performed in 48-well plates. WB was used to iden-
tify the required conditions for complete de-
phosphorylation of the following target proteins: pCRKL
Y207 for ABL1 in Nilotinib K562 and of pSTAT5A/B
Y694/Y699 for FLT3 in Midostaurin treated MOLM13
or MV4—-11. Three replicates of every cell line were cul-
tured for 1h in control conditions (DMSO) or with
Nilotinib in K562 (1000 nM) as well as Midostaurin in
MOLM13 (20nM) or MV4-11 (50nM), respectively.
Higher concentrations for Midostaurin were required for
MV4-11 due to their higher FLT3-ITD allelic ratio
(FLT3-ITD homozygote).

Proteomics workflow
Cell lysis and protein digestion
Cells were lysed in 8 M urea and 100 mM Tris-HCI pH
8.0 containing complete protease/phosphatase inhibitor
cocktail (11,697,498,001, Roche) complemented with 10
mM sodium fluoride and 2 mM di-sodium orthovana-
date. Proteins were reduced and alkylated as described
elsewhere [57]. Samples were diluted by addition of 1/
10-volume of 50 mM Tris HCl pH 8.0 before protein
precipitation with 5 volumes of ice-cold acetone over
night at — 20 °C. Proteins were pelleted by centrifugation
at 16’000 g for 10 min at 4°C and the acetone super-
natant was discarded. Pellets were dried at ambient air
for 15 min and stored at — 20 °C until further use.
Proteins were re-dissolved in 8 M urea in 50 mM Tris-
HCl pH8.0 and protein content determined by BCA
assay. Urea was then diluted to 1.6 M by addition of 20
mM Tris HCI pH 8.0 with 2 mM calcium dichloride be-
fore a two-stage digestion for 2h at 37 °C followed by
over-night at room temperature (RT) with 1/200 (w/w)
trypsin-to-substrate ratio each time. Digestions were
stopped by adding 1/20-volume of 20% (v/v) tri-
fluoroacetic acid (TFA, Fluka) and loading on a pre-
conditioned SEP Pak 1cc C18 cartridge (Waters). The
cartridge was washed with 10 volumes of 0.1% TFA be-
fore elution of peptides with 1 mL glycolic acid (Sigma
Aldrich) at 80 mg/mL in 80% acetonitrile (ACN) / 2.5%
TEA (v/v) as loading buffer.

Phosphopeptide enrichment

Anatase titanium di-oxide (TiO,) beads (Sachtopore NP
5um/100 A, SNX 010S 005) were washed with water
and loading buffer before suspending in loading buffer
at 100 mg/mL. Phosphopeptides were then enriched with
a two-stage extraction procedure, where the first incuba-
tion step (INC1) serves as a depletion step for multiply
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phosphorylated and very acidic peptides, while the sec-
ond incubation step (INC2) enriches for all remaining
phosphopeptides. For INC1, TiO, beads were added to
the peptide solution at a ratio of 1:4 TiO,/protein (w/w)
and incubated under constant shaking for 15min at
room temperature (RT). Beads were spun down and the
supernatant transferred into a new vial containing TiO,
beads for INC2 at a ratio of 10:1 (w/w) followed by an-
other incubation for 15 min at RT. The last supernatant
was diluted to 100 ng/pL with 1% (v/v) TFA and 5puL
subsequently analyzed by nano-liquid chromatography
coupled to tandem mass spectrometry (nLC-MS2) as the
phospho-depleted compartment.

TiO, beads were then washed several times with
300 pL at constant shaking for 5min and by discarding
all the supernatants with following solutions: i) once
with loading buffer, ii) twice with 80 mg/mL glycolic acid
in 70% ACN / 0.1% TFA, iii) twice with 70% ACN /
0.1% TFA, iv) and finally twice with 0.1% TFA. Peptides
were then eluted twice from TiO, by incubation for 5
min at constant shaking with 50 uL per 1 mg input pro-
tein of 50 mM di-sodium hydrogen phosphate / 5mM
sodium orthovanadate / 1 mM sodium fluoride. Both su-
pernatants were transferred into a new vial containing
8 uL formic acid (Merck). INC1 and INC2 eluates were
centrifuged for 1 min at 16’000 g and RT before transfer
of the supernatant to an HPLC polypropylene vial and
5 pL of both eluates were analyzed separately by MS.

Nano-liquid chromatography coupled to tandem mass
spectrometry (nLC-MS2)

nLC-MS2 was done by three subsequent injections of
each sample on an Orbitrap Fusion Lumos mass spec-
trometer coupled with a Dionex Ultimate 3000 nano-
Ultra Performance Liquid Chromatography (Thermo
Fisher Scientific) using a data-dependent acquisition
(DDA) method as described elsewhere [58]. nLC-MS2
data interpretation was performed with MaxQuant (ver-
sion 1.5.4.1) [59] for Trypsin digest. Variable modifica-
tions included Oxidation (M), Acetyl (Protein N-term)
and Phospho (STY), and fixed modification included
Carbamidomethyl (C) only, multiplicity 1, first search at
10 ppm, main search at 4.5 ppm mass accuracy, 0.4 Da
mass deviation for the fragment ions. Data was searched
against human database (Uniprot Human) with a mini-
mum peptide length of 7 and a false discovery rate
(FDR) set at 0.01 for protein, peptides and sites. Incuba-
tion 1 (INC1) and incubation 2 (INC2) were analysed to-
gether for all experiments except for the five cell lines
experiment, which were analysed separately. Our TiO2
based approach is not selective for specific phosphosites
(PS) and we found an expected distribution of STY PS
in our experiments (mean: S:80.5%; T:15.8%; Y:3.75% )
(Suppl. Fig. 2) [18]. The mass spectrometry proteomics
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source data have been deposited to the ProteomeX-
change Consortium via the PRIDE partner repository
(https://www.ebiac.uk/pride/) with the dataset identifier
PXD024806 [60].

Kinase activity enrichment analysis (KAEA) pipeline

The complete pipeline is graphically represented in
Fig. 1 and consists of three complementary parts: i)
data pre-processing, ii) enrichment analysis using a
kinase-substrate meta-database and iii) visualization of
outputs. The bioinformatics pipeline scripts were writ-
ten in R programming language [61]. Snakemake [62],
a python-based workflow engine, was used as a wrap-
per to the R scripts to create a reproducible frame
for the pipeline. The R based pipeline takes as input
phosphoSTY MaxQuant output files and returns a list
of outputs including qualitative and quantitative eval-
uations of the dataset alongside the enrichment re-
sults. The KAEA manual and source code are publicly
accessible on github repository (https://github.com/
Mahmoudhallal/KAEA).

Data pre-processing

A YAML Ain’t Markup Language configuration file de-
fines all the parameters necessary for the down-stream
data processing within the pipeline including MaxQuant
phosphoSTY file path as well as additional parameters
(see manual in the repository). The dataset is filtered,
normalized, imputed and reorganized to create a Biocon-
ductor ExpressionSet class of unique phosphorylation
sites (PS). Filtering is done in two steps: 1) potential
contaminants and reverse sequences are removed and 2)
PS with a localization probability >0.75 are kept. Quan-
tiles normalization is applied on the entire log2 trans-
formed dataset. If the imputation option is set to true,
the pipeline sets the missing-at-random data points
(conditions where 1 out of 3 technical replicates is a
missing value) with Maximum Likelihood Estimate using
Expectation-Maximization algorithm and Missing-Not-
at-Random data points (conditions where 2 or 3 out of 3
technical replicates are missing values) are imputed by
drawing a value from a Gaussian distribution centered
around the 0.01th quantile of the sample distribution
(MinProb). If the imputation option is set to false, the
missing-not-at-random values are set to zero, which
gives an enhanced weight to those phosphosites (PS) ab-
sent in one condition but present in the other. Results
shown here were obtained with the first approach. Rows
with only one value in all conditions are not considered
in the statistical evaluation.

Kinase-substrate meta-database
For our pipeline, we created a meta-database with
kinase-substrate associations derived from five publicly
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available databases 1) PhosphoSitePlus (PSP) [63], 2) Hu-
man Protein Reference Database (HPRD) [64], 3) Regula-
tory Network in Protein Phosphorylation (RegPhos) [65],
4) The Signaling Network Open Resource (Signor) [66]
and 5) phospho.ELM (ELM) [67]. Experimentally ob-
served associations of PS as substrates with kinases were
only retained. Kinases with one single entry were re-
moved. In total, our combined meta-database comprises
16,740 unique entries covering 10,045 PS and 426 ki-
nases. Redundancy in kinase names between databases
was aggregated manually by using unifying nomencla-
tures, when possible. The substrate- and kinase-
specificities of the meta-database are shown in Suppl
Fig. 3A and B, respectively. The motif-based computa-
tional prediction tool NetworKIN was used, which is
based on the network context of kinases and phospho-
proteins for the prediction of additional in-silico associa-
tions [68]. A dataset-specific NetworKIN database was
produced separately for every experiment based on the
PS it encompassed. Experimentally observed kinase-
substrate associations from the meta-database are
merged with NetworKIN predictions specific to every
dataset to produce a single combined database. The
coverage of quantified PS ranges between 4.6-5.4% with
the experimentally observed dataset only and increases
to 24.5-26.8% when NetworKIN predictions were added.

Enrichment analysis

The core part of the enrichment analysis is based on
the SetRank package (Version 1.1.0) [52]. This enrich-
ment analysis tool was designed to discard gene sets
that have been flagged as significant, if their signifi-
cance is only due to the overlap with another gene
set, therefore, eliminating possible false positives. The
package has been modified to suit the context of
kinase-substrate enrichment. The KAEA requires the
previously mentioned meta-database of kinase sub-
strate relations and a ranked list of differential PS.
Welsh’s t-test was used to evaluate the different con-
ditions and return a list of PS ranked by their corre-
sponding p-values. For over-active and under-active
kinases analysis, no cutoff was applied on PS where
over- and under-expressed PS were included for both
analyses in different ranking. For all our analyses, we
used the same threshold of 0.01 p-value and 0.05
FDR. For the five unperturbed cell lines (K562, NB4,
THP1, MOLM13, and OCI-AML13), the average of
the other four cell lines was used as reference,
whereas drug and control conditions were used for
the perturbed cell line experiments. SetRank uses the
ranked list of PS and the kinase-substrate database to
perform an enrichment analysis on two levels, 1) en-
rich for over-active kinase, 2) enrich for under-active
kinases. The over- and under-active kinases are
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shown as -logl0 p-values in a waterfall plot in red
and blue colour, respectively .

Data visualization

An R ShinyApp was developed to visualize interactively
the differential PS, kinases activities and pathways [69].
The output file of KAEA can be up-loaded in a Shi-
nyApp. The application allows the qualitative and quan-
titative representation of the dataset on the
phosphoprotein, phosphopeptide and PS level (histo-
gram, Venn diagram), the differential expression of PS
(volcano plot) and the enrichment profile of kinases
(barplot, heatmap). Moreover, kinases” activities are visu-
alized in the context of KEGG pathway diagrams. When
available, information on the tumor suppressor (TS)
oncogenic context of kinases was included according to
the CancerMine literature-mined resource [70]. The
STRING network analysis was additionally used for the
current work within the Cytoscape StringApp version
1.5.1 [71-73]. The over- and under-active kinases in-
volved in each cell line were mapped to their STRING
defaults, with entries such as MEK1/2 decoupled as
MEK1 and MEK2. The STRING overall confidence score
gauging the reliability of a protein-protein interaction
takes into account evidence from experiments as well as
from coexpression analysis, evolutionary signals across
genomes, automatic text-mining, and orthology-based
transfer of evidence across organisms [73]. A minimum
overall confidence score of 0.8 was requested for each
edge of the networks shown.
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