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Abstract: The human brain and central nervous system (CNS) harbor a select sub-group of potentially
pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens
microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in pro-
gressive and often lethal viral- and prion-mediated and related neurological syndromes associated
with progressive inflammatory neurodegeneration. These include ~18 different viral-induced en-
cephalopathies for which data are available, at least ~10 known prion diseases (PrD) of animals and
humans, Alzheimer’s disease (AD) and other sporadic and progressive age-related neurological dis-
orders. Despite the apparent lack of nucleic acids in prions, both DNA- and RNA-containing viruses
along with prions significantly induce miRNA-146a in the infected host, but whether this represents
part of the host’s adaptive immunity, innate-immune response or a mechanism to enable the invading
prion or virus a successful infection is not well understood. Current findings suggest an early and
highly interactive role for miRNA-146a: (i) as a major small noncoding RNA (sncRNA) regulator of
innate-immune responses and inflammatory signaling in cells of the human brain and CNS; (ii) as a
critical component of the complement system and immune-related neurological dysfunction; (iii) as
an inducible sncRNA of the brain and CNS that lies at a critical intersection of several important
neurobiological adaptive immune response processes with highly interactive associations involving
complement factor H (CFH), Toll-like receptor pathways, the innate-immunity, cytokine production,
apoptosis and neural cell decline; and (iv) as a potential biomarker for viral infection, TSE and AD
and other neurological diseases in both animals and humans. In this report, we review the recent data
supporting the idea that miRNA-146a may represent a novel and unique sncRNA-based biomarker
for inflammatory neurodegeneration in multiple species. This paper further reviews the current state
of knowledge regarding the nature and mechanism of miRNA-146a in viral and prion infection of
the human brain and CNS with reference to AD wherever possible.

Keywords: aging; Alzheimer’s disease; bovine spongiform encephalopathy (BSE); Creutzfeldt–Jakob
disease (CJD); Gerstmann–Sträussler–Scheinker syndrome (GSS); microRNA-146a; NF-kB (p50/p65);
prion disease; reactive oxygen species (ROS); scrapie; SARS-CoV-2

1. Introduction and Overview

Multiple independent research laboratories have reported the significant upregula-
tion of a specific sub-group of pathogenic microRNAs (miRNAs) in progressive, neuro-
inflammatory, incapacitating and often lethal neurodegenerative diseases of the human
brain and CNS. As soluble, amphipathic regulatory molecules, miRNAs are important
post-transcriptional and epigenetic regulators of messenger RNA (mRNA) abundance,
speciation and complexity [1,2]. These microRNAs: (i) exist as ~18- to ~25-ribonucleotide
(nt), single-stranded noncoding RNAs (sncRNAs) whose sequences are both unique and
highly selected over evolution; (ii) represent the smallest information-carrying ribonu-
cleic acids yet defined; (iii) have been repeatedly shown to play critical and determinant
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roles in the onset and propagation of many human CNS disorders, including progressive,
incapacitating and terminal neurological syndromes; and (iv) are fascinating molecular
entities because of their somewhat unconventional origin, their ribonucleotide sequence
characteristics, their ability to regulate multiple cellular processes in health and disease,
their immense potential in disease therapeutics and evolutionary dynamics [1,3–7]. Regard-
ing the evolutionary aspects of miRNA and miRNA sequence complexity and selection,
from mathematical considerations alone, a ~22 nt sncRNA with the possibility of four
ribonucleotides at each position (A, C, G and U—adenine, cytosine, guanine and uracil,
respectively) has the potential to generate an exponentiation of 4 to the power of 22 or about
1.76 × 1013 unique miRNA species. However, genome-wide analysis of all known human
miRNAs, with a current total of ~2650 individual species, indicates that the RNA sequence
of human miRNAs has been highly selected from many different RNA sequence possi-
bilities. Interestingly, some miRNAs have been shown to maintain their exact or highly
homologous miRNA ribonucleotide sequence between plants and animals over ~1.5 billion
years of evolution (the Arabidopsis thaliana–Homo sapiens divergence), indicating that highly
conserved ribonucleotide sequence-mediated genetic regulatory functions are attributable
to the same miRNAs and miRNA binding proteins over vast periods of time [1,8,9]. Fur-
ther RNA-sequencing and array-based analyses have indicated that only certain miRNAs,
probably about 25–30 individual miRNA species: (i) are abundant in the cytoplasm of
the human brain as well as retinal and other CNS cells; (ii) are inducible by pathological
factors, such as pro-inflammatory cytokines and chemokines; and (iii) are upregulated by
different types of pathogenic microbes, including viral gene-encoded products and highly
neurotoxic secreted bacterial exudates such as lipopolysaccharide (LPS) [5,10,11] see below.

2. Homo sapiens miRNA-146a-5p (hsa-miRNA-146a-5p) and Mechanism of Action

Amongst these brain- and CNS-expressed microRNAs, one of the most well-studied
microRNA species known to be involved in the pathogenesis of progressive, age-related
neurological diseases is an inducible Homo sapiens microRNA-146a-5p (hsa-miRNA-146a-
5p; hsa-miRNA-146a; or simply miRNA-146a) whose significant upregulation is currently
implicated in every prion disease (PrD) in humans and animals analyzed to date [12–14]
(see below); in at least 18 viral-induced encephalopathies, Alzheimer’s disease (AD) [15–17]
and multiple neurological disorders that include cerebrovascular disease (CVD) [3,18],
traumatic brain injury (TBI) [19], temporal lobe epilepsy (TLE) [20], age-related macular
degeneration (AMD) [10,11,21,22], amyotrophic lateral sclerosis (ALS) [3,23], peripheral
neuropathies and neurological tumors of the CNS [3] and neuro-immune diseases such as
myasthenia gravis (MG) and multiple sclerosis (MS) [24] (Table 1).

In both Homo sapiens and Mus musculus microRNA-146a-5p (hsa-miRNA-146a and
mmu-miRNA-146a, respectively) are 22-nucleotide (40.9%G+C) single-stranded small
noncoding RNAs (sncRNA; 5′-UGAGAACUGAAUUCCAUGGGUU-3′; miRBase Acc-
ession MIMAT0000449 and MI0000170, respectively; https://www.mirbase.org/cgi-bin/
mature.pl?mature_acc=MIMAT0000449; http://www.mirbase.org/cgi-bin/mirnaentry.pl?
acc=MI0000170; https://www.Genecards.org/cgi-bin/carddisp.pl?gene=MIR-146A last
accessed on 23 August 2021; ad-ditional hsa miRNA-146a-5p sequence and associated
disease-relevant biological data in AD are also available at Alzheimer Disease disease:
Malacards—Research Articles, Drugs, Genes, Clinical Trials; https://www.malacards.org/
card/alzheimer_disease?search=146a; last accessed on 23 August 2021).

https://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000449
https://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000449
http://www.mirbase.org/cgi-bin/mirnaentry.pl?acc=MI0000170
http://www.mirbase.org/cgi-bin/mirnaentry.pl?acc=MI0000170
https://www.Genecards.org/cgi-bin/carddisp.pl?gene=MIR-146A
https://www.malacards.org/card/alzheimer_disease?search=146a
https://www.malacards.org/card/alzheimer_disease?search=146a
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Table 1. Progressive, age-related neurological disorders in which miRNA-146a-5p is significantly upregulated in brain
or CNS tissues; all neurotropic viruses indicated ultimately affect human brain or CNS function; (−)ssRNA = negative
single-stranded RNA; (+)ssRNA = positive single-stranded RNA; dsDNA = double-stranded DNA genomes; prions
contain no detectable nucleic acids [25]; natural hosts for prion infection are indicated; ‘interspecies transmission’ indicates
disease transmissibility in experimental laboratory animals; there may be other neurotropic viruses or PrDs that involve
miRNA-146a-5p remaining to be discovered; all neurotropic virus and prion diseases are alphabetically ordered; see also
manuscript text.

Neurotropic Viral Pathogen Genus Genome Reference

Borna encephalitis disease virus 1 (BoEDV-1; BDV) Mononegavirales (−)ssRNA [26,27]

Chikungunya virus (CHIKV) Togaviridae (+)ssRNA [28]

enterovirus 71 (EV71) Picornaviridae (+)ssRNA [29]

Epstein-Barr virus (EBV) Herpesviridae dsDNA [30]

Hantavirus (HTV) Bunyaviridae (−)ssRNA [31]

hepatitis A virus (HAV) Picornaviridae (+)ssRNA [32]

hepatitis B virus (HBV) Hepadnaviridae dsDNA [33–36]

hepatitis C virus (HCV) Flaviviridae (+)ssRNA [37];

herpes simplex virus-1 (HSV-1) Herpesviridae dsDNA [21,38–41]

Hendra virus (Henipavirus; HeV) Paramyxoviridae (−)ssRNA [42]

human immunodeficiency virus (HIV) Retrovirida (+)ssRNA [43]

human influenza A viruses (H1N1/H3N2) Orthomyxoviridae (+)ssRNA [44,45]

early human papillomavirus virus 16 (eHPV-16) Papillomaviridae dsDNA [46]

SARS-CoV-2 (agent for COVID-19 disease) Betacoronavirus (+)ssRNA [47]

human T-cell leukemia virus type 1 (HTLV-1) Retroviridae (+)ssRNA [48]

Japanese encephalitis virus (JEV) Flaviviridae (+)ssRNA [49,50]

Kaposi’s sarcoma-associated herpesvirus (KSHV) Herpesviridae dsDNA [51]

severe fever-thrombocytopenia syndrome virus
(SFTSV) Bunyaviridae (−)ssRNA [52]

neurological disease
(natural or experimental) natural host (family) interspecies

transmission Reference

prion disease (PrD)

bovine spongiform encephalopathy (BSE) Bovidae; Hominidae + [16,41,53,54]

chronic wasting disease (CWD) Cervidae ? [55]; Pogue & Lukiw, unpublished

sporadic Creutzfeldt–Jacob disease (sCJD) Hominidae + [10,13,14,56,57]

variant Creutzfeldt–Jacob disease (sCJD) Hominidae + [10,13,14,56–58]

Gerstmann–Sträussler–Scheinker syndrome (GSS) Hominidae + [10,13,14,56]

fatal familial insomnia (FFI) Hominidae + [16,53]; Pogue & Lukiw, unpublished

Kuru Hominidae + [59,60]

murine scrapie (experimental) Muridae + [14,54,61]

transmissible mink encephalopathy (TME) Mustelidae + [56]; Pogue & Lukiw, unpublished

feline spongiform encephalopathy (FSE) Felidae ? Pogue and Lukiw, unpublished

camel prion disease (CPD) Camelidae ? [2,56]

human neurodegenerative disease

age-related macular degeneration (AMD) Hominidae ? [11,21,39]

Alzheimer’s disease (AD) Hominidae ? [3,10,21,40,62,63]

amyotrophic lateral sclerosis (ALS) Hominidae ? [3,23]

cerebrovascular disease (CVD) Hominidae ? [3,18]

peripheral neuropathies/tumors of the CNS Hominidae ? [3,24]

temporal lobe epilepsy (TLE) Hominidae ? [20]

traumatic brain injury (TBI) Hominidae ? [19]
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Human and murine miRNA-146a are amongst the most intensively studied sncRNAs
in all human and murine neurobiology, neuropathology, neurodegenerative disease and
transgenic (Tg) murine models of these diseases. The equivalent and preserved 100%
identical RNA sequence of miRNA-146a between Homo sapiens and Mus musculus: (i) attests
to the basal importance of this sncRNA from an evolutionary perspective and (ii) is highly
useful in molecular-genetic comparative and modelling studies and considerations, because
this sncRNA has an identical RNA sequence in both species. Encoded from a single locus at
chromosome 5q33.3 in humans (https://www.genecards.org/cgi-bin/carddisp.pl?gene=
MIR146A accessed on 16 August 2021; human genome version GRCh38/hg38) and at
chromosome 11q in mice, human miRNA-146a-5p has three tandem NF-KB (p50/p65)
binding sites in its immediate upstream 5′ promoter. This miRNA can be rapidly induced by
NF-kB (50/p65) and pathological mechanisms that upregulate NF-kB, such as biophysical
and biochemical inducers, including hypoxia, reactive oxygen species (ROS), bacterial
endotoxins and lipopolysaccharides (LPS), amyloid peptides, cytokines and other cell
stressors [63–65]. Importantly miRNA-146a has a relatively short half-life of about 1.5–2 h
in human brain cells and tissues; however, the stability of this sncRNA may be extended
under nonphysiological circumstances and/or in certain subcellular compartments [39,65].

miRNA-146a, a unique, relatively abundant and distinctive member of the microRNA
gene family, was originally described as being significantly induced and upregulated after
microbial endotoxin, lipopolysaccharide (LPS) and/or cytokine stimulation of human
THP1 cells, monocytes originally derived and immortalized from an acute monocytic
leukemia patient of the M5 subtype [7,66]. THP1 cells are microglia-like and phagocytic
for both latex beads and sensitized erythrocytes, lack cell surface and cytoplasmic im-
munoglobulins and are involved in the clearance of the 42 amino acid amyloid beta (Aβ42)
peptide, a major biomarker for AD. It was subsequently found that the induction of this
endotoxin-responsive microRNA is under transcriptional control by NF-kB (p50/p65);
shortly thereafter, this inducible, pro-inflammatory miRNA-146a was found to be upreg-
ulated by metal sulfate-generated reactive oxygen species (ROS); by pro-inflammatory
cytokines, such as IL-1β and TNFα; by bacterial endotoxins, such as LPS and fragilysin; by
Aβ42 peptides; by inflammatory cocktails containing IL-1β and Aβ42 peptides together,
in stressed human primary neuronal–glial (HNG) cells in primary culture, in stressed
human brain-derived microglial (HMG) cells; and by many different strains of prions and
neurotropic viruses [7,16,21,40,53,63,66] (see Table 1). Importantly, miRNA-146a is also
found to be moderately abundant in the aging human brain and CNS and the immune
cells of mice and humans where its over-expression during neurodegenerative disease
contributes to astroglial proliferation and astrogliosis, cytokine overexpression, deficits
in the innate-immune response and the initiation of inflammatory events leading to dys-
functional neurons, synaptic deficits and eventually neuronal cell atrophy and brain cell
death [13,21,40,55,67].

Similar to all microRNAs, the major mechanism of miRNA genetic and neurobiolog-
ical activity is to ‘seek out’ and interact via base pair recognition, complementarity and
noncovalent hydrogen binding within the 3′-untranslated region (3′-UTR) of its target
mRNA 3′-UTRs, and, in doing so, it decrease the capability of the specific mRNA to be
expressed [2,68,69]. All metazoan miRNAs appear to initially recognize their target mR-
NAs by recognition of a ‘seed region’ or ‘seed sequence’ in the 3′-UTR; this ‘seed region’
is a conserved heptametrical sequence co-localized at positions 2–7 from the 5′-end of
the miRNA. Even though base pairing of miRNA and its target mRNA often does not
perfectly match, the ‘seed sequence’ is perfectly complementary [2,5,11]. In human neu-
rodegenerative disease, miRNA-146a has several known relevant and verified targets that
include the 3′-UTRs of: (i) the complement factor H (CFH) mRNA involved in inflam-
mation and the innate immune response; (ii) the membrane-spanning TSPAN-12 protein
involved in amyloidogenesis and the clearance of amyloid beta peptides from brain cells;
and (iii) the interleukin-1 receptor kinase IRAK-1 (with a compensatory increase in IRAK-2)
involved in pathological NF-kB accumulation, signaling and neuro-inflammation [2,68–71].

https://www.genecards.org/cgi-bin/carddisp.pl?gene=MIR146A
https://www.genecards.org/cgi-bin/carddisp.pl?gene=MIR146A
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Upregulated miRNA-146a has been definitively linked to the downregulation in the ex-
pression of CFH, TSPAN-12 and IRAK-1 both in HNG cells in primary culture and in AD
brain [10,11,64,69].

3. Neurotropic Viral-mediated Induction of hsa-miRNA-146a-5p

One truly remarkable and widely observed phenomenon concerning hsa-miRNA-
146a-5p is that this inducible sncRNA is significantly upregulated by at least 18 neurotropic
DNA and RNA viruses that infect the human brain, CNS, immune, lymphatic and hepatic
and/or circulatory systems. In alphabetical order, these include (i) Borna encephalitis dis-
ease virus 1 (BoEDV-1; BDV; Mononegavirales; (−)ssRNA genome; [26,27]; (ii) Chikungunya
virus (CHIKV; Togaviridae; (+)ssRNA genome; [28]; (iii) enterovirus 71 (EV71; Picornaviridae;
(+)ssRNA genome; [29]; (iv) Epstein–Barr virus (EBV; Herpesviridae; dsDNA genome; [30];
(v) hantavirus (HTV; Bunyaviridae; (−)ssRNA genome; [31]; (vi) hepatitis A virus (HAV;
Picornaviridae; (+)ssRNA genome; [32]; (vii) hepatitis B virus (HBV; Hepadnaviridae; dsDNA
genome; [33–36,72]; (viii) hepatitis C virus (HCV; Flaviviridae; (+)ssRNA genome; [37];
(ix) herpes simplex virus-1 (HSV-1; Herpesviridae; dsDNA genome; [38,39,41]; (x) Hendra
(Henipavirus) virus (HeV; Paramyxoviridae; (−)ssRNA genome; [42]; (xi) human immunode-
ficiency virus (HIV; Retroviridae; (+)ssRNA genome; [43]; (xii) human influenza A viruses
(H1N1/H3N2; Orthomyxoviridae; (+)ssRNA genome; [44,45]; (xiii) early human papillo-
mavirus virus 16 (eHPV-16; Papillomaviridae; dsDNA genome; [46]; (xiv) human severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2; the causative agent of COVID-19
disease; genus Betacoronavirus of the family Coronaviridae; (+)ssRNA genome; [47]; unpub-
lished data; (xv) human T-cell leukemia (lymphotropic) virus type 1 (HTLV-1; Retroviridae;
(+)ssRNA genome; [48]; (xvi) Japanese encephalitis virus (JEV; Flaviviridae; (+)ssRNA
genome; [49,50]; (xvii) Kaposi’s sarcoma-associated herpesvirus (KSHV; Herpesviridae;
dsDNA genome; [51]; and (xviii) severe fever with thrombocytopenia syndrome virus
(SFTSV; Bunyaviridae; (−)ssRNA genome; [27,52] (Table 1). Whether the significant induc-
tion of host miRNA-146a after viral invasion and/or successful infection is a protective
mechanism of the human host cell or a strategy used by the virus for invasion and pro-
ductive replication is currently not well understood [16,21,35,40,49,53,73,74]. Regardless of
its innate-immune, inflammatory signaling, pro- or anti-viral signaling function miRNA-
146a has been shown to be in part compartmentalized and packaged into exosomes (EXs)
and/or extracellular microvesicles (EMVs); after these EXs and/or EMVs are released
from donor cells, they may be taken up by recipient cells and function in the modulation
and/or spread of miRNA-146a-mediated gene expression signaling during either viral
or prion infection [35,53]. Interestingly, all of the many types of viral infections that in-
duce miRNA-146a are associated with specific neurological disease symptoms and/or
syndromes that are progressive, age-related, insidious, incapacitating and often lethal. It
is clear that the ubiquity of miRNA-146a upregulation in neurotropic viral infection indi-
cates that this pro-inflammatory miRNA lies at a critical intersection of several important
neuro-biological immune-response processes with highly interactive associations affecting
the following: (i) Toll-like receptor signaling pathways; (ii) the inflammatory and innate-
immune response; (iii) cytokine storms involving cytokine IL-1β, TNFα and chemokine
production, most often as complex pro-inflammatory cocktails in neural cells and tissues;
(iv) morphological change in neuronal cytoarchitecture and apoptosis; and (v) neural cell
decline and neuronal cell demise [4,16,45,53,75,76].

Recent evidence has indicated that, in general, endogenous human miRNAs (small,
single-stranded ~22 nt RNAs, such as miRNA-146a) might have a significant antiviral
role and hence may be useful to the host in an innate-immune defense by targeting the
single-stranded viral ribonucleic acid (ssvRNA) genomes of several different neurotropic
viruses, such as SARS-CoV-2, and function to downregulate or modulate their expres-
sion [77,78]. To this end, and to quote just one recent example, RNA sequencing and
other analytical genetics in RNA-based sequence studies have shown that at least ~160 of
the ~2650 of the 18–22 nt naturally occurring human single-stranded miRNAs have per-
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fect complementarity within the miRNA-mRNA ‘seed region’ of the SARS-CoV-2 ssvRNA
genome, and these include the unique hsa-miRNA-146a ribonucleotide sequence and
those of other related microRNA gene families [47,73,79–81]. Interestingly, the apparent
lack of nucleic acids detectable within the prion particle indicates that some yet poorly
understood pathological mechanism is responsible for the prion-mediated upregulation of
miRNA-146a when neurons are confronted with infection by these neurological-disease
inducing sialoglycoproteins [16,53,60,75,82,83].

4. Prion Disease (PrD) Upregulates hsa-miRNA-146a-5p

Prion diseases (PrD), coined from the term ‘proteinaceous infectious particle’ represent
a group of progressive, transmissible and incurable spongiform encephalopathies (TSEs)
comprising a small family of relatively rare, rapid onset and consistently fatal neurodegener-
ative disorders affecting both animals and humans [25,75]. TSEs are characterized by: (i) de-
creased activity of cholinergic and gamma-amino butyric acid (GABA) pathway-related en-
zymes, while adrenergic pathways are relatively spared; (ii) distinctive spongiform changes
in the neocortex and other anatomical areas of brain tissues; (iii) association with long
prodromal and incubation periods; (iv) synaptic and dendritic damage and dysfunctional
connectivity in the neocortex; (v) progressive neuronal atrophy and loss; (vi) gliosis and the
unusually rapid proliferation of neuroglial cells; (vii) an atypical inflammatory response
in neural tissues, which further stimulates spongiform change; and (viii) the induction
of sncRNAs, including miRNA-146a [3,16,53,59,60,75,83–85]. Naturally occurring TSEs of
herbivorous mammals of the orders Ruminantia and Artiodactyla have been considered the
‘prototype’ of prion disease, and these include scrapie of sheep and goats (both of the family
Bovidae, subfamily Caprinae) and bovine spongiform encephalopathy (BSE, or ‘mad cow
disease’) of cattle (family Bovidae, subfamily Bovinae). These animal diseases of the family
Bovidae are closely related in their molecular and genetic neurobiology, pathology and
clinical presentation to the human neurological disorders Gerstmann–Sträussler–Scheinker
syndrome (GSS) and Creutzfeldt–Jakob disease (CJD) [3,16,25,53,56–59,75,86,87]; https:
//www.nhs.uk/conditions/creutzfeldt-jakob-disease-cjd/; last accessed on 23 August 2021;
see Table 1).

Largely because of their unusual and novel nature, PrDs have been intensively studied
and are known to be caused by a misfolded isoform of a ubiquitous and highly conserved
brain-, CNS- and PNS-enriched cellular prion sialoglycoprotein known as PrPc. The PrPc
monomer is a ~209 amino acid (~200 kDa) glycosylated cell surface polypeptide, containing
a predominant internal α-helical region, encoded in humans at chr 20p13. Normally, the
constitutively expressed PrPc appears to be involved in neuritogenesis, neuronal home-
ostasis, cell signaling, cell–cell adhesion and interaction and intercellular communication;
moreover, it may provide a protective role against multiple forms of induced physiolog-
ical stress [56,60,75,84,86,88,89]. The misfolded, abnormal and insoluble isoform of PrPc
known as PrPsc self-associates into pro-inflammatory, protease-resistant aggregates that
are insoluble in most detergents and chaotropic agents [59,75,84,89–91]. The molecular
mechanisms of PrPsc neurotoxicity that drive the initiation, development and progression
of PrD are highly complex and, similar to the case of AD, increased oxidative stress and
chronic inflammation appear to be critically involved in the initiation and progression
of PrD [5,73,86,92–95]. Typically, activated microglia accumulate within the immediate
vicinity of abnormal PrPsc aggregates, and they release cytokines such as IL-1β that play
important roles in the inflammatory pathogenesis of PrD, including the upregulation of
genes that promote pro-inflammatory signaling and innate-immune system deficits [86,90].
As PrPsc aggregates progressively form over time, they further induce inevitably fatal
neurodegenerative disease conditions, including neuroinflammation, which is typically
discernable by massive microglial activation and proliferation and the subsequent and
self-reinforcing upregulation of cytokines, such as TNF-alpha (TNFα), interleukin 1 alpha
(IL-1α) and glial fibrillary acidic protein (GFAP) as well as astrogliosis accompanied by
multiple additional pathogenic alterations in the neuronal transcriptome [25,59,67,85,86,96].

https://www.nhs.uk/conditions/creutzfeldt-jakob-disease-cjd/
https://www.nhs.uk/conditions/creutzfeldt-jakob-disease-cjd/
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The unique primary amino acid sequence of the heavily glycosylated cellular prion PrPc
sialoglycoprotein appears to predispose this relatively small molecule to non-homeostatic
and pathological secondary and/or tertiary folding changing or ‘flipping’ its spatial confor-
mation into the disease-causing PrPsc protease-resistant isotype [56,75,97]. An analogous
situation may occur in the unique primary amino acid sequence of the 42 amino acid
human amyloid-beta (Aβ42) peptide that also accumulates as a protease-resistant polymer
that progressively accumulates in AD-affected brain [98,99].

Human prion diseases currently include Creutzfeldt–Jacob disease (CJD), stratified
into sporadic CJD (sCJD) and variant CJD (vCJD) clinical subtypes, Gerstmann–Sträussler–
Scheinker syndrome (GSS), fatal familial insomnia (FFI) and kuru, a fatal neurological
disease found among natives from New Guinea who practiced a form of ritual cannibal-
ism in which they consumed the brains of their predecessors [56–60,97]. Animal prion
diseases include scrapie in sheep and goats (Ruminants of the order Artiodactyla, family
Bovidae, subfamily Caprinae), bovine spongiform encephalopathy (BSE, also known as
mad cow disease) in cattle (also of the family Bovidae), chronic wasting disease (CWD)
in cervids (family Cervidae), transmissible mink encephalopathy (TME) in mink (family
Mustelidae) and feline spongiform encephalopathy (FSE) in cats (family Felidae; [56,67,75]).
Atypical and novel human prion diseases in Chordata continue to emerge, such as the
recently identified camel prion disease (CPD) in dromedary camels observed for the
first time in Algeria (order Artiodactyla, family Camelidae) [100]). Prion diseases can also
be experimentally studied via the inoculation of brain and other PrPsc-containing ex-
tracts into laboratory animals such as mice, voles, gerbils and hamsters, causing a re-
capitulation of the PrD and TLE in sensitive animals that can be further studied, an-
alyzed and carefully investigated in a biohazard safety level 2 or 3 (BSL-2 or BSL-3)
laboratory (see Handling Prions-Environmental Health and Safety, Michigan State Univer-
sity (msu.edu); www.ehs.msu.edu/lab-clinic/bio/handling-prions.html; last accessed on
23 August 2021; [25,67,82–84,90]; (Table 1).

Shortly after the first reports of a significantly upregulated miRNA-146a in AD-affected
brain and IL-1β-, TNFα- and/or Aβ42 peptide-stressed human neuronal–glial (HNG) cells
(transplantation grade) in primary co-culture, the increased abundance of this same pro-
inflammatory sncRNA was reported by multiple groups in animal and human nervous
tissues affected with PrD [10,54,55,63,75,101]. As a pro-inflammatory sncRNA, over the last
~15 years, miRNA-146a has been repeatedly shown to participate in the regulation of adap-
tive and innate-immune systems and cytokine-mediated pro-inflammatory responses that
potentially culminate in uncontrolled neural tissue damage [24,33,67,69,102,103]. miRNA-
146a upregulation in transfected co-cultures of neuronal–glial cells can downregulate both
CFH mRNA and protein levels via miRNA-146a pairing with 3′-UTR of human CFH, a
finding also observed in multiple murine transgenic models for neural degeneration and in
human AD, AMD, MS and TLE [10,22,24,104]. Given that CFH downregulation in neural
tissues plays an important role in complement system regulation, immunological signaling
and neural cell demise, and since miRNA-146a is the main sncRNA-regulator of neuro-
inflammatory responses in neural tissues: (i) it is generally accepted that miRNA-146a
is critical in the pathogenesis of inflammatory neurodegeneration in multiple forms of
immune-related prion diseases, AD and neurotrophic viral infection; and (ii) this may be
informative for using this microRNA as a general early diagnostic biomarker for multiple
forms of these insidious brain diseases [2,4,55].

5. Unanswered Questions—Looking Backward and Forward

Since the initial description of scrapie in goats and sheep in about 1750 AD [57,105],
there has been a steady emergence of the recognition, identification and characterization
of a series of TSEs that now include (in alphabetical order) BSE, CPD, CWD and TME in
animals and BSE-like disease, CJD, FFI, GSS and kuru in humans [25,56,60,72,75,82,96,106].
It has been about 64 years since kuru was initially reported to Western medicine, the first
described TSE of humans for which the world renown anthropologist, biochemist and
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virologist D. Carleton Gajdusek was awarded the Nobel Prize in Medicine in 1976 [57,60,72].
At that time, both scrapie and kuru were thought to be caused by a ‘slow virus’ or ‘infectious
protein’ that took many years or decades for these lethal neurological disorders to develop
in the mammalian brain and CNS [56,59,105]. Twenty-one years later, the biochemist
and neurologist Stanley B. Prusiner was awarded the Nobel prize in Medicine in 1997
for the isolation, characterization and proof of transmissibility of novel nucleic-acid-free
‘prion particles’ in susceptible animal models [25,56,72,75]. The relatively recent discovery
of camel prion disease (CPD; ‘mad camel disease’) in the Middle East suggests: (i) that
there may be yet other novel TSEs of animals and humans awaiting our discovery and/or;
(ii) that mammalian central nervous systems are still in the process of evolving prion-
like entities in the expanding spectrum of prion-induced disease [56,75,100]. Serious
incapacitating, progressive, age-related and lethal neurological diseases such as AD, first
described by the neurologist and physician Alois Alzheimer in 1906, have been suggested
to be caused by transmissible, ‘infectious’ prion particles, which, depending on multiple
biophysical factors, may adopt alternative conformations that are both self-propagating
and found in a very wide array of organisms ranging from yeast to humans [56,75].

Many questions remain unanswered concerning the role of the inducible host miRNA-
146a-5p that is upregulated during prion infection as well as by many other types of DNA
and RNA viruses and neurodegenerative disease syndromes that include AMD, AD, ALS,
CVD, peripheral neuropathies and tumors of the CNS, TLE and TBI (Table 1). Interestingly,
the related human microRNA hsa-miRNA-146a-3p does not appear to be significantly
upregulated under similar conditions. Our understanding of the potential pathological
role of miRNA-146a in AD, prion disease and/or neurotropic viral infection began only
about 15 years ago [54,55,61,101]. The list of miRNA-146a participation in prion disease,
viral infections of the brain and CNS and related neurodegenerative diseases such as AD
is an expanding one. Very fundamental neurobiological questions requiring additional
research investigation include the following: (i) Does miRNA-146a always contribute to
neuro-pathological, neuro-inflammatory and altered neuro-immunological aspects of PrD,
viral infection and AD, and/or are other sncRNAs or transmissible particulate species
involved?; (ii) As pathological and molecular genetic processes associated with neurologi-
cal disorders often precede clinical symptoms, might miRNA-146a be useful as an early
clinical diagnostic and/or prognostic biomarker for viral and/or prion disease and/or
AD or other related neurological disorders?; (iii) Is the rapid increase in miRNA-146a
upon prion or viral infection advantageous to the host via an innate-immunity-mediated
mechanism, are upregulated miRNAs part of the invading prion or a viral strategy for
a more efficient invasion and infection, or are both of these biomolecular and/or im-
munological scenarios plausible?; (iv) Would both of these possibilities be expected to
involve miRNA-146a-specific mRNA targets and modulation of gene expression signaling
to ultimately alter the transcriptome of the neuron and/or neural support cells?; (v) Are
other transcription factors besides NF-κB and other pro-inflammatory microRNAs besides
miRNA-146a involved in initiating, driving or modulating prion- and/or viral-directed
neuro-degeneration?; (vi) Are anti-NF-kB (p50/p65)- and/or anti-miRNA-146a-5p-based
therapeutic strategies clinically feasible to be deployed, and are they suitable to address
and successfully treat the broad spectrum of human neurological disorders and other neu-
rodegenerative disease syndromes initiated by neurotropic DNA and RNA viruses and/or
prions?; and (vii) Would these same pharmacological strategies and treatments be useful
in the clinical management of viral infection, prion disease, AD and/or perhaps other
progressive, neurological disorders associated with aging and progressive degeneration of
the brain and CNS?

6. Conclusions

Among the most significant advances in human neuroscience, neurology and molec-
ular neurogenetics over the last fifteen years are: (i) the discovery of a family of small
noncoding single-stranded RNAs called microRNAs in the mammalian brain and cen-
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tral nervous system (CNS) and (ii) the analysis and categorization of their abundance,
speciation and complexity in development, aging and in neurological health and CNS dis-
ease [2,5,6,9,70,71,93,101,107]. A growing body of evidence indicates that select species of
the 2650 member human miRNA gene family are brain-abundant and participate in the ini-
tiation, propagation and development of insidious age-related neurological disorders of the
mammalian brain and CNS. This includes the involvement of a unique pro-inflammatory
miRNA-146a in a broad spectrum of viral- and prion-induced encephalopathies and related
progressive age-related neurodegenerations of the human brain that include, prominently,
AD, ALS, AMD, MS, TLE, scrapie and BSE (mad cow disease) as well as CJD, GSS and kuru.
miRNA-146a’s role and significance in viral-induced encephalopathies and prion disease
appear to be expanding. Several attractive and all-encompassing recently proposed theories
suggest: (i) that there is a contribution of prions and misfolded proteins in human degener-
ative diseases that include AD and AMD and other miRNA-146a-associated neurological
disorders [56,75,108]; and (ii) that there may be a gastrointestinal (GI)-tract-sourced contri-
bution of microbes or microbial neurotoxins to AD and related neurodegenerative disorders
that critically involve miRNA-146a-mediated immunological and/or pro-inflammatory
signaling components [108–111].
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