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ABSTRACT: An enantio- and diastereoselective Cu−H-catalyzed
silylation of acyclic secondary alcohols with a vicinal quaternary
stereocenter is reported. The reaction kinetically selects one out of
four stereoisomers, affording the fastest-reacting stereoisomer as
the silyl ether in enantio- and diastereomerically enriched form.
The obtained motif with a quaternary carbon atom in the β-
position of the hydroxy group is otherwise not easy to access.
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Asymmetric synthesis can be achieved in numerous ways.1

For example, stereoconvergent2,3 as well as stereo-
divergent4−6 methods are viable strategies. These have been
employed for establishing a single stereocenter with great
success, but there are fewer methods available for simulta-
neous, independent control over the formation of vicinal
stereocenters.7 A possible approach toward full control of
absolute and relative configuration is stereodivergent dual
catalysis.8,9 Starting from the same set of prochiral starting
materials, the use of the different combinations of two
enantiomeric catalysts leads to the stereoselective formation
of all four stereoisomers. Alternatives to that challenging
synthesis of a single stereoisomer are dynamic kinetic
asymmetric transformations where a mixture of stereoisomers
as starting material converges to one product stereoisomer.10

All of the aforementioned techniques become exceedingly
complicated with one of the vicinal stereogenic carbon atoms
being quaternary. Such molecules are interesting candidates for
stereoselective kinetic resolution11,12 in order to preferentially
convert one stereoisomer out of a mixture of four (Scheme 1,
top). The downside is low yields, but the approach can
nevertheless be especially useful for motifs containing
quaternary carbon atoms.
With our long-standing interest in silylation-based kinetic

resolution of alcohols,13−15 we set out to apply their
enantioselective Cu−H-catalyzed Si−O coupling with achiral
tertiary hydrosilanes16−18 to the problem outlined above. We
recently showed that sterically congested secondary alcohols
with a nonstereogenic quaternary carbon atom in the β-
position can be kinetically resolved with good selectivity
factors.19 We found this substance class particularly promising
to probe their stereoselective kinetic resolution (Scheme 1,
bottom).20,21 The synthesis of similar acyclic alcohols with a

vicinal quaternary stereocenter is mainly achieved by reagent-
and catalyst-controlled carbonyl allylation to arrive at the
corresponding homoallylic alcohols.22−31 In this Letter, we
present an enantio- and diastereoselective Cu−H-catalyzed
silylation of stereoisomeric mixtures of those alcohols that
enriches the fastest-reacting stereoisomer as the silyl ether.
Guided by our earlier study using 3,5-xylyl-substituted

tertiary hydrosilane 2e,19 we chose the acyclic secondary
alcohol rac-1a and subjected each diastereomer separately to
the reaction conditions (Scheme 2, top). The diastereomers
reacted with different selectivity factors s = 26 and s = 18. The
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Scheme 1. Kinetic Resolution of Neopentylic Secondary
Alcohols Containing an Achiral Quaternary Center
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reaction of anti-1a was substantially faster than that of syn-1a
(2 days versus 7 days), thereby qualifying the catalytic system
for the stereoselective kinetic resolution. For alcohol (R,R)-1a
from anti-1a and (S,R)-3ae from syn-1a, the relative and
absolute configurations were assigned by X-ray diffraction after
derivatization to the 4-bromobenzoate (R,R)-4a and phthalate
derivative (S,R)-5a, respectively (Scheme 2, bottom). The
asymmetric induction is in agreement with previous
results.16−19

Several hydrosilanes 2 were tested using fast-reacting anti-1a
as the model substrate (Table 1). There was no reaction with
nBu3SiH (2a; entry 1).16 A set of Me3−nPhnSiH with n = 1 to 3
was probed (entries 2−4). Me2PhSiH (2b) was sufficiently
reactive and led to s = 12; significantly lower selectivity factors
were obtained with sterically more hindered MePh2SiH (2c)
and Ph3SiH (2d). Similar to our previous study,19 the 3,5-xylyl-
substituted Me2XySiH 2e showed a good selectivity factor of
15 (entry 5). Conversely, mesityl-substituted 2f was far less
effective (entry 6). Moderate to good selectivity factors were
seen with tert-butyl-substituted 2g (s = 9.5; entry 7) and
naphth-2-yl-derived 2h (s = 14; entry 8). Ethyl instead of
methyl groups at the silicon atom were detrimental (2i; entry
9).

To identify an acceptable compromise between selectivity
and reaction time, further optimization included variation of
the reaction temperature (Table 2). At −20 °C, an excellent s

value of 70 was achieved in the kinetic resolution of racemic
anti-1a with hydrosilane 2e (entry 1). However, the reaction
time of 10 days is not practical. A stepwise increase of the
reaction temperature to −15, −10, and 0 °C resulted in higher
reaction rates while maintaining high levels of selectivity
(entries 2−4). A selectivity factor of 25 and a reaction time of
46 h are still synthetically useful, and we proceeded with −10
°C as the reaction temperature (entry 3). For completion, the

Scheme 2. Cu−H-Catalyzed Kinetic Resolution of
Individual Racemic Diastereomers anti-1a and syn-1aa

aUnless otherwise noted, reactions were performed on a 0.2 mmol
scale and monitored by 1H NMR spectroscopy or GLC analysis.
Conversion was estimated by HPLC analysis and calculated according
to conversion = eeunreacted alcohol/(eesilyl ether + eeunreacted alcohol). Enantio-
meric excesses were determined by HPLC analysis on chiral stationary
phases (after cleavage of the silyl ether). With these data, selectivity
factors were calculated according to s = ln[(1 − C)(1 − ee)]/ln(1 −
C)(1 + ee)], where ee = eeunreacted alcohol/100 and C = conversion/100.
bObtained by derivatization of (R,R)-1a with 4-bromobenzoyl
chloride. cObtained from (S,R)-3ae by deprotection of the silyl
ether and derivatization with phthaloyl chloride.

Table 1. Hydrosilane Screeninga,b

entry hydrosilane
conv
(%)

time
(h)

ee of (S,S)-
3a (%)

ee of (R,R)-
1a (%) s

1 2a nr
2 2b 55 18 66 82 12
3 2c 68 18 42 90 6.8
4 2d 50 18 17 17 1.6
5 2e 46 18 77 65 15
6 2f 52 42 32 33 2.6
7 2g 48 18 67 63 9.5
8 2h 50 18 73 73 14
9 2i 50 18 42 42 3.7

aSee the caption of Scheme 2 for details. bSee the Supporting
Information for the complete optimization.

Table 2. Temperature Screeninga,b

entry T (°C) timec
convc

(%)
ee of

(S,S)-3aec (%)
ee of (R,R)-1ac

(%) sc

1 −20 10 d 49 92 89 70
2 −15 67 h 47 88 79 41
3 −10 46 h 51 80 85 25
4 0 29 h 46 82 71 21
5 rt 19 h 45 75 61 13

aSee the caption of Scheme 2 for details. bSee the Supporting
Information for the complete optimization. cAverage values of
multiple runs.
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above trend continued when running the kinetic resolution at
room temperature (entry 5).
We then applied the optimized conditions to the resolution

of a mixture of four stereoisomers (Scheme 3). To avoid

chromatographic separation of diastereomeric products, we
adjusted the amount of the hydrosilane to the diastereomeric
ratio of the starting material, that is, the faster-reacting
diastereomer. Model substrate rac-1a was subjected to the
Cu−H-catalyzed kinetic resolution as a mixture of the
diastereomers rac-anti-1a and rac-syn-1a with dr = 82:18. We
were pleased to find that silyl ether (S,S)-3ae (anti) formed
from the major diastereomer rac-anti-1a with high diaster-
eoselectivity (dr = 97:3); the s value was also high (s = 25).
When the methyl was replaced with an ethyl group at the
quaternary carbon atom as in rac-1b, the reaction proceeded
with a decreased selectivity factor (s = 11 for (S,S)-3be); the
diastereoselection was still satisfactory (dr = 88:12). A fully
alkyl-substituted quaternary carbon atom as in 1c (dr = 55:45)
did not allow for the kinetic resolution of the diastereomers (dr
= 54:46 for 3ce). The corresponding pairs of enantiomers
were, however, resolved with moderate selectivity factors of s =
8 for (S,R)-3ce and s = 5 for (S,S)-3ce.
Maintaining the established substitution pattern at the

quaternary center, we investigated the electronic variation of
the benzylic aryl group (Scheme 4). Functional groups are
generally well tolerated for this transformation.16−19 Deriva-
tives with electron-withdrawing and -donating groups in the
para- and ortho-positions, such as rac-1d−i and k−l,
successfully underwent the diastereo- and enantioselective

silylation with high selectivity factors. For 3,5-disubstituted
substrate rac-1j, the s value decreased while the diastereose-
lection remained at a high level.
In conclusion, we have developed a method for the enantio-

and diastereoselective kinetic resolution of acyclic secondary
alcohols with two vicinal stereocenters32 by applying an
adapted protocol of our Cu−H-catalyzed enantioselective
silylation. This procedure allows for selective silylation of one
stereoisomer out of a mixture of four. By this, chiral
neopentylic alcohol motifs can be accessed without the need
for prior separation of the diastereomers.
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The Supporting Information is available free of charge at
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General procedures, experimental details, character-
ization, and spectral data for all new compounds and
crystal data and structural refinement for compounds
(R,R)-4a and (S,R)-5a (PDF)

Accession Codes

CCDC 2103765 and 2120080 contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by
emailing data_request@ccdc.cam.ac.uk, or by contacting The
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Scheme 3. Substrate Scope Ia

aUnless otherwise noted, reactions were performed on a 0.2 mmol
scale and monitored by 1H NMR spectroscopy. Conversion was
estimated by HPLC analysis and calculated according to conversion =
eeunreacted alcohol/(eesilyl ether + eeunreacted alcohol). With these data,
selectivity factors were calculated according to s = ln[(1 − C)(1 −
ee)]/ln(1 − C)(1 + ee)], where ee = eeunreacted alcohol/100 and C =
conversion/100. Diastereomeric ratios were determined by HPLC
analysis and confirmed by 1H NMR spectroscopy. Enantiomeric
excesses were determined by HPLC analysis on chiral stationary
phases (after cleavage of the silyl ether).

Scheme 4. Substrate Scope IIa

aSee the caption of Scheme 3 for details.
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