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Low-coverage whole genome sequencing is a low-cost genotyping technology.
Combined with genotype imputation approaches, it is likely to become a critical
component of cost-effective genomic selection programs in agricultural livestock. Here,
we used the low-coverage sequence data of 617 Dezhou donkeys to investigate the
performance of genotype imputation for low-coverage whole genome sequence data and
genomic prediction based on the imputed genotype data. The specific aims were as
follows: 1) to measure the accuracy of genotype imputation under different sequencing
depths, sample sizes, minor allele frequency (MAF), and imputation pipelines and 2) to
assess the accuracy of genomic prediction under different marker densities derived from
the imputed sequence data, different strategies for constructing the genomic relationship
matrixes, and single-vs. multi-trait models. We found that a high imputation accuracy
(>0.95) can be achieved for sequence data with a sequencing depth as low as 1x and the
number of sequenced individuals ≥400. For genomic prediction, the best performance
was obtained by using a marker density of 410K and a G matrix constructed using
expected marker dosages. Multi-trait genomic best linear unbiased prediction (GBLUP)
performed better than single-trait GBLUP. Our study demonstrates that low-coverage
whole genome sequencing would be a cost-effective approach for genomic prediction in
Dezhou donkey.

Keywords: dezhou donkey, low coverage whole genome sequencing, genotype imputation, genomic prediction,
GBLUP

INTRODUCTION

Dezhou donkey, originating from Dezhou area, Shandong Province, China, is one of the major
donkey breeds in China. It is famous for its large body size (and thus good meat production ability)
and excellent skin quality (for producing donkey-hide gelatin). It has been introduced as a breeding
stock into many areas of China and has also brought considerable economic benefits to farmers
(Wang et al., 2020a). Therefore, Dezhou donkey plays an important role in the donkey industry in
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China. However, selective breeding based on animal breeding
theory had never been practiced in Dezhou donkey in the past. In
recent years, along with the increased importance of the donkey
industry in livestock agriculture in China, selective breeding is
gradually becoming an important issue in donkey production,
and some breeding work is being carried out in the Dezhou
donkey population.

Starting with the pioneered work of Meuwissen et al. (2001),
genomic selection (GS) has been widely used in selective breeding
in almost all major farm animal species and has brought great
increases of genetic progress and economic benefit for many
animal breeding industries (Schaeffer, 2006; Stock and Reents,
2013; Wiggans et al., 2017). Typically, GS is carried out using a
high-density (or medium-density) single-nucleotide
polymorphism (SNP) array. Many commercial SNP arrays
have been developed for major farm animal species (Stock and
Reents, 2013). However, there are still some species, such as
donkey, for which no such array is available, which inhibits the
application of GS in these species.

Recently, along with the rapid development of next-generation
sequencing technology and reduction of sequencing cost, GS
using genotypes revealed by whole genome sequencing (WGS),
instead of SNP array, has drawn interests of animal GS
community (Hickey 2013; Daetwyler et al., 2014; Georges
2014). The motivations of using whole genome sequence data
are to increase the selection accuracy, to facilitate GS across
breeds/populations, and to improve persistence of accuracy
across generations (Meuwissen and Goddard, 2010; Hayes
et al., 2013). To capture the whole genome variants, a
sequencing depth of 10x to 20x is generally required (Rashkin
et al., 2017; Jiang et al., 2019). However, at present, sequencing
with such depth is still too expensive for a large-scale GS
application. An alternative is to perform low-coverage whole
genome sequencing (lcWGS) at about 1x or less, and then
recovering the missing genotypes by imputation to ensure that
all individuals have genotypes for a shared set of variants. This
approach has been used in human and some animal species for
genome-wide association studies and genomic selection/
prediction and proved to be a feasible alternative to normal
sequencing (Pasaniuc et al., 2012; Nicod et al., 2016; Liu et al.,
2018; Zhang et al., 2021). Since the cost of lcWGS can even be
lower than that of a SNP array (e.g., in China, the current price for
sequencing a cattle genome at 1x is about ¥ 250 RMB per sample,
while the price for genotyping with the Neogen GGP Bovine 100k
SNP array is ¥ 280 RMB per sample), it is considered as a cost-
effective genotyping approach for GS [referred to as GS 2.0 by
Hickey (2013)].

A critical issue of lcWGS-based GS is the accuracy of
imputation of missing genotypes, which is affected by several
factors, such as sequencing depth, sample size, minor allele
frequency (MAF), and imputation method. A number of
imputation methods for lcWGS data have been proposed
(Davies et al., 2016; Ros-Freixedes et al., 2017; Hui et al.,
2020). However, most of these methods require a high-density
reference haplotype panel, which is not available for most animal
species, including donkey. Davies et al. (2016) proposed a method
called STITCH for imputation without requiring a reference

haplotype panel. It makes use of the fact that SNPs in
sequences are not independent of each other, and it constructs
founder haplotypes directly from the sequencing read data and
then perform imputation based on a hidden Markov model. This
method provides an opportunity of using lcWGS technology for
species for which a reference haplotype panel is not available.

In this study, we evaluated the imputation accuracy of lcWGS
data with respect to different sequencing depths, sample sizes,
MAFs, and imputation pipelines using 617 Dezhou donkey
animals that were sequenced with an average depth of 3.5x.
We then used the imputed genotypes to investigate the
performance of genomic selection for birth weight (BW) and
weaning weight (WW) in the Dezhou donkey population under
different marker densities, strategies for constructing genomic
relationship matrices, and single-vs. two-trait models.

MATERIALS AND METHODS

Animals
The animals used in this study were from the Dong-E E-Jiao
Donkey Farm in Shandong Province, China. Animals that had
records on both BW andWWwere selected. These animals along
with their known parents formed the study population for this
research, which consisted of 617 animals, of which 594 had
records on both traits. These 594 animals (303 males and 291
females) were born between 2015 and 2019. The animals were
weaned at 6 months after birth, and their weaning weight was
measured at the age of 6 ± 1 month. Weaning weight recorded
outside this age range was regarded as invalid record. The means
and standard deviations of the two traits were 30.507 ± 4.235 kg
(ranging from 15.0 to 42.2 kg) and 116.752 ± 18.227 kg (ranging
from 63.5 to 165.5 kg), respectively.

Blood samples were collected from all these animals. Total
DNA was isolated using the QIAamp DNA Investigator Kit
(QIAGEN, Hilden, Germany) and following the
manufacturer’s instruction. DNA quality was evaluated by
spectrophotometry and agarose gel electrophoresis.

All of the above experiments were carried out according to the
guideline of the experimental animal management of Shandong
Agricultural University (SDAUA-2018-018).

Low-Coverage Whole Genome Sequencing
DNA templates were ultrasonically sheared using a Covaris E220
(Covaris, Woburn, MA, United States) to yield to 150-bp
fragments and then prepared for sequencing libraries following
the workflow of the NEBNext Ultra DNA Library Preparation
Protocol. Multiple Ampure Bead XP cleanups (Beckman Coulter,
Brea, CA, United States) were conducted to remove any adapter
dimer that might have developed. The quality and concentration
of libraries were determined on an Agilent Bioanalyzer 2,100
(Agilent Technologies, Santa Clara, CA). The genomic library for
each sample was PE150 sequenced using the Illumina NovaSeq
6,000 sequencing system.

Read quality was assessed using the FastQC software (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) with focus on
base quality scores (q > 30), GC content (skewness <5%), N content
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(<5%), and sequence duplication levels (<100). The resulting data
reached a nucleotide length of 150 bp and a base quality score of
higher than 30 and were aligned to the donkey reference genome
(Wang et al., 2020b) by BWA (Li and Durbin, 2009). SAMtools (Li
et al., 2009) was used to transfer the formats and sort and index files.
The 617 animals had an average sequencing depth of 3.5x (ranging
from 1.9x to 6.4x) (Supplementary Figure S1).

Pipelines for Genotype Imputation
We compared two imputation pipelines, i.e., Bcftools + Beagle and
BaseVar + STITCH. In the first pipeline, we called SNPs using
Bcftools (Li, 2011) and then conducted genotype imputation using
Beagle v4.1 (Browning and Browning, 2016). In the second
pipeline, we called SNPs using BaseVar (Liu et al., 2018) and
imputed the missing genotypes (with probabilities) using STITCH
v1.6.3. The resulted SNP data from both pipelines were filtered
with MAF ≥0.01 and a Hardy–Weinberg equilibrium (HWE)
p-value > 1e-6 using PLINK (Chang et al., 2015).

Evaluation of Imputation Accuracy
We evaluated the imputation accuracy under different sequencing
depths, sample sizes, and MAFs using the sequence data of
additional 18 Dezhou donkey animals provided by the Donkey
Research Institute, Liaocheng University, Shandong Province,
China. The average sequencing depth of the 18 animals was
13.5x (ranging from 11.2x to 16.3x). Chromosomes 1, 19, and
30, which represented the long, short, and medium chromosomes
among the donkey chromosomes, respectively, were chosen to
evaluate the imputation accuracy. The imputation accuracy was
measured with two criteria, i.e., genotypic concordance and
genotypic accuracy. Genotypic concordance is defined as the
proportion of correctly imputed genotypes (Fridley et al., 2010),
and genotypic accuracy is defined as squared Pearson correlation
coefficient (r2) between expected dosages (posterior expectation of
the imputed allele dosages) and typed genotypes (Browning and
Browning, 2009). To evaluate the imputation accuracy for different
sequencing depths, in addition to the original sequence data with
an average depth of 3.5x, we randomly sampled reads from the
sequencing read data to generate sequence data with different
lower sequencing depths (0.5x, 1x, 1.5x, and 2x) using Picard
(https://broadinstitute.github.io/picard/). For the depths of 0.5x,
1x, and 1.5x, three repeated samplings were performed. To test the
effect of sample size (number of low coverage sequenced
individuals) on imputation accuracy, three different sample sizes
(200, 400, and 617) were considered. The samples with sizes of 200
and 400 were randomly sampled from the 617 animals, and three
repeated samplings were performed. To test the effect of MAF on
imputation accuracy, we restored the SNPs that were previously
filtered out with MAF >0.01 and divided the SNPs into 15 MAF
bins: (0–0.001), (0.001–0.002), (0.002–0.005), (0.005–0.01), (0.
01–0.02), (0.02–0.05), (0.05–0.1), (0.1–0.15), (0.15–0.2), (0.2–0.
25), (0.25–0.3), (0.3–0.35), (0.35–0.4), (0.4–0.45), and (0.45–0.5).
The average imputation accuracy in each bin was calculated.

Genomic Prediction
The imputation-based sequence data was used to investigate the
performance of genomic prediction using the 594 animals having

records on both BW and WW. The genomic estimated breeding
values (GEBVs) were obtained by using the genomic best linear
unbiased prediction (GBLUP) method (VanRaden, 2008) under
single-trait model as well as two-trait model.

The single-trait GBLUP model is as follows:

y � Xb + Zu + e

where y is the vector of observed phenotypes of BW or WW; b is
the vector of fixed effects, which include the effects of sex, year-
seasons when the trait was measured (years for BW: 2015–2019,
years for WW: 2016–2019, and four seasons each year), and age
(in days, as covariate, for WW) when the trait was measured; u is
the vector of genomic breeding values with distribution of N (0,
Gσ2a), where σ2a is the additive genetic variance and G is the
genomic relationship matrix; X and Z are the incidence matrices
for b and u, respectively; and e is the vector of random residuals
with distribution of N (0, Iσ2e).

The two-trait GBLUP model is as follows:

[ y1
y2

] � [X1 0
0 X2

][ b1
b2

] + [Z1 0
0 Z2

][ u1

u2
] + [ e1

e2
]

where the meanings of the vectors and matrices are the same as
those in the single-trait model with the subscripts 1 and 2
referring BW and WW, respectively. It was assumed that

[u1
u2

∼ N(0,G⊗M)] , where M = [ σ
2
a1 σa12

σa12 σ2a2
] is the

variance–covariance matrix of the genomic breeding values of

the two traits, and [ e1
e2

∼ N(0, I⊗R)] , where R � [ σ
2
e1 σe12

σe12 σ2e2
] is

the residual variance–covariance matrix of the two traits.
Since STITCH provides for each SNP and each individual the

imputed genotype (the most likely genotype) as well as the
expected genotype dosages (posterior expectation of the
genotype dosages), the G matrix can be constructed using
either the imputed genotypes or the expected genotype
dosages. The genotype-based G matrix [denoted as G(g)] was
constructed using the method of VanRaden (2008) as follows:

G(g) � WW′/∑ 2pj(1 − pj)
where, W is the centralized maker genotype matrix with its ij th
element equal to

wij � mij − 2pj

wheremij (� 2, 1, or 0) is the original genotype of individual i for
SNP j, and pj is the minor allele frequency of SNP j.

For constructing G using expected dosages [denoted as G(d)],
following the idea of the formula for G(g), we proposed the
following formula:

G(d) � DD’/sd

where,D is the centralized marker dosage matrix whose elements
are zero-centered expected dosages. sd is the sum of variances for
every column of D.

To evaluate the effect of marker density on the performance of
genomic prediction, we used four levels of marker densities
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to construct the Gmatrices. From the original sequence data
with an average depth of 3.5x, we obtained 2.3M SNPs after
imputation and quality control. We then reduced the
marker density by down-sampling SNPs from the 2.3M
SNPs. We applied linkage disequilibrium (LD) pruning
with three LD levels: r2 � 0.2, 0.4, and 0.8, by PLINK
(Chang et al., 2015), which produced 130, 220, and 410K
SNPs, respectively.

In addition, we also evaluated the performance of genomic
prediction using the 1x sequencing data, which was sampled from
the original sequence data and contained 1.4M SNPs after
imputation and quality control.

We used GMAT (Wang et al., 2020a) to construct the G
matrix. The variance and covariance components involved in the
models and GEBVs were estimated by AI-REML using the DMU
package (Madsen et al., 2014; http://dmu.agrsci.dk).

Cross-Validation
In this study, a 12-fold cross-validation (CV) was applied to assess
the accuracy of the genomic prediction. The 594 animals were
divided into 12 subsets. One of them was taken in turn to be used
as a validation population, and the remaining 11 subsets used as a
training population. For the two-trait model analysis, we left out
the observations on both BW and WW for the animals in the
validation set and calculated their GEBVs for both traits
simultaneously. The accuracy of genomic prediction for the
validation animals was assessed by ryc ,GEBV, the correlation
between corrected phenotypic values (yc) and GEBVs. The
corrected phenotype for each animal was calculated as the
original phenotypic value corrected for fixed effects [sex, year-
season, and age (for WW)], which were estimated by
conventional BLUP using the DMU package (Madsen et al.,
2014; http://dmu.agrsci.dk). The model for conventional BLUP

FIGURE 1 |Genotypic accuracy and genotypic concordance using the two imputation pipelines (sample size � 617 and average sequencing depth � 3.5x). (A–C)
represent genotype accuracy for chromosomes 1, 19, and 30, respectively; (D–F) represent genotype concordance for chromosomes 1, 19 and 30, respectively.
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was the same as that for GBLUP except that the G matrix was
replaced by the pedigree-based A matrix. The bias of predictions
was assessed by the regression of yc on GEBV (byc ,GEBV), with
byc ,GEBV � 1 indicating unbiased prediction (Su et al., 2012).

RESULTS

Accuracies of Genotype Imputation
Comparison of Different Pipelines
The two genotype imputation pipelines, BaseVar + STITCH and
Bcftools + Beagle, were compared using the original sequencing
data of the 617 animals with an average sequencing depth of 3.5x.
Figure 1 shows that the BaseVar + STITCH pipeline was
remarkably better than the Bcftools + Beagle pipeline. The
average genotypic accuracy from BaseVar + STITCH was

about 0.06 higher than that from Bcftools + Beagle, and the
average genotypic concordance was about 0.02 higher. Therefore,
the BaseVar + STITCH pipeline was used for the subsequent
analyses.

The Effects of Sample Size and Sequencing Depth
We compared the genotypic accuracy and genotypic concordance
for imputation with different sample sizes (200, 400, and 600) and
sequencing depths (0.5x, 1x, 1.5x, 2x, and 3.5x) (Figure 2). In all
scenarios, the genotype accuracies were over 0.90 (with only one
exception on chromosome 30 in the scenario of sequencing depth
� 0.5x and sample size � 200) and the genotypic concordances
were over 0.97. In general, as expected, the genotypic accuracy
and genotypic concordance increased with the increase of sample
size and sequencing depth. The improvement of imputation
accuracy was most obvious when the sample size was

FIGURE 2 | Effects of sample size and sequencing depth on imputation genotypic accuracy and genotypic concordance using the pipeline of BaseVar + STITCH.
(A–C) represent genotype accuracy for chromosomes 1, 19, and 30, respectively; (D–F) represent genotype concordance for chromosomes 1, 19, and 30, respectively.
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increased from 200 to 400 and the sequencing depth increased
from 0.5x to 1x. For sequencing depths of 0.5x, 1x, and 1.5x, the
results from the three repeatedly sampled data were almost the
same (see Supplementary Table S1 for chromosome 19 and
sample size of 200), so did the results from the repeated samples
of sizes 200 and 400 (see Supplementary Table S2). It should be
noted that, with a sample size of ≥400, a genotypic accuracy
greater than 0.94 and a genotypic concordance greater than 0.98
could be achieved even when the sequencing depth was as low as
1x. However, with a sequencing depth of 0.5x, even for a sample
size of 600, the genotype accuracy was less than 0.94.

The Effect of MAF
Figure 3 shows the effect of MAF on imputation accuracy for a
sample size of 600. For SNPs with MAF <0.01, both the genotypic

accuracy and the genotypic concordance were greatly affected by
MAF, and the accuracy increased rapidly with the increase of
MAF. However, for SNPs with MAF >0.01, the imputation
accuracy was not affected by MAF, while the genotypic
concordance decreased slightly with the increase of MAF.

Variance Component Estimation
Table 1 presents the estimates of variance components and
heritabilities based on the single-trait model with the two types
of G matrix [G(g) and G(d)] constructed using five different
marker sets (130, 220, 410K, and 2.3M from the 3.5x sequence
data and 1.4M from the 1x sequence data). For the 3.5x sequence
data, the estimates under the four marker sets were very similar,
with the additive variance and heritability estimates from the
2.3M marker set being consistently slightly smaller than those

FIGURE 3 | Effects of minor allele frequency on imputation genotype accuracy and genotype concordance using the pipeline of BaseVar + STITCH (sample size �
617). (A–C) represent genotype accuracy for chromosomes 1, 19, and 30, respectively; (D–F) represent genotype concordance for chromosomes 1, 19, and 30,
respectively.
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from the other three marker sets. However, the additive variance
and heritability estimates from the 1.4M marker set were all
smaller than those from the other marker sets. For all marker
sets, the estimates of additive genetic variances and heritabilities
based on G(d) were consistently smaller than those based on

G(g), although the differences were very small and not
significant.

For the two-trait model, the variance and co-variance
components of the two traits were estimated based on the
dosage-based G matrix and the 410K marker set (Table 2).

TABLE 1 | Estimates of variance components and heritabilities and their standard errors (in brackets) under single-trait model using different marker sets and different G
matrices for birth weight (BW) and weaning weight (WW).

Marker seta Genotype-based G matrix Expected dosage-based G matrix

σa
2 σe

2 h2 σa
2 σe

2 h2

BW
130K 10.266 (2.448) 8.024 (1.730) 0.561 (0.108) 10.100 (2.409) 8.030 (1.730) 0.557 (0.108)
220K 10.424 (2.456) 7.904 (1.728) 0.569 (0.108) 10.253 (2.417) 7.912 (1.727) 0.564 (0.108)
410K 10.750 (2.457) 7.656 (1.709) 0.584 (0.106) 10.581 (2.420) 7.664 (1.709) 0.580 (0.106)
2.3M 10.166 (2.424) 8.154 (1.703) 0.555 (0.107) 10.011 (2.388) 8.159 (1.702) 0.551 (0.107)
1.4M 9.456 (2.374) 8.732 (1.692) 0.520 (0.107) 9.316 (2.340) 8.739 (1.692) 0.516 (0.107)

WW
130K 68.419 (26.549) 139.977 (21.542) 0.328 (0.115) 68.223 (26.116) 140.874 (21.553) 0.326 (0.115)
220K 69.136 (26.566) 140.659 (20.358) 0.330 (0.115) 68.919 (26.549) 141.777 (21.542) 0.327 (0.115)
410K 69.866 (26.423) 141.046 (21.431) 0.331 (0.115) 69.670 (25.831) 141.328 (21.421) 0.330 (0.114)
2.3M 62.042 (25.269) 146.029 (20.907) 0.298 (0.112) 61.083 (24.888) 146.074 (20.900) 0.295 (0.111)
1.4M 54.305 (23.542) 152.396 (20.072) 0.263 (0.106) 53.514 (23.204) 152.422 (20.067) 0.260 (0.105)

aMarker sets 130K–2.3M were derived from the original sequence data with an average depth of 3.5x; marker set 1.4M was from sequence data with a depth of 1x.
σa2, additive genetic variance; σe2, residual variance; h2, heritability.

TABLE 2 | Estimates of variance (covariance) components, heritabilities, and genetic correlation and their standard errors (in brackets) under two-trait models using the 410K
marker set and expected dosage-based G matrix.

Trait σa
2 σe

2 h2 Cova Cove rg rp

Birth weight 11.769 (2.467) 7.016 (1.687) 0.627 (0.102) 27.399 (6.796) 9.839 (4.806) 0.839 (0.076) 0.588
Weaning weight 90.728 (25.747) 122.553 (19.855) 0.425 (0.105)

σa2, additive genetic variance; σe2, residual variance; h2, heritability; Cova, additive genetic covariance between BW and WW; Cove, residual covariance between BW and WW; rg,
genetic correlation (� Cova

σa(BW)×σa(WW)); rp, phenotypic correlation (� Cova+Cove											
σ2a(BW)+σ2e(BW)

√
×

												
σ2a(WW)+σ2e(WW)

√ ).

TABLE 3 | Accuracies and biases of genomic prediction and their standard errors (in brackets) under single-trait model with different marker sets.

Marker seta Genotype-based G matrix Expected dosage-based G matrix

Accuracyb Biasc Accuracyb Biasc

Birth weight
130K 0.285 (0.041) 0.063 (0.189) 0.285 (0.041) 0.063 (0.189)
220K 0.290 (0.040) 0.069 (0.186) 0.290 (0.040) 0.069 (0.186)
410K 0.297 (0.039) 0.061 (0.175) 0.297 (0.039) 0.062 (0.176)
2.3M 0.283 (0.039) 0.043 (0.174) 0.283 (0.039) 0.043 (0.174)
1.4M 0.277 (0.040) 0.037 (0.178) 0.277 (0.040) 0.038 (0.178)

Weaning weight
130K 0.225 (0.031) 0.163 (0.165) 0.225 (0.031) 0.164 (0.166)
220K 0.226 (0.032) 0.163 (0.166) 0.226 (0.031) 0.163 (0.165)
410K 0.229 (0.031) 0.168 (0.163) 0.229 (0.031) 0.169 (0.163)
2.3M 0.223 (0.032) 0.149 (0.179) 0.223 (0.032) 0.149 (0.179)
1.4M 0.221 (0.031) 0.183 (0.178) 0.221 (0.031) 0.183 (0.178)

aMarker sets 130K–2.3M were derived from the original sequence data with an average depth of 3.5x; marker set 1.4M was from sequence data with a depth of 1x.
bAccuracy is defined as the correlation between GEBVs and corrected phenotypes (yc).
cBias is defined as 1-regression coefficient of GEBVs on yc.
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The estimates of heritability from the two-trait model (0.627 for
BW and 0.425 for WW) were higher than those from the single-
trait model (0.580 for BW and 0.330 for WW). The estimate of
genetic correlation between BW and WW was 0.839.

Accuracy and Bias of Genomic Prediction
The GEBVs for BW and WW were calculated under the single-
trait model and two-trait model, respectively. For the single-trait
model, we again considered both types of G matrix [G(g) and
G(d)] constructed using the five different marker sets. The average
accuracies and biases derived from 12-fold cross-validation are given
in Table 3. In general, the differences in accuracy and bias between
different marker sets were small and not significant, while the 410K
marker set resulted in the highest accuracies, and the 1.4Mmarker set
resulted in the lowest accuracies. No differences in prediction accuracy
and bias were observed between the two types of Gmatrices. For the
two-trait model, only the G(d) matrix constructed using the 410K
marker set was used (Table 4). Compared with the results under the
single-trait model with the same G matrix, the two-trait model
remarkably improved the accuracies (0.337 vs. 0.297 for BW and
0.301 vs. 0.229 for WW) and reduced the biases (0.020 vs. 0.062 for
BW and 0.117 vs. 0.169 for WW). The difference tendencies
mentioned above were quite consistent across the 12 folds (see
Supplementary Table S3).

DISCUSSION

Low-coverage whole genome sequencing followed by imputation
provides a cost-effective way for genome-wide high-density
genotyping, especially for species (such as donkey) for which a
SNP array is not available. In this study, we investigated the
strategies for genotype imputation and evaluated the performance
of genomic prediction using imputation-based sequence data in a
donkey population.

Strategies of Imputation for Low-Coverage
Sequence Data
Imputation is necessary for lcWGS data due to the high missing
rates, which involves two steps, i.e., SNP calling and imputation.
A proper pipeline is essential to ensure high imputation
performance. In this study, we compared two pipelines,
Bcftools + Beagle and BaseVar + STITCH. In the first pipeline,
both Bcftools and Beagle have been widely used for SNP calling

and imputation for sequence data, respectively. However, it is not clear
whether they are suitable for lcWGS data. On the other hand, BaseVar
and STITCH were designed specifically for lcWGS data. We
demonstrated that BaseVar + STITCH outperformed Bcftools +
Beagle (Figure 1). Furthermore, we showed that in our Dezhou
donkey population, using this pipeline, high imputation accuracy
(genotypic accuracy >0.94 and genotypic concordance >98%) can be
achieved with a sample size of 400 and a sequencing depth of 1x
(Figure 2). Similar results were also reported by Zhang et al. (2021). In
other words, with a sample size of over 400, a sequencing depth of 1x
could be sufficient to ensure high imputation accuracy using BaseVar
+ STITCH.

Genomic Prediction Using
Imputation-Based Sequence Data
Using the imputation-based sequence data, we evaluated the
performance of genomic prediction using GBLUP with respect
to two types of Gmatrices [G(g) and G(d)], five different marker
sets (130, 220, 410K, and 2.3M derived from the 3.5x sequence
data and 1.4M derived from the 1x sequence data), and single-vs.
two-trait GBLUP model.

Comparison of the Two Types of G Matrices
We found that the accuracies and biases of genomic prediction
derived from the two types of Gmatrices were almost the same in all
scenarios. Note that the variance component estimates from the two
types ofGmatrices were also very similar. This implicates that for our
given data, the two types ofGmatrices did not lead to different results.
It remains to be seen whether this results also holds for other data sets.

Comparison of the Five Marker Sets
For the four marker sets from the 3.5x sequence data, the
prediction accuracy increased slightly (although not
significant) when the marker density increased from 130 to
410K, but did not further increase when the density increased
to 2.3M. The densities of 130, 220, and 410K correspond to
medium to high density of SNP array, while the 2.3M
corresponds to the density of sequence data. Some studies
showed that, in the frame of GBLUP, the genomic prediction
accuracy could be improved using high-density SNP array
compared to using medium-density array (VanRaden et al.,
2011; Su et al., 2012; Perez-Enciso et al., 2015), but there were
also studies that showed no or very small such improvement
(VanRaden et al., 2013; Boison et al., 2017). It has been shown

TABLE 4 | Accuracies and biases of genomic prediction and their standard errors (in brackets) under single-trait and two-trait models.

Modela Birth weight Weaning weight

Accuracyb Biasc Accuracyb Biasc

Two-trait 0.337 (0.037) 0.020 (0.141) 0.301 (0.038) 0.117 (0.164)
Single-trait 0.297 (0.039) 0.062 (0.176) 0.229 (0.031) 0.169 (0.163)

aFor the two-trait model, only the expected dosage-basedGmatrix constructed using the 410Kmarker set derived from the 3.5x sequence data was used. For comparison, the results of
the single-trait model using the same G matrix is represented here.
bAccuracy is defined as the correlation between GEBVs and corrected phenotypes (yc).
cBias is defined as 1-regression coefficient of GEBV on yc.
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that, in the frame of GBLUP, using sequence data could hardly
improve the accuracy compared with using SNP array (Ober et al.,
2012; Perez-Enciso, 2014; van Binsbergen et al., 2015; Frischknecht
et al., 2018). However, this does not mean that sequence data is of no
value for genomic prediction. Several studies have shown that
sequence data would be beneficial when variants are preselected
based on, e.g., GWAS or a Bayesian selection model (MacLeod
et al., 2016; Hayes and Daetwyler, 2019). In addition, sequence
data can be meaningful for cross-breed/population genomic
selection (Druet et al., 2014; MacLeod et al., 2016). On the other
hand, the prediction accuracies using the 1.4Mmarker set from the 1x
sequence data were slightly lower than those from the 3.5x sequence
data. This should be due to the lower imputation accuracy for the 1x
sequence data than 3.5x (see Figure 2). However, since the reduction
in accuracy was rather small, in consideration of the sequencing cost,
sequencing at depth of 1x would be a preferred choice for a lcWGS-
based genomic selection.

Single-vs. Two-Trait GBLUP Model
Noticeable increases in genomic prediction accuracy were
observed when using a two-trait model compared with using a
single-trait model. The comparison was made only for the scenario
of using an expected dosage-based Gmatrix and the 410k marker set
derived from the 3.5x sequence data. However, such advantage should
hold for other scenarios. It has been shown in several incidences that a
multi-trait model can increase the accuracy of breeding value
estimation, either by conventional BLUP or by GBLUP (Calus and
Veerkamp, 2011; Jia and Jannink, 2012; Guo et al., 2014), in particular
for traits with high genetic correlation, such as the two traits
investigated in this study. This increase in accuracy with multi-trait
model will be particularly beneficial for the situation where the
reference population size is limited.

It should be pointed out that, although the differences in the
performance of genomic prediction between different
scenarios seemed reasonable, some of the differences were
actually not significant, possibly due to the small dataset
available for this study. It is the practical situation for some
species/breeds/populations for which only a small dataset is
available for investigating genomic prediction. Therefore,
despite the limitations of having a small dataset, our
findings would provide meaningful inspirations for such
situations.

CONCLUSION

In this study, we demonstrated that the pipeline BaseVar + STITCH is
a good choice for SNP calling and imputation for low-coverage
sequence data. A sufficient high imputation accuracy could be
achieved for sequence data with a sequencing depth as low as 1x,
when the size of the sequencing population is over 400. Thus, lcWGS
combined with imputation provides a cost-effective way for whole
genome high-density genotyping and can be applied for large-scale
genomic selection in farm animals. This is particularly beneficial for
those animal species for which a SNP array is not available. In the
frame of GBLUP, increasing marker density from a density

comparable with a high-density SNP array (e.g., 400K) to sequence
densitywithmillions of SNPs did not increase the accuracy of genomic
prediction. The multi-trait model GBLUP improves the accuracy of
genomic prediction over the single-trait model, which would be
particularly meaningful for the situation where the reference
population size is limited.
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