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Abstract

Background Computed tomography (CT) scans are routinely obtained in oncology and provide measures of muscle
and adipose tissue predictive of morbidity and mortality. Automated segmentation of CT has advanced past single slices
to multi-slice measurements, but the concordance of these approaches and their associations with mortality after can-
cer diagnosis have not been compared.

Methods A total of 2871 patients with colorectal cancer diagnosed during 2012-2017 at Kaiser Permanente Northern
California underwent abdominal CT scans as part of routine clinical care from which mid-L3 cross-sectional areas and
multi-slice T12-L5 volumes of skeletal muscle (SKM), subcutaneous adipose (SAT), visceral adipose (VAT) and
intermuscular adipose (IMAT) tissues were assessed using Data Analysis Facilitation Suite, an automated multi-slice
segmentation platform. To facilitate comparison between single-slice and multi-slice measurements, sex-specific
z-scores were calculated. Pearson correlation coefficients and Bland-Altman analysis were used to quantify agreement.
Cox models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for death adjusting for age,
sex, race/ethnicity, height, and tumour site and stage.

Results Single-slice area and multi-slice abdominal volumes were highly correlated for all tissues (SKM R = 0.92,
P < 0.001; SAT R = 0.97, P < 0.001; VAT R = 0.98, P < 0.001; IMAT R = 0.89, P < 0.001). Bland-Altman plots
had a bias of 0 (SE: 0.00), indicating high average agreement between measures. The limits of agreement were
narrowest for VAT (+ 0.42 SD) and SAT (=+ 0.44 SD), and widest for SKM (= 0.78 SD) and IMAT (% 0.92 SD). The
HRs had overlapping CIs, and similar magnitudes and direction of effects; for example, a 1-SD increase in SKM area
was associated with an 18% decreased risk of death (HR = 0.82; 95% CI: 0.72-0.92), versus 15% for volume from
T12 to L5 (HR = 0.85; 95% CI: 0.75-0.96).

Conclusions  Single-slice L3 areas and multi-slice T12-L5 abdominal volumes of SKM, VAT, SAT and IMAT are highly
correlated. Associations between area and volume measures with all-cause mortality were similar, suggesting that they
are equivalent tools for population studies if body composition is assessed at a single timepoint. Future research should
examine longitudinal changes in multi-slice tissues to improve individual risk prediction.
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Introduction Methods

Computed tomography (CT) scans are routinely obtained in Study population and setting

oncology patients for diagnosis, surgical planning and surveil-

lance. Measures of muscle and adipose tissue derived from We identified patients diagnosed with stage I-lll first pri-

CT images are predictive of surgical complications,*™ treat-
ment toxicity, and morbidity and mortality> after a cancer
diagnosis,*®” demonstrating the importance of body compo-
sition to cancer outcomes. As automated tools to segment
muscle and adipose tissue on CT images become more
efficient, accurate and available,® ™2 these data have the po-
tential to provide more than just research insights: Future ap-
plications might include improving patient care by providing
personalized cancer treatments and tailoring lifestyle inter-
ventions for cancer survivors’ individual body composition.
Although most oncology research has used manually
segmented muscle and adipose tissue area from a
single-slice axial CT image (typically the mid-slice at the third
lumbar vertebra [L3]**), use of artificial intelligence ap-
proaches for automated vertebral landmarking and segmen-
tation has allowed body composition research to advance
past single-slice tissue areas*® to multi-organ, multi-slice, vol-
umetric quantifications across larger fields of view.'° Such
advances in automation allow rapid quantification of body
composition in large cohort studies. Additionally, by
segmenting tissue at vertebral landmarks beyond the L3,
automated multi-slice segmentation may better characterize
tissues that are variable across vertebral levels (e.g.,
intermuscular or visceral adipose tissue) and enable muscle
and adipose distribution across larger regions of the body
to be studied. Finally, it is hypothesized that multi-slice

tissue volumes may be more sensitive or accurate
than single-slice areas for longitudinal evaluation of
within-person changes in body composition. However,

multi-slice segmentation also introduces new challenges in-
cluding variable fields of view across patients and the need
for standardized approaches to model these new volumetric
exposures.

An essential first step towards integration of multi-slice
measurement into body composition research is to under-
stand the relationship between single-slice and multi-slice
measurement muscle and adipose tissue measurements
and their associations with clinical outcomes. Towards that
end, this analysis of 2871 patients with non-metastatic
colorectal cancer had two objectives: first, to examine the
concordance of abdominal body composition assessed using
single-slice areas at the mid-L3 to that assessed using
multi-slice volumes from the twelfth thoracic to fifth lumbar
(T12-L5) vertebrae, the most common field of view for gas-
trointestinal cancer patients, and, second, to compare the
magnitude and direction of associations with mortality after
colorectal cancer diagnosis between these two measure-
ment approaches.

mary, invasive colorectal cancer at Kaiser Permanente
Northern California (KPNC) between 2012 and 2017. KPNC
maintains a Virtual Data Warehouse (VDW) in which elec-
tronic medical record®® (EMR) data are curated for research
purposes. Individuals were eligible for the cohort if they
were at least 18 years of age and <80 at time of diagnosis,
underwent surgical resection, received an abdominal or pel-
vic CT scan performed within 4 months of colorectal cancer
diagnosis, but before receipt of any chemotherapy or radia-
tion, and had a body mass index (BMI) available within
6 months of CT date, but prior to adjuvant chemotherapy
(N = 3309). Further, the individual’s CT scan had to include
T12 to L5 vertebral bodies (N = 2996). In addition, individ-
uals were excluded due to inadequate CT image abnormali-
ties concerns such as severe truncation artefacts (N = 125)
as discussed in greater detail later in the methods as well
as in the results, bringing our final analytic cohort to 2871
patients. A large majority of scans, 89.1% (N = 2559), were
taken prior to surgical resection.

Automated body composition measurements

To obtain body composition measurements, the Data Analy-
sis Facilitation Suite (DAFS) by Voronoi Health Analytics, Inc.
(https://www.voronoihealthanalytics.com/) was utilized. In
brief, DAFS provides an automated and accurate end-to-end
pipeline for rapid multi-organ segmentation and extraction
of body composition measurements from CT images. DAFS
takes a PACS (picture archiving and communication system)-
exported folder from a scanning instance and first curates
the axial DICOM (Digital Imaging and Communications in
Medicine standard) images into individual 3D scans.'® Next,
the curated scans are run through non-linear image process-
ing algorithms that provide two key derivations from the CT
scan: (1) multi-slice segmentation covering the entirety of
the field of view into the multiple organs and tissues present
and (2) annotation of each axial slice with the label of the
vertebral bone contained in the slice. DAFS also generates
automated visualizations, enabling manual assessment of
segmentation accuracy and CT imaging abnormalities. In prior
validation against manual analysis, the average dice similarity
coefficients (spatial overlap index used for validation in image
segmentation that quantifies overlap at the pixel or voxel
level) were 0.97 for SKM, 0.99 for SAT, 0.96 for VAT*® and
over 0.90 for most of the organs for the DAFS software,
and errors in annotation of slices based on vertebral levels
were close to 0.
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All images and segmentations were reviewed by a single
trained research assistant to exclude or flag imaging abnor-
malities based on predefined criteria. Scans in which the
patient had a metal implant, muscle cut-off, bright truncation
artefact (beam hardening when the patient’s body is outside
the field of view) or major segmentation error were removed
from analysis (N = 125; see Figure S1 for sample images). In
addition, scans were flagged, but not excluded, if they
contained features that could have impacted the tissue quan-
tifications or the radiation attenuation values on the scan.
These flags included pannus, an extremity (arm and/or hand)
in view, minor to moderate subcutaneous adipose tissue
cut-off and minor truncation artefacts (N = 159; see Figure
S1 for sample images).

Body composition measurements

There were four body composition tissues of interest
analysed in this study: skeletal muscle (SKM), subcutaneous
adipose tissue (SAT), visceral adipose tissue (VAT) and
intermuscular adipose tissue (IMAT). For all four tissues,
single-slice measurements were calculated at the mid-L3,
and multi-slice measurements were calculated across multi-
slice scans covering the T12-L5 vertebra. The directly com-
puted measurements were therefore abdominal tissues
quantified as cross-sectional area in cm? and volume in cm?
(Figure 1). Secondarily, for the SKM region, the mean radia-
tion attenuation value or radiodensity in Hounsfield units
(HU) was recorded. We included this as it is commonly used
as a measure of myosteatosis or ectopic fat infiltration into
skeletal muscle. The radiodensities of adipose tissues were
not examined as they are less commonly used in the oncol-
ogy literature. Of note, the DAFS software default does not
impose predefined ranges on the HU values for specific tis-
sues; although this can be customized, we used the default
settings as the tissue-specific HU ranges applied in manual
analysis protocols vary. The observed means, SD and ranges
for each tissue are reported in Table S3.

Covariate selection

Demographic characteristics including sex (female, male) and
self-reported race/ethnicity (Non-Hispanic White, Hispanic,

Black or African American, Asian or Pacific Islander, Other/
Missing) were collected from the KPNC EMR via the VDW De-
mographics file. Body measurements including BMI at scan
(kg/m?) and height at scan (metres [m]) were measured at
clinical visits and then extracted from the KPNC VDW vital
signs file. Colorectal cancer diagnosis characteristics including
cancer stage at diagnosis, primary site of tumour and receipt
of adjuvant chemotherapy were obtained from the KPNC
Cancer Registry.*®

Outcomes

All-cause mortality was ascertained from KPNC’s VDW mor-
tality files™® through the last available update (31 December
2019), which incorporates internal data from the KPNC health
system, and external linkages with mortality information
from the State of California, the Social Security Administra-
tion and the National Death Index.

Statistical analysis

Sex-specific z-scores with mean of zero and standard devia-
tion of one for mid-L3 area in cm? and T12-L5 volume in
cm? of SKM, SAT, VAT and IMAT were calculated to allow for
unit-free comparison of single-slice and multi-slice measure-
ments. Single-slice area and multi-slice volume z-scores for
SKM, SAT, VAT and IMAT were then categorized into
three-level ordinal variable for each tissue type depending
on whether the z-scores were within 1 SD of the sex-specific
mean, >1 SD higher or >1 SD lower. Sex-specific z-scores
and categories were also calculated for SKM radiodensity.
The linear correlation for SKM, SAT, VAT and IMAT
single-slice area and multi-slice volume z-scores, as well as
SKM radiodensity HU (single and multi-slice) was estimated
using Pearson correlation coefficients. To quantify the agree-
ment between the single-slice and multi-slice measurements,
we used the Bland—Altman method. The bias (mean of the
differences) and standard error, as well as the upper and
lower limits of agreement (LOA: bias + 1.96 * SD) were
calculated.’” Individual measurements were classified as
outliers if they fell outside the LOA for the respective tissue
type. Cohen’s kappa coefficients were estimated to assess
the agreement between the single-slice area and multi-slice

Figure 1 Body composition segmented as 2D tissue areas from the mid-L3 slice (first panel), versus multi-slice, T12-L5 volumes. Visceral adipose tissue
is shown in yellow; intermuscular adipose tissue in green; skeletal muscle in red; and subcutaneous adipose tissue in blue.
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volume categories described above (three-level, SD-based
variable), as well as equivalent categories based on SKM
radiodensity. Aligning with Cohen’s definition,*®* Cohen’s
kappa coefficients were interpreted as follows: 0.01-0.20 as
no correlation, 0.21-0.39 as minimal, 0.40-0.59 as weak,
0.60-0.79 as moderate, 0.80-0.90 as strong and above 0.90
as near-perfect correlation.

Cox proportional hazards models were used to estimate
hazard ratios (HRs) and 95% confidence intervals (Cls) and
to compare the strength of association of single slice versus
multi-slice measurements with all-cause mortality. ‘Single-tis-
sue models’, with separate models for each exposure, were
fit for single-slice areas (mid-L3 SAT, VAT, IMAT and SKM
areas in cm?, plus SKM radiodensity in HU averaged) and
multi-slice volumes (T12-L5 SAT, VAT, IMAT and SKM vol-
umes in cm?®, plus SKM radiodensity in HU averaged). Then,
using the same exposure parameterizations, two ‘multi-tis-
sue’ models were fit with all relevant tissues as mutually ad-
justed exposures within one model: one for single-slice areas
and another for multi-slice volumes. For both single-tissue
and multi-tissue models, the exposures were operationalized
as either the continuous z-score or three-level, SD-based cat-
egories. For SKM radiodensity, we entered the exposure in its
native units for all analyses other than survival analyses given

that mean single-slice and mean multi-slice radiodensity are
both measured in HU. When using the three-level, SD-based
category in the cox model, the highest SKM category and
the lowest SAT, VAT and IMAT categories were used as the
reference. All models were adjusted for the covariates of
sex, race/ethnicity, height, cancer stage and primary site of
tumour. Person-time was calculated as the years from the
date of CT scan to the date of death. If no event occurred,
participants were censored at the end of the study period,
31 December 2019.

We conducted two sensitivity analyses. First, we repeated
analyses excluding scans that were flagged as having imaging
abnormalities for any reason. Second, we repeated analyses
after scaling multi-slice tissue volumes in cm® to torso length
in mm; to do this, we first divided the multi-slice volume of
each tissue by the height of the slab in mm from T12 to L5
and then rederived the sex-specific z-scores for these
exposures.

All statistical analyses were conducted using R Version
4.0.2. Specifically, data preparation was enabled by the
tidyverse, cox proportional hazard regression models were
enabled by the survival package, figures were generated
using ggplot2 from tidyverse and patchwork packages and ta-
bles were generated using gtsummary package.'®23

Table 1 Baseline characteristics of patients diagnosed with colorectal cancer at Kaiser Permanente Northern California from 2012 to 2017

Overall, N = 2871

Male, N = 1551 Female, N = 1320

Characteristic

Mean (SD) or N (%)

Age at diagnosis 61(11)
Race/ethnicity
Hispanic
Black or African American
Asian or Pacific Islander

Non-Hispanic White

165 (5.7%)
221 (7.7%)
506 (18%)
1947 (68%)

Other 32 (1.1%)
Body mass index at scan (kg/m?) 28.5 (5.9)
Height at scan (m) 1.70 (0.10)
AJCC cancer stage, 8th edition

1 843 (29%)

2 876 (31%)

3 1152 (40%)
Primary site of tumour

Colon 2088 (73%)

Rectal 783 (27%)

Receipt of adjuvant chemotherapy 1349 (47%)

Single-slice body composition at mid-L3

Skeletal muscle (cmz) 137 (39)

Subcutaneous adipose (cm?) 223 (122)

Visceral adipose (cm®) 173 (113)

Intermuscular adipose (cm?) 12 (8)

Skeletal muscle (HU) 44 (10)
Multi-slice body com?osition from T12 to L5

Skeletal muscle (cm?) 2407 (784)

4017 (2226)
2835 (1852)
291 (162)
45 (10)

Subcutaneous adipose (cm?)
Visceral adipose (cm”)
Intermuscular adipose (cm?)
Skeletal muscle (HU)

60 (11) 61 (12)
93 (6.0%) 72 (5.5%)
94 (6.1%) 127 (9.6%)
289 (19%) 217 (16%)
1059 (68%) 888 (67%)
16 (1.0%) 16 (1.2%)

28.7 (5.2) 28.3 (6.6)
1.76 (0.08) 1.62 (0.07)

440 (28%)
505 (33%)
606 (39%)

403 (31%)
371 (28%)
546 (41%)

1080 (70%)
471 (30%)
734 (47%)

1008 (76%)
312 (24%)
615 (47%)

163 (31) 107 (21)
194 (105) 257 (131)
216 (116) 122 (86)

12 (8) 13 (8)

45 (9) 42 (11)
2931 (636) 1792 (402)
3612 (2020) 4492 (2360)
3605 (1896) 1929 (1311)

296 (170) 285 (151)

47 (9) 44 (11)

Note: Scans were taken prior to receipt of any chemotherapy, if received. Abbreviation: AJCC, American Joint Committee on Cancer.
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Results
Study population

Baseline characteristics of the cohort are listed in Table 1. The
mean age at diagnosis was 61 (SD: 11) years, and the cohort
was equally male (54%) and female (46%), and primarily
non-Hispanic White (68%). There was an almost even distri-
bution between cancer stages, with Stage Ill being the largest
category (40%). The cohort was primarily composed of indi-
viduals whose primary tumour site was the colon (73%),
and less than half of the cohort received adjuvant chemother-
apy (47%). A large majority of the CT images were taken with
a 5 mm thickness (2090 [72.8%]) with IV contrast adminis-
tered (2739 [95.4%)]).

(A)
Skeletal muscle

Pearson's Correlation: R = 0.92; p <.001

Multi-slice volume z-score
N

Concordance between single-slice area and
multi-slice volume measurements

Strong, positive and statistically significant correlations were
estimated between single-slice area z-score and multi-slice
volume z-scores for all tissue types (Figure 2: SKM R = 0.92,
P < 0.001; SAT R = 0.97, P < 0.001; VAT R = 0.98,
P < 0.001; IMAT R =0.89, P < 0.001). However, Figure 2illus-
trates that the correlation between single-slice area and
multi-slice volume is a not a 1:1 match. Instead, there is a
cloud of values that fall along the regression line.

To better understand the agreement between single-slice
area and multi-slice volume z-scores, the Bland—Altman plots
in Figure 3 were assessed. For all tissues, the Bland—Altman
plots had a bias of 0.00 (SE: 0.00), indicating high agreement

B
®) Subcutaneous adipose

Pearson's Correlation: R = 0.97; p <.001

Multi-slice volume z-score
N

0 0

-2 -2
-4 - - . . : . -4 - - . . : .
4 2 0 2 4 6 8 -4 -2 0 2 4 6 8

Single-slice area z-score

Visceral adipose
Pearson's Correlation: R = 0.98; p <.001
8_

Multi-slice volume z-score
N

Single-slice area z-score

(D)

Intermuscular adipose
Pearson's Correlation: R = 0.89; p <.001

Multi-slice volume z-score
N

01 0

-2 -2

-4 . . . . : . -4 . . ; ; : .
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

Single-slice area z-score

Single-slice area z-score

Figure 2 Scatter plots displaying the Pearson correlation coefficient comparing sex-specific z-scores for body composition assessment from single-
slice, mid-L3 areas versus multi-slice, T12—-L5 volumes at diagnosis of colorectal cancer.
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Figure 3 Bland-Altman plots displaying the agreement between sex-specific single-slice area and volume z-scores for each tissue type at diagnosis of
colorectal cancer. The dashed blue line is the limits of agreement (+1.96 * SD), and the dashed orange line is the bias (the mean of the differences). (A)
Skeletal muscle, (B) subcutaneous adipose, (C) visceral adipose and (D) intermuscular adipose.

between abdominal area and volume on a population
level. The LOA were narrowest for VAT (% 0.42 SD) and
SAT (% 0.44 SD), and widest for SKM (% 0.78 SD) and IMAT
(= 0.92 SD). SKM radiodensity derived from an average
across SKM single-slice area versus multi-slice volume also
had a near-perfect correlation (R = 0.98, P < 0.001), bias of
—1.26 with LOA of —5.08 to 2.55 SD (Figures S and S2). Al-
though most marked for IMAT (see funnel shape in Figure 3),
in general, discrepancies between single-slice and multi-slice
measurements increased with increasing area or volume of
the tissue.

Using the Bland—Altman analysis, differences between sin-
gle-slice and multi-slice measurements that were more ex-
treme than the LOA were classified as outliers (5.5-6.4% of
observations for each tissue). Patients classified as outliers
for any tissue had a higher mean BMI (e.g., SKM: 31.5 vs.
28.4 kg/m?; Table 2). This is consistent with the observation
that larger patients (those with greater tissue areas or vol-
umes) tended to have greater discrepancies between mea-
surements. However, it is notable that patients classified as

outliers for one tissue type were often not outliers for an-
other. In Figure 4, the largest overlap in outliers observed is
between VAT and SAT; however, this overlap only accounts
for a minority of patients (only 1.3% of patients are outliers
on both VAT and SAT). We additionally assessed the extent
to which outliers were driven by characteristics inherent to
the quality of the CT image series. Whereas few scans were
flagged during quality review for any reason (n = 159), among
those scans outside the LOA for a given tissue, a larger pro-
portion were flagged as having a quality issue on the image
(Table S1).

Cohen’s K was estimated to understand whether
single-slice versus multi-slice measurement ranked patients
similarly; the agreement between categories based on the
sex-specific SDs of single-slice and multi-slice measurements
can be seen in Table S2. Both SKM and IMAT sex-specific SD
categories had moderate agreement between multi-slice vol-
ume and single-slice area (SKM kappa coefficient = 0.67,
P < 0.001; IMAT kappa coefficient = 0.61, P < 0.001). In
comparison, SAT, VAT and SKM radiodensity sex-specific cat-
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Figure 4 Heatmap of discordance between single-slice versus multi-slice quantification of body composition. The diagonal indicates the number indi-
viduals with differences in the sex-specific z-scores between the single-slice and multi-slice measurements that are more extreme than the Bland-Alt-
man limits of agreement for that tissue type, whereas the intersection indicates the number of individuals who are outliers for both tissue types.

Warmer colours indicate a greater number of individuals.

egories had strong agreement (SAT kappa coefficient = 0.82,
P < 0.001; VAT kappa coefficient = 0.85, P < 0.001; SKM
HU kappa coefficient = 0.85, P < 0.001).

Concordance between single-slice and multi-slice
survival estimates

A total of 438 deaths occurred during a median follow-up
period of 4.40 years (maximum 8.00 years).

Table 3 compares the associations with all-cause mortality
for each tissue type between single-slice and multi-slice con-
tinuous z-scores adjusting for age, stage, tumour site, sex,
race/ethnicity and height. The HRs between the single-slice
and multi-slice continuous z-scores had overlapping Cls and
similar magnitude and direction of effects regardless of the
tissue examined. As expected, higher skeletal muscle quantity
and radiodensity were associated with lower mortality risk
(the HR was 0.82; 95% Cl: 0.72—0.92 per SD SKM and 0.70;

95% Cl: 0.64-0.78 SKM radiodensity when examining
single-slice areas, compared with 0.85; 95% CI: 0.75-0.96
per SD SKM and 0.71; 95% Cl: 0.64-0.78 when examining
multi-slice volumes), whereas higher IMAT was associated
with higher mortality risk (the HR was 1.16; 95% Cl: 1.06—
1.27 per SD when examining single-slice areas, compared
with 1.13; 95% Cl: 1.03-1.25 when examining multi-slice
volumes). The magnitude and direction of associations re-
mained similar comparing the single-slice and multi-slice
body composition measurements regardless of whether
models included each tissue separately, mutually adjusted
all tissues or when exposures were operationalized categori-
cally (data not shown).

Sensitivity analyses

When we further excluded scans that were flagged during
quality review for any reason (n = 159), we found that corre-
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Table 3 Associations of body composition measurements and all-cause mortality after colorectal cancer: hazard rations (HRs) and 95% confidence
intervals (ClIs) from single-tissue models fit separately for each sex-specific z-score for each single-slice area (cmz) and multi-slice volume (cm3) for
each tissue (2871 colorectal cancer patients diagnosed 2012-2017 at Kaiser Permanente Northern California at diagnosis)

Single-tissue models

Single-slice mid-L3 area

Multi-slice T12-L5 volume

Exposure per SD HR (95% ClI) P-value HR (95% Cl) P-value
Area and volume measurements
Skeletal muscle 0.82 (0.72-0.92) <0.05 0.85 (0.75-0.96) <0.05
Subcutaneous adipose 0.95 (0.86-1.05) 0.352 0.96 (0.87-1.07) 0.497
Visceral adipose 1.04 (0.95-1.15) 0.373 1.03 (0.94-1.13) 0.537
Intermuscular adipose 1.16 (1.06-1.27) <0.05 1.13 (1.03-1.25) <0.05
Radiodensity measurements
Skeletal muscle 0.70 (0.64-0.78) <0.001 0.71 (0.64-0.78) <0.001

Note: Models adjusted for the following covariates: age at diagnosis cancer stage, primary tumour site, sex, race/ethnicity and height at
scan. All models fit separately for each tissue type exposure without mutual adjustment. Abbreviation: SD, sex-specific standard deviation

units.

lations, LOA from Bland—Altman analysis and relative risks
were nearly identical to our main analyses; for example, for
SKM and IMAT, the correlations between single-slice and
multi-slice measurements remained at R = 0.92 and
R = 0.89, respectively. The only notable change was the
narrowing of the LOA for IMAT from * 0.92 to —0.86 to
0.88 SD. Scaling multi-slice tissue volumes to torso length
by dividing by the height of the slab from T12 to L5 made a
greater difference, improving correlations slightly to
R =0.93 for SKM and R = 0.91 for IMAT. Consistent with this,
scaling removed some variability in the multi-slice volumetric
measurements, resulting in narrower LOA for all tissues: The
upper limits changed to * 0.40 SD for VAT, to * 0.40 SD for
SAT, = 0.75 SD for SKM and * 0.83 SD for IMAT. No differ-
ence in mortality associations was noted for either sensitivity
analysis.

Discussion

This is the first study to compare abdominal body composi-
tion assessed using single-slice areas at the mid-L3 to
multi-slice volumes from T12 to L5; we found that these
two approaches result in highly correlated measures with
similar magnitude and direction of associations with mortal-
ity after diagnosis of colorectal cancer. However, there is
not perfect agreement between the approaches, particularly
for IMAT and SKM where for some individuals, the
single-slice and multi-slice measurements rank them very dif-
ferently relative to the population mean. Thus, although
single-slice and multi-slice segmentation of body composition
may vyield similar results in population studies, there is
heterogeneity in tissue quantities even across a limited field
of view. Our sensitivity analyses indicate that scaling
multi-slice measurements to the height of the slab may be
an important step to standardize these metrics for analysis.

DAFS is the first platform to be commercially available that
provides fully automated, multi-slice, multi-tissue segmenta-
tion of CT images, enabling the comparison of single-slice
area measurements to multi-slice volumetric measurements.
To date, the concordance of single-slice L3 and abdominal
multi-slice T12-L5 measurement approaches or their associa-
tions with clinical outcomes have not been compared.
Single-slice CT has been used for nearly two decades as a ref-
erence method for the measurement of body composition.
Yet, single-slice CT measurements, while highly correlated
with whole-body volumes from MRI, have high intra-subject
variability across slices.?* For population studies, this degree
of measurement error is overcome with larger sample sizes,*®
but for individual estimation of tissue volumes or change over
time within an individual,?® this degree of error in estimating
whole-body measurements from single-slice area measure-
ments is less than ideal and may be better compensated for
by using multi-slice segmentation across larger fields of view.
Indeed, for some individuals in our study, the discordance
between single-slice and multi-slice measurements was pro-
found, and for most tissue areas, the LOA were wide.

Our study confirms that for population research assessing
body composition at a single timepoint, single-slice area
measures and multi-slice volumes are highly concordant
and have similar associations with all-cause mortality; thus,
both approaches can be used interchangeably. Indeed, we
replicated the known associations of lower SKM
quantity>?”-*® and radiodensity®®~>* with lower survival using
both measurement approaches. With the routine use of CT
for surveillance and surgical planning, body composition
measurements can be derived for many patients and are
consistently associated with a host of clinical outcomes. How-
ever, given that the use of automated methods makes
multi-slice volumes readily accessible, future studies should
examine their utility for individual patient evaluation and
for tracking longitudinal changes in tissues over time in re-
sponse to intervention or disease progression. Further, these
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novel metrics may also prove important for evaluating the
prognostic importance of other body regions and compart-
ments (e.g., the chest and pericardial adipose tissue) or
evaluating the distribution of tissues such as muscle or
IMAT across the abdomen or whole body. As an example
of this emerging work, a recent study found that inclusion
of measurements across multiple organs, tissues and slices
derived from automated CT segmentation methods (aortic
calcification, SKM radiodensity, ratio of VAT:SAT, and liver
and bone mineral density) improved prediction of cardio-
vascular events.'? Yet, much work remains to understand
how the large number of correlated measurements derived
from multi-slice CT segmentation can be summarized, stan-
dardized and integrated into statistical models to promote
their use in clinical research.

Strengths and limitations

Ours is the first study to compare the concordance between
single-slice area and multi-slice volume for quantifying body
composition from abdominal CT scans; undertaking this effort
in a large population of colorectal cancer patients using an au-
tomated body composition platform is a notable strength that
is important given the increasing availability and accuracy of
automated CT segmentation. Several limitations inherent to
clinically acquired CT data must be noted. First, we compared
single-slice areas only at the mid-L3 (a common reference
method in the body composition literature) to multi-slice
volumes from T12 to L5 (a commonly available field of view
in clinical imaging). Thus, the comparison was a pragmatic
one intended to inform the field of body composition
research, and not a comprehensive study of concordance
between single-slice areas at every vertebral landmark with
regional or whole-body volumes, which are not commonly
obtained in the clinic. In addition, there are no standardized
methods for modelling single-slice area or multi-slice volume
of body composition as this is an emerging field. Thus, we
chose to focus on continuous z-scores to enable comparison
across measures with different scales; however, this means
that patients are ranked according to the sex-specific
population mean of our cohort rather than an external
reference standard and were not scaled to body size other
than by adjusting for patient height and slab height in
sensitivity analyses.

Conclusions and future directions

We found that single-slice and multi-slice body composition
measurements are equivalent tools for population studies in
colorectal cancer. Automated segmentation provides rapid,
accurate and cost-effective methods for high-throughput
analysis of body composition across multiple anatomical

areas. To further advance research, we need to understand
which body composition features available from multi-slice
segmentation are most predictive of clinical outcomes; how
these measurements can be integrated into inferential and
predictive models to determine which are useful clinically
and in what settings they can guide decision making; and
how these measurements can be standardized across differ-
ing fields of view or relate to whole-body tissue volumes.
Such investigations will not only harness the wealth of data
available in these clinical images to better understand the
importance of body composition to patient outcomes, but in-
creasing automation and standardization is a prerequisite to
integrating these data into clinical care.
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