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Objective: The objective of this research was to screen prognostic related genes of
thyroid papillary carcinoma (PTC) by single-cell RNA sequencing (scRNA-seq), to
construct the diagnostic and prognostic models based on The Cancer Genome Atlas
Thyroid Cancer (TCGA-THCA) data, and to evaluate the association between tumor
immune microenvironment and the prognostic model.

Method: The differentially expressed genes (DEGs) and tumor evolution were analyzed by
scRNA-seq based on public databases. The potential regulatory networks of DEGs
related to prognosis were analyzed by multi-omics data in the THCA. Logistic regression
and Cox proportional hazards regression were utilized to construct the diagnosis and
prognostic model of PTC. The performance of the diagnostic model was verified by bulk
RNA sequencing (RNA-seq) of our cohort. The tumor immune microenvironment
associated with the prognostic model was evaluated using multi-omics data. In
addition, qRT-PCR was performed on tumor tissues and adjacent normal tissues of 20
patients to verify the expression levels of DEGs.

Results: The DEGs screened by scRNA-seq can distinguish between tumor and healthy
samples. DEGs play different roles in the evolution from normal epithelial cells to malignant
cells. Three DEGs ((FN1, CLU, and ANXA1)) related to prognosis were filtered, which may
be regulated by DNA methylation, RNA methylation (m6A) and upstream transcription
factors. The area under curve (AUC) of the diagnostic model based on 3-gene in the
validation of our RNA-seq was 1. In the prognostic model based on 3-gene, the overall
survival (OS) of high-risk patients was shorter. Combined with the clinical information of
patients, a nomogram was constructed by using tumor size (pT) and risk score to quantify
the prognostic risk. The age and tumor size of high-risk patients in the prognostic model
were greater. In addition, the increase of tumor mutation burden (TMB) and diversity of
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Tcell receptor (TCR), and the decrease of CD8+ T cells in high-risk group suggest the
existence of immunosuppressive microenvironment.

Conclusion: We applied the scRNA-seq pipeline to focus on epithelial cells in PTC,
simulated the process of tumor evolution, and revealed a prognostic prediction model
based on 3 genes, which is related to tumor immune microenvironment.
Keywords: papillary thyroid carcinoma, single-cell RNA sequencing, differential expression analysis, multi-omics,
tumor immune microenvironment, diagnosis, prognosis
INTRODUCTION

Thyroid papillary carcinoma (PTC) is the most increased
endocrine malignant tumor in recent years (1). The incidence of
PTC accounts for 90% of all thyroid cancers, of which 60% are less
than 2 cm, however, the mortality has not increased significantly
(2). This is also one of the bases of active surveillance (AS) (3). In
addition, thepossibility of a real increase in thedisease still exists, as
well as poor survival in the advanced tumor stage, even with
appropriate treatment (4). Therefore, accurate prediction of
individual prognostic risk is of great significance for patient
management. The American Joint Committee on Cancer
(AJCC), the American Thyroid Association (ATA), and the
European Thyroid Association (ETA) are now the most widely
utilized risk classification systems (5–7). These traditional risk
stratification systems are widely applied to predict the overall
prognosis of patients. However, molecular genetics are not
incorporated into these systems, on which precision evaluation
and target therapy are dependent.

Over the past decade, RNA sequencing (RNA-seq) has
become an indispensable tool for transcriptome-wide analysis
of differential gene expression (8). At present, significant
progress has been made in the analysis of prognostic related
genes, and it is possible to predict the prognosis more accurately
at the molecular level (9). Molecular alterations revealed by gene
microarray and bulk RNA sequencing (RNA-seq) have been
widely used for tumor diagnosis and prognosis prediction.
However, to obtain raw and authentic tumor cell genetic
information, an analysis of the transcriptome performed at the
single-cell level is more valuable. Single-cell RNA sequencing
(scRNA-seq) overcomes the limitations of RNA-seq—for
example, using RNA-seq, only the average expression of genes
is obtained, and it is difficult to study heterogeneous systems—
making it possible to conduct more detailed profiling of tumor
cells and their molecular changes (10). Single-cell RNA
sequencing enables us to penetrate the tumor microenvironment
based on cell-specific changes in the transcriptome, and further
develop diagnostic and prognostic markers to aid in the precise
diagnosis and treatment of patients.

In this study, we extracted scRNA-seq data from the Gene
Expression Omnibus (GEO) database to analyze DEGs between
tumor cells and normal epithelial cells, the trajectory and
enriched signaling pathways of these genes in tumor
progression were analyzed. Transcriptome data from THCA
were combined to obtain 3 DEGs associated with prognostic
and validated in our cohort. The potential regulatory networks of
2

3DEGs were analyzed in multiple dimensions. The 3 DEGs based
diagnostic model of PTC was constructed by logistic regression
and validated by our cohort. Meanwhile, a prognostic risk
prediction model was also built using this 3-gene panel. To
simplify the evaluation steps, we performed nomograms to
quantify prognostic-related indicators and predict 1-, 5-, and
10-year overall survival of patients. Tumor mutational burden
(TMB) and TCR diversity were also investigated to explore the
underlining mechanism of risk stratification.
MATERIALS AND METHODS

Data Collection, Processing and
Downstream Analysis
Single cell RNA sequencing data are extracted from the Gene
Expression Omnibus (GEO) database (GSE184362) (11). The
downstream analysis of scRNA-seq (namely, quality control,
dimensionality reduction, clustering, differential expression
analysis, etc.) is carried out according to the standard process
of Seurat (12). We applied the Wilcoxon rank sum test to
determine the DEGs between the two groups of cells.
Monocle2 package was used for pseudotime analysis and
visualization (13). The mRNA expression data of the TCGA-
THCA and GETx was downloaded from the UCSC XENA,
which is converted to TPM format and standardized with log2
(14). The mutation information of the TCGA-THCA was
obtained from the Genomic Data Commons (GDC). TMB was
analyzed by “maftools” package (15). The list of DEGs and its
prognostic information from bulk RNA-seq were queried from
the GEPIA2 database (16). The principal component analysis
(PCA) in the GEPIA2 was applied to reduce the dimension of the
samples from the THCA and GETx.

Protein–Protein Interaction (PPI) and GSEA
Enrichment Analysis
We employed two common protein interaction databases (17, 18),
the STRING and the GENEMANIA, to analyze the protein
interaction and related functions of DEGs. All DEGs were sorted
according to averagelog2FC, and then GSEA enrichment analysis
was carried out by using ‘clusterprofiler’withMSigDB as reference
(19, 20). The results were screened according to P. adjust <0.05.

Clinical Samples and Ethical Statements
Bulk RNA-seq was performed on 10 paired PTC tumor tissues
corresponding to adjacent non-tumor tissues from the General
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Hospital of Tianjin Medical University. RT-PCR was performed
on tumor and adjacent normal samples from another 20 paired
patients. The study protocol was approved by the ethics
committee of the General Hospital of Tianjin Medical
University (IRB2021-KY-022). All experiments were conducted
in accordance with relevant regulations, and all patients provided
written informed consent.

Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR)
and Immunohistochemistry
TRIzol lysate isolated total mRNA from tissues. Total RNA was
obtained using the RNeasy Mini kit (Vazyme, China), and 1 mg
of RNA was reverse transcribed using the PrimeScript RT
reagent Kit with gDNA Eraser (Vazyme, China). Power SYBR
green PCR master mix was for qRT-PCR. The −2DDCt method
was applied to determine relative quantification. The amount of
GAPDH mRNA was chosen to standardize the relative
expression of messenger RNA (mRNA) for each gene. The
primer pairs were:

FN1 forward primer, 5’-CGGTGGCTGTCAGTCAAAG-3’ and
reverse primer, 5’-AAACCTCGGCTTCCTCCATAA-3’.

CLU forward primer, 5’-CTACTTCTGGATGAATGGTGACC-3’
and reverse primer, 5’-CGGGTGAAGAACCTGTCCT-3’.

ANXA1 forward primer, 5’-CTAAGCGAAACAATGCACAGC-3’
and reverse primer, 5’-CCTCCTCAAGGTGACCTGTAA-3’

GAPDH forward primer, 5’-AGGGCTGCTTTTAACTCTGGT-3’
and reverse primer, 5’-CCCCACTTGATTTTGGAGGGA-3’.

The Human Protein Atlas (THPA, version 21) is a database of
immunohistochemistry (IHC) data which can investigate protein
expression in human tissues and cells (21).

Evaluation of Gene Regulatory Networks
Using Multi-Omics Databases
The regulatory network of three prognostic related DEGs were
analyzed by multi-omics data. CBioportal can quickly obtain the
correlation between molecular spectrum and clinical prognostic
of large-scale cancer genomics projects (22). The DNMIVD
database can simultaneously provide CpG based diagnostic and
prognostic models (23). The database comprehensively provides
14 TCGA and 23 TCGA cancer diagnosis and prognostic models
based on DNA methylation. The relationship between DNA
methylation sites and gene expression levels was evaluated by
MEXPRESS (24). ChEA3 is a transcription factor (TF)
enrichment analysis tool (25). The background database
contains a gene library generated from multiple sources,
namely, TF gene co-expression from RNA-seq study, TF target
association from Chip-seq experiment, and TF gene co-
expression calculation from the gene list submitted by the
population. RMVar contains 9 RNA modifications, namely,
m6A, m6Am, m1A, pseudouridine, m5C, m5U, 2’-O-Me, A-
to-I, and m7G (26). We calculated the correlation between DEGs
and m6A related genes (27, 28).
Frontiers in Oncology | www.frontiersin.org 3
Construction of Diagnostic Model and
Prognostic Model
Both Kaplan–Meier (KM) analyses and log-rank tests were
employed to assess overall survival (OS) and progression-free
survival (PFS) of 16 hub DEGs. The diagnostic model of THCA
was built by logistic regression (‘glm’ function in R), score = –
2.760 + (0.713 ∗ CLU) + (0.018 ∗ ANXA1) + (–0.987 ∗ FN1),
cut-off was –2.628. The Hosmer–Lemeshow test was applied to
measure the fitting quality of diagnostic model in THCA data
and our cohort. The prognostic model of THCA was built by Cox
proportional hazards regression (‘survival’ R package), score =
3.705 + (–0.089 ∗ CLU) + (–0.448 ∗ ANXA1) + (0.151 ∗ FN1).
The integrated nomogram incorporated tumor size and risk
score. To examine various survival determinants, we created
time-dependent receiver operating characteristic (ROC) curves.
The “pROC” R package calculated the area under the curve
(AUC). R package ‘rms’ constructed the nomogram. The
performance of the nomograms was evaluated by calibration.

Evaluation of Immune Infiltration and
Immune Score
We acquire more confidence in the findings seen by multiple
approaches since TIMER2.0 (29) employs six alternative
calculation methods to evaluate immune cell infiltration in
THCA tumors or transcriptome data given by users (30). The
Pan-Cancer Atlas initiative compares the 33 tumor types
described by the TCGA. We obtained the relevant immune
score and immune repertoire information in the TCGA-THCA
(31). The ‘ESTIMATE’ algorithm calculates the immune-stromal
component ratio in tumor microenvironments (32).

Statistical Analysis
For comparisons between the two groups, Student’s t-tests were
facilitated to ascertain statistical significance for normally
distributed variables, while Mann–Whitney U tests were used
for nonnormally distributed data. Statistical significance was
described as follows: ns, not significant; *, p <0.05; **, p ≤0.01;
***, p ≤0.001.
RESULTS

Single-Cell RNA Sequencing Reveals
Cell Distribution and DEGs in
Tumor Cells and Normal Cells
We obtained scRNA-seq expression matrices of 126,646 cells from
tumor tissues and adjacent normal tissues of 4 paired PTC patients
from the GEO database. After quality control, 11,390 tumor cells
(TG, EPCAM, KRT18, and KRT19) and 6,808 normal cells (TG,
TPO) were obtained for subsequent analysis (Supplementary
Figures 1A–D). Then we performed the nonlinear dimensionality
reductionmethoduniformmanifold approximation andprojection
(UMAP) to reduce the dimension of cells (Figure 1A). Taking |
averageLog2FC| >1 and adj. P < 0.05 as the threshold, a total of 130
DEGs (86 upregulated and 44 downregulated) between tumor cells
March 2022 | Volume 12 | Article 862313
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and normal cells were obtained and displayed in a volcano plot
(Figure 1B). After uploading the DEGs to the GEPIA2 (16), these
genes can distinguish tumor tissue fromnormal tissue (Figure 1C).
We applied monocle2 to perform pseudotime analysis (13) and
found that they have potential transformation trajectories from
normal cells tomalignant cells (Figures 1D, F). In addition, we also
demonstrated the 10 most significantly upregulated and
downregulated genes among the DEGs (Figure 1E). It is
suggested that DEGs may have different expression patterns
during the transformation of normal cells to malignant cells.

Protein Interaction Network and GSEA
Enrichment Analysis of DEGs
We predicted the protein–protein interaction (PPI) of the DEGs in
the STRING database (Figure 2A). The node color was assigned
Frontiers in Oncology | www.frontiersin.org 4
according to the fold change, and the transparency of the line
represented the strengthof the interactionbetween the twoproteins.
Then, for upregulated and downregulated DEGs, we utilize the
GENEMANIA database to determine protein–protein interactions
and a few functional enrichment analyses (Figures 2B, C). We
found that upregulated genes were enriched for enzyme inhibitory
activity, secretory granules, and cellmigration; downregulated genes
were enriched for detoxification and thyroid hormone synthesis.We
applied aGSEA analysis to assess the distribution trends of genes in a
predefined gene set in a gene table ranked by their relevance to
phenotype, to determine their relationship to HALLMARK-related
pathways (Figures 2D–F). Pathways significantly enriched in tumor
cells were: coagulation, complement, apoptosis, p53 pathway, allograft
rejection, and epithelial–mesenchymal transition (EMT). A pathway
significantly enriched in normal cells was oxidative phosphorylation.
A B

D

E

F

C

FIGURE 1 | Single cell sequencing reveals differentially expressed genes in thyroid papillary carcinoma. (A) Umap of tumor cells and adjacent normal cells in paired
samples of 4 PTC patients. (B) Volcano map of DEGs. (C) PCA of 130 DEGs in THCA and GETx. (D) Pseudotime analysis of malignant transformation of normal
cells. (E) Heatmap of the 10 most significantly upregulated and downregulated genes among the DEGs. (F) Patient information in the transformation trajectory from
normal cells to malignant cells.
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Screen Hub DEGs and Explore the
Expression of 3 Prognosis-Related Genes
We obtained 16 hub DEGs (Figure 3A) using 4 algorithms (33) in
CytoHubba and displayed in the PPI network (Figure 3B), of
which 14 were upregulated and 2 were downregulated. Three of
these genes (FN1, CLU, and ANXA1) were found to be associated
with prognosis in the GEPIA2 database (Figures 3C–E), with
Logrank P-value 0.024, 0.013, and 0.004, respectively. The
expression of 3 prognostic related genes was validated by bulk
RNA-seq fromour cohort (Figure3F).UsingbulkRNA-seq results
from850 samples fromtheTHCAandGETx,58paired samples, 10
paired samples from our cohort and paired qPCR results of 20
patients, we verified that 3 DEGs were all overexpressed in tumor
tissues (Figures 4A–D). Then, the protein expression levels of the 3
hub genes were verified in the THPA (Figures 4E–G). In the cell
Frontiers in Oncology | www.frontiersin.org 5
subsets of tumor samples (Supplementary Figure 1A), FN1, CLU,
and ANXA1 were high expressed in tumor cells and low expressed
inmyeloid cell and fibroblast. In the cell subsets of normal samples
(Supplementary Figure 1C), FN1 and ANXA1 were high
expressed in tumor cells and low expressed in myeloid cell and
fibroblast; CLU was low expressed in tumor cells and high
expressed in myeloid cell and fibroblast. In paired samples
(Figure 4B), there is disturbance in the expression of 3
prognostic related genes, suggesting that individual gene may not
be able to fully predict the prognosis of tumor patients.

Potential Regulatory Networks of Three
Core Genes
We explored the potential regulatory networks of 3 prognostic
related DEGs in tumor samples using a multi-omics platform.We
A B

D

E F

C

FIGURE 2 | Protein interaction network and GSEA enrichment analysis of DEGs. (A) PPI of the DEGs in STRING database. (B, C) PPI and functional enrichment
analysis for upregulated and downregulated DEGs in GENEMANIA database, respectively. (D, E) GSEA analysis HALLMARK pathway (upregulated in tumor cells).
(F) GSEA analysis HALLMARK pathway (upregulated in normal cells).
March 2022 | Volume 12 | Article 862313
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analyzed genome-level changes in the CBioportal database. In 3
datasets, the overall genomic variation for these geneswas less than
0.8% (Figure 5A) and the genome-level variation for each genewas
less than 0.4% (Figure 5B). It is suggested that these gene-level
changes are less affected by mutations. And these genomic-level
alterations were not associated with overall patient survival
(Supplementary Figure 2A). We further analyzed the DNA
methylation levels of these genes. The methylation levels of genes
in tumor tissues were significantly lower than those in normal
tissues (Figures 5C–E), suggesting that genomic methylation is a
potential regulator of the high expression of 3 genes
(Supplementary Figures 2B–D). Determining gene expression
changes regulated by transcription factors (TFs) is an important
step in understanding gene regulatory networks. UsingChEA3, we
Frontiers in Oncology | www.frontiersin.org 6
were able to predict a regulatory network, namely, 12 transcription
factors that regulate 3 prognostic related genes (Figure 5F). The
regulation of gene expression is multi-dimensional, and we found
potential transcriptome epigenetic regulation sites (m6A
regulatory sites) of these genes in the RMVar database.
Therefore, the tumor tissues were divided into two groups by
gene expression level from the THCA, and the changes of m6A-
related genes were compared (Figures 5G–I). The expression of 3
DEGs was significantly negatively correlated with 2 scavenging
genes (FTO, ALKBH5), positively correlated with 2 reading genes
(HNRNPC, IGF2BP2), and positively correlated with 2 writing
genes (WTAP, RBM15B). These results suggest that the high
expression of 3 genes in tumors may be regulated by DNA
methylation and mRNA methylation modification.
A B

D

E F

C

FIGURE 3 | Hub DEGs and 3 prognostic related DEGs. (A) Venn plot of 16 hub DEGs screened by four algorithms in CytoHubba. (B) 16 hub DEGs in PPI network.
(C–E) The 3 prognostic related DEGs analyzed by GEPIA2 (both Disease Free Survival and Overall Survival). (F) GSEA analysis HALLMARK pathway (upregulated in
normal cells).
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The Diagnosis and Prognostic
Model of PTC Was Constructed
and Featured in Nomogram
Due to the disturbance in the expression of the 3 prognostic
related DEGs in the paired samples, we speculate that a
comprehensive scoring model based on these genes may be
beneficial for the diagnosis and prognosis of PTC. We
constructed a diagnostic model ROC curve based on mRNA
expression levels, with a cutoff value of −2.628 for the score and
an area under the curve (AUC) of 0.921 (Figure 6A). This was
subsequently validated using our own cohort with AUC: 1
(Figure 6B). It is suggested that the diagnostic effect of this
model is stable. We utilized the DNMIVD database to construct
a diagnostic model based on DNA methylation levels, and the
Frontiers in Oncology | www.frontiersin.org 7
AUC was 0.797 (Figure 6C), suggesting that its diagnostic
efficacy was moderate. We did not validate because the
validation set is missing. We further constructed a prognostic
prediction model by mRNA expression (Figure 6D) and divided
patients into high and low risk groups. KM survival analysis
found that patients in the high-risk group had worse prognosis
(Figure 6E), and the model predicted 83, 76.8, and 63.3% of
overall survival for patients at 1, 5, and 10 years, respectively
(Figure 6F). It is suggested that the model prediction effect is
moderate. Due to the lack of survival data on the external dataset,
we failed to validate it. We also constructed a prognostic model
based on DNA methylation levels using the DNMIVD database,
suggesting that patients in the high-risk group had a worse
prognosis (Figures 6G, H).
A B

D

E F G

C

FIGURE 4 | Expression level of 3 prognostic related DEGs in THCA and our cohort. (A) Expression level of 3 DEGs in unpaired THCA samples. (B) Expression level of
3 DEGs in 58 paired THCA samples. (C) Expression level of 3 DEGs in our 10 paired bulk RNA-seq. (D) Relative expression level of 3 DEGs in our 20 paired samples
(qRT-PCR). (E–G) The immunohistochemical staining degree of 3 DEGs in the THPA (Antibodies: CAB000126, HPA000572, and HPA011271). ***p≤0.001.
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A
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C

FIGURE 5 | Analysis of regulatory network based on multi-omics data. (A) The overall frequency of 3 prognostic related genome-level alteration in THCA (Firehose
Legacy), PTC (Cell 2014), THCA (PanCancer Atlas) of DEGs. (B) The separated frequency of 3 prognostic related genome-level alteration of DEGs in THCA (Firehose
Legacy), PTC (Cell 2014), THCA (PanCancer Atlas). (C–E) DNA methylation levels of 3 DEGs between tumor tissues and adjacent tissues in THCA. (F) Interaction
between transcription factors regulating 3 DEGs. (G–I) Heatmap of the relationship between m6A related genes and 3 DEGs. *p≤0.05; **p≤0.01; ***p≤0.001.
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To further quantify the prognostic risk score at the
transcriptome level and the impact of clinical factors on the
overall survival of patients, we constructed nomograms using
Cox regression analysis (Table 1). In multivariate Cox regression
analysis, pT4 and high-risk group were found to be independent
risk factors related to prognosis, and a nomogram simplified
evaluation system was constructed (Figure 7A). In the
calibration plot, we found that the model can fit well with the
diagonal (Figure 7B), suggesting the reliability of the model.

Integrative Analysis of Prognostic Model
We further evaluated the clinical information, TMB, immune
infiltration and immune score of patients with different
prognostic risk score. We found that the high-risk group was
associated with higher patient age and invasive subtypes
(Figure 7C). We discovered a substantial drop in CD8+ T cells
and macrophages in the high-risk group using the TIMER
deconvolution model and the suggested EPIC algorithm in
Frontiers in Oncology | www.frontiersin.org 9
TIMER2.0 (Figure 7D). The ImmuneScore (IS), StromalScore
(SS), and EstimateScore (ES) make up the ESTIMATE
evaluation. In the high-risk group, IS, SS, and ES were
significantly increased, suggesting increased infiltration of
immune cells and stromal cells (Figure 7E). TCR diversity was
significantly increased in the high-risk group (Figure 7F). TMB
was significantly increased in the high-risk group (Figure 7G).
The method of gene set score further evaluated the tumor
immune microenvironment in different risk groups (Table 2)
(31). The tumor proliferation was significantly enhanced in the
high-risk group. The mutation rate was significantly increased in
both silent mutation rate and nonsilent mutation rate. These
changes may be one of the reasons for the significant increase of
SNV neoagents in the high risk group. Persistent antigen
stimulation may also lead to T cell anergy or reduction. The
sum of amplified or deleted (collectively “altered”) arms was used
to determine aneuploidy scores. Aneuploidy score was also
significantly higher in the high-risk group. The fraction altered
A B

D
E

F

G

H

C

FIGURE 6 | The diagnosis and prognostic model of PTC. (A) ROC curve of diagnostic model based on mRNA expression. (B) ROC curve of diagnostic model
validation set based on mRNA expression. (C) ROC curve of diagnostic model based on DNA methylation. (D) Risk factor association diagram based on mRNA
expression. (E) KM plot of prognostic model based on mRNA expression. (F) ROC curve predicted by prognostic model for different follow-up time. (G) KM plot of
prognostic model based on DNA methylation. (H) Z-score distribution of the prognostic model and survival status.
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score change in copy number burden also increased significantly
in high risk group. Homologous recombination defects (HRD)
score combines three measures of genomic scarring: large (>15
Mb) non-arm-level areas with LOH, large-scale state transitions
(breaks between contiguous segments of >10 Mb), and
subtelomeric regions with allelic imbalance to evaluate
abnormalities in homologous recombination. HRD increased
significantly in the high-risk group. Leukocyte fraction infers
from the DNA methylation probes that the proportion of
leukocytes increased significantly in the high-risk group. These
results suggest that the tumor cells in the high-risk group grow
rapidly, and the increase of chromosome abnormal amplification
and TMB may lead to the increase of tumor heterogeneity. It is
indirectly proved that these patients have poor prognosis. In
addition, tumor infiltrating immune cells increased; however, the
decrease of CD8 + T cells and the increase of TCR diversity imply
that there is an immune escape phenotype in high risk patients.
There was no significant difference in the scores of IFN gamma
response and TGF beta response between the two groups.
DISCUSSION

Tumor microenvironment is a complex ecosystem of malignant
cells, immune cells, and stromal cells. PTC grows slowly and
cervical lymph node metastasis is common, but tumor metastasis
is rare (2). Some untreated tumors can dormancy or even shrink
spontaneously (34), lymph node metastasis disappears
spontaneously (35), but immune surveillance can fade in certain
conditions (36). Tumor in advanced stage usually showed
immunophenotype dominated by immune escape (4). Single cell
RNA-seq offers a unique perspective on the mechanism of tumor
internal and external driving responses, allowing us to focus on
tumor cell alterations. As a result, the molecular prognostic
Frontiers in Oncology | www.frontiersin.org 10
prediction model developed on the basis of scRNA-seq, may
effectively identify patients with high prognostic risk,
complement the traditional staging prediction system, and assist
individualized treatment to achieve better therapeutic effect.

We identified 130 DEGs between tumor cells and normal
epithelial cells by scRNA-seq. They completely distinguish
between tumor tissue and adjacent normal tissue. Pseudotime
analysis showed that the expression degree of these genes was not
polarized, but had the characteristics of continuous change. This
reflects the heterogeneity of gene expression in tumors. We
analyzed the protein–protein interaction of DEGs and
conducted a GSEA enrichment analysis, suggesting that the
highly expressed genes in tumor cells are related to tumor
formation and progression. The highly expressed genes in
normal cells are related to thyroid hormone synthesis and
enriched in oxidative phosphorylation signal pathway. Because
gene transcription is impulsive and there is batch effect in the
experimental process (10), the DEGs we obtained are limited. In
the future, to obtain more high-quality information, we need to
further eliminate the batch effect and optimize the algorithm.

Combined with the THCA data, 3 high expressed DEGs (FN1,
CLU, and ANXA1) related to the prognosis of PTC. This is
consistent with our bulk RNA-seq results and staining degree of
immunohistochemistry. FN1 overexpression is an important
feature of EMT and is also considered as a molecular marker
to distinguish malignant lesions (37). Immunohistochemical
evidence showed that the increased expression of FN1 was
mainly limited to the invasive front of thyroid cancer (38).CLU
is a glycoprotein, which is involved in many physiological and
pathological processes essential to carcinogenesis and tumor
growth (39). CLU is an effective biomarker for more accurate
evaluation of thyroid nodules (40). A previous study has
preliminarily studied the role of ANXA1 in PTC, and its high
expression may be related to tumorigenesis and development in
TABLE 1 | Univariate and multivariate Cox regression analysis of clinical information and risk score.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

age 510
<45 231 Reference
≥45 279 722839341.155 (0.000–Inf) 0.997
gender 510
FEMALE 371 Reference
MALE 139 1.963 (0.710–5.428) 0.193
pM 295
M0 286 Reference
M1 9 4.258 (0.909–19.952) 0.066 1.967 (0.380–10.172) 0.420
pN 460
N0 229 Reference
N1a 90 0.888 (0.171–4.602) 0.888
N1 59 1.358 (0.321–5.748) 0.677
N1b 82 2.538 (0.601–10.714) 0.205
pT 508
T1 485 Reference
T4 23 9.248 (3.339–25.611) <0.001 5.034 (1.322–19.166) 0.018
Risk score 510
Low 255 Reference
High 255 4.744 (1.351–16.655) 0.015 10.422 (1.330–81.670) 0.026
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PTC (41). Based on proteomics, ANXA1 was found to be an
effective marker for the diagnosis of PTC (42).

Based on the study of these 3 DEGs in PTC, we further
explored the potential networks regulating their expression. At
the genomic level, we analyzed the changes at the genomic level
by CBioportal and found that the overall genomic changes of the
3 genes were less than 0.8%. Compared with normal thyroid
samples, targeted DNA methylation studies showed that
hypomethylation rather than hypermethylation was more likely
to occur in PTC tumor samples (43). We found that the DNA
methylation level of these 3 DEGs decreased significantly in
tumor tissues of patients, which may be a potential reason for the
high expression of genes in tumor tissues. In terms of upstream
Frontiers in Oncology | www.frontiersin.org 11
regulation, we further explored the potential regulation of these
three genes by 12 interacting transcription factors, but failed to
explore further. Gene expression regulation is multidimensional.
We found m6A potential regulatory sites in these three genes in
the RNA epigenetic database (26). In 450 patients with PTC,
most of the m6A RNA modification regulators were found to be
downregulated, and a risk model was constructed based on 3
m6A RNA modification regulator genes (FTO, RBM15, and
KIAA1429) that may be used as an independent predictive
biomarker in PTC (44). These results suggest that the high
expression of these 3 DEGs in tumor may be related to DNA
methylation, mRNA methylation modification and potential
transcription factor regulation. These studies are only preliminary
A B
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FIGURE 7 | Integrative analysis of prognostic model. (A) Nomogram quantifies clinical information and risk score. (B) Calibration curve to evaluate nomogram
model. (C) Heatmap of the relationship between prognostic risk score and clinical information. (D) Relationship between prognostic risk score and immune cell
infiltration (by TIMER and EPIC). (E) Relationship between prognostic risk score and immune score (by ESTIMATE). (F) Relationship between prognostic risk score
and TMB. (G) Relationship between prognostic risk score and diversity of immune repertoire. ns, not significant; *p≤0.05; **p≤0.01; ***p≤0.001.
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data analysis results and still need further experimental verification.
However, these results expand our understanding of the expression
regulation of these three prognosis-related genes.

We constructed diagnostic and prognostic models based on
mRNA expression data and DNA methylation data of 3 DEGs.
We found that the diagnostic efficiency was 92%, while the
diagnostic efficiency in our patient cohort was 100%. P-values
of Hosmer-Lemeshow test are greater than 0.05 (0.61 and 0.08,
respectively), indicating the stability of the diagnostic model. In
the prognostic model, the prognosis of high-risk patients is
worse. In order to combine clinical information and simplify
evaluation conditions, we used nomograms to show the results of
multivariate Cox regression and scored them. The calibration
diagram verifies that our nomogram has a good predictive effect
on the prognosis of patients. However, due to our short follow-
up time, further verification cannot be carried out. The expression
of these 3 DEGs is closely related to DNA methylation, we used the
DNMIVD to construct the methylation diagnosis and prognostic
model (23). It was found that the diagnostic efficiency was lower
than that of the gene expression based diagnostic model. The
prognosis of high-risk patients is also poor. Due to the lack of
validation set, we were unable to conduct further evaluation.
However, these results suggest that gene expression and DNA
methylation may play an important role in the diagnosis and
prognosis of PTC. It provides part of the basis for potential
clinical translation in the next study.

We evaluated tumor- and immune-related characteristics of
different risk groups in the transcriptome-level prognostic
model. We found that patients in the high-risk group were
associated with older age and more invasive pathological types.
The level of proliferation, TMB, SNV neoantigens, aneuploidy
scores, and HRD score increased significantly in the high-risk
group. This implies the complex heterogeneity of high-risk
groups and provides potential epitopes for immune cells to
recognize tumor cells (45).The level of immune infiltration and
the diversity of TCR increased significantly in the high-risk
group, while CD8+ T cell decreased. This indicates that T cell
function is impaired and tumor immune escape occurred (46),
Frontiers in Oncology | www.frontiersin.org 12
since survival rates of PTC patients increased when CD8+ T
lymphocytes were infiltrated (47). Continuous antigen recognition
in the tumor microenvironment is an important driver of T cell
dysfunction (48). Since the function of macrophages in tumors is
closely related to their subtypes, we cannot determine which
macrophage subtypes are elevated in the high-risk group. These
clinical and molecular characteristics suggest the rationality of the
high-risk group. TIMER and EPIC algorithms were inconsistent in
inferring the infiltration level of other immune cell types, thus we
focused on the infiltration level of CD8+ T cell. We did not analyze
and discuss other immune cells. Due to the most PTCs belonging to
C3 immune subtype (inflammatory), there is no significant
difference in C1 (wound healing), C2 (IFN-g dominant), and C6
(TGF-b dominant) between the two groups (31). Therefore, we
infer that this 3-gene panel may be a good prognostic model.
However, more experimental evidence is needed to support the
further mechanism of tumorigenesis and development and the type
of immune infiltration.

There are also some limitations in this study. Firstly, the
number of scRNA-seq samples is limited. In addition, our
analysis is based on the filtered data set, and we cannot handle
the real batch effect. Most of the data we obtained are relatively
quantitative data, which only explains the tendency of some
phenomena and is not absolutely accurate. Due to various
factors, the samples we collected also have heterogeneity, but
these are also the characteristics of clinical samples. Finally, we
only analyzed the gene expression level without paying attention
to point mutations, indels, gene fusions, copy number
alternations, which will be the content to be studied in the future.
CONCLUSIONS

We used single-cell RNA-seq to focus on the gene changes
between PTC tumor cells and normal epithelial cells, screened 3
DEGs related to prognosis, and analyzed that their expressionmay
be related to methylation and transcription factors and tumor
immune infiltration. The diagnostic and prognostic models
TABLE 2 | Gene set score characteristics of different prognostic risk groups.

Character High risk Low risk T P-value

(mean ± SD) (mean ± SD)

Leukocyte Fraction 0.1657 ± 0.1441 0.1103 ± 0.0849 5.2238 <0.0001
Proliferation −1.506 ± 0.4436 −1.6442 ± 0.3774 3.7407 0.0002
Wound Healing −0.2648 ± 0.0814 −0.2739 ± 0.0788 1.2739 0.2033
Macrophage Regulation −0.1967 ± 0.7678 −0.25 ± 0.5075 0.9132 0.3617
IFN-gamma Response −0.3298 ± 0.6123 −0.3508 ± 0.5021 0.4167 0.6771
TGF-beta Response −0.1127 ± 0.3948 −0.077 ± 0.2707 −1.177 0.2398
SNV Neoantigens 6.1617 ± 5.1199 4.5164 ± 3.5929 4.0572 <0.0001
Indel Neoantigens 11.4043 ± 20.6571 10.0769 ± 22.261 0.405 0.686
Silent Mutation Rate 0.1077 ± 0.1112 0.0742 ± 0.077 3.8519 <0.0001
Nonsilent Mutation Rate 0.3355 ± 0.2598 0.2332 ± 0.1556 5.2605 <0.0001
Number of Segments 51.8537 ± 14.7062 50.3902 ± 11.8516 1.2152 0.2249
Fraction Altered 0.0562 ± 0.1766 0.0112 ± 0.0608 3.7802 0.0002
Aneuploidy Score 1 ± 3.3588 0.2026 ± 1.348 3.3506 0.0009
Homologous Recombination Defects 0.6121 ± 1.6737 0.3216 ± 1.0839 2.2117 0.0276
BCR Shannon 2.4196 ± 1.5996 2.105 ± 1.5211 1.5499 0.1225
TCR Shannon 2.2245 ± 1.2885 1.8856 ± 1.121 2.9881 0.003
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constructed by the 3-gene panel have good effect. It may be a
supplementary indicator of traditional prediction methods.
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