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Abstract The parietal cortex has been widely implicated in
the processing of depth perception by many neuroimaging
studies, yet functional near infrared spectroscopy (fNIRS)
has been an under-utilised tool to examine the relationship of
oxy- ([HbO]) and de-oxyhaemoglobin ([HbR]) in perception.
Here we examine the haemodynamic response (HDR) to the
processing of induced depth stimulation using dynamic
random-dot-stereograms (RDS). We used fNIRS to measure
the HDR associated with depth perception in healthy young
adults (n = 13, mean age 24). Using a blocked design,
absolute values of [HbO] and [HbR] were recorded across
parieto-occipital and occipital cortices, in response to
dynamic RDS. Control and test images were identical except
for the horizontal shift in pixels in the RDS that resulted in
binocular disparity and induced the percept of a 3D sine wave
that ‘popped out’ of the test stimulus. The control stimulus
had zero disparity and induced a ‘flat’ percept. All partici-
pants had stereoacuity within normal clinical limits and
successfully perceived the depth in the dynamic RDS.
Results showed a significant effect of this complex visual
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stimulation in the right parieto-occipital cortex (p < 0.01,
N> = 0.54). The test stimulus elicited a significant increase
in [HbO] during depth perception compared to the control
image (p < 0.001, 99.99 % CI [0.008-0.294]). The similar-
ity between the two stimuli may have resulted in the HDR of
the occipital cortex showing no significant increase or
decrease of cerebral oxygenation levels during depth stimu-
lation. Cerebral oxygenation measures of [HbO] confirmed
the strong association of the right parieto-occipital cortex
with processing depth perception. Our study demonstrates
the validity of NIRS to investigate [HbO] and [HbR] during
high-level visual processing of complex stimuli.

Keywords fNIRS - Depth perception - Random dot
stereogram - Binocular disparity - Haemodynamic response

Introduction

Binocular vision allows the visual system to fuse each of the
2D images from our retinas by using the difference between
them to estimate relative depths. This is termed binocular
disparity and is a powerful cue that enables us to achieve
depth perception. Research has utilised random dot stereo-
pairs or stereograms (RDS) to isolate the effect of binocular
disparity, which triggers the perception of depth. RDS stimuli
present a pair of images, one to each eye, which when viewed
binocularly produce a fused strong percept of depth (Julesz
1971). This percept can be dramatically enhanced by the use
of a dynamic stimulus. Consequently, there are individuals
who are unable to resolve static RDS to perceive depth, but
successfully perceive dynamic RDS (Fujikado et al. 1998;
Watanabe et al. 2008). Similarly, behavioural research has
shown better psychometric performance when using
dynamic RDS compared to static RDS (Allison and Howard
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2000; Norman et al. 2006). Yet, static, dynamic RDS and
numerous other types of stereoscopic stimuli have been
shown to similarly activate large areas of the visual cortex
(Parker 2007).

Previous physiological and neuroimaging literature with
macaques and humans has identified depth perception to be
associated with increased activity in multiple parieto-oc-
cipital regions (Herpers et al. 1981; Likova and Tyler 2007,
Livingstone and Hubel 1988; Norcia and Tyler 1984; Pre-
ston et al. 2008; Shikata et al. 1996; Tanabe et al. 2005; Uka
and DeAngelis 2004) compared to the primary visual cortex
(Cumming and Parker 1997; Neri et al. 2004; Prince et al.
2002). This high-level visual processing undoubtedly
involves numerous cortical areas. These include Brodmann
area 19 (Baecke et al. 2009; Fortin et al. 2002; Iwami et al.
2002; Nishida et al. 2001; Thiyagesh et al. 2009), V3a
(Backus et al. 2001; Bridge and Parker 2007; Chan-
drasekaran et al. 2007; Cottereau et al. 2014; Fang and He
2005; Georgieva et al. 2009; Gilaie-Dotan et al. 2002;
Goncalves et al. 2015a; Tsao et al. 2003), intraparietal sulcus
(IPS) (Baecke et al. 2009; Buckthought and Mendola 2011;
Durand et al. 2009; Fang and He 2005; Negawa et al. 2002;
Tsao et al. 2003), dorsal V4 (Brouwer et al. 2005; Iwami
et al. 2002; Negawa et al. 2002; Tsao et al. 2003), V5
(Brouwer et al. 2005; Chandrasekaran et al. 2007; Cottereau
et al. 2014; Fortin et al. 2002; Freeman et al. 2012; Negawa
et al. 2002; Orban et al. 2006; Welchman et al. 2005), V6
(Cardin and Smith 2011), and the lateral occipital complex
(LOC) (Brouwer et al. 2005; Cottereau et al. 2014; Freeman
et al. 2012; Read et al. 2010; Welchman et al. 2005).
Dynamic RDS have been reported to elicit responses in
similarly numerous regions of interest (ROI) with pro-
nounced activation to depth in the superior parietal lobe
(SPL), inferior parietal lobe (IPL) and intraparietal sulcus
(IPS) within Brodmann area 7 (Iwami et al. 2002; Thiyagesh
et al. 2009), pericalcarine area (Gonzalez et al. 2005), V5
(Smith and Wall 2008), V6 (Cardin and Smith 2011), and
the parietal-occipital junction (Paradis et al. 2000; Tyler
et al. 2006). Brodmann area 19 has also been associated with
dynamic depth perception, specifically area V3a (Iwami
et al. 2002; Paradis et al. 2000) and the fusiform gyrus
(Gonzalez et al. 2005; Iwami et al. 2002). Due to the size of
Brodmann area 19, and the spatial limitations of our neu-
roimaging technique, we focussed on this area aiming to
capture a neurovascular response to depth perception.

The current study utilises functional near infrared
spectroscopy (fNIRS), a non-invasive optical neuroimaging
technique that has not been used previously to investigate
dynamic depth perception. NIRS measures changes of
concentrations of blood oxy- ([HbO]) and deoxy-hae-
moglobin ([HbR]), monitoring the haemodynamic response
(HDR) of neuronal stimulation (Villringer et al. 1993). Our
own and previous research has used fNIRS to successfully
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characterise the cortical HDR to simple visual stimuli
proving it to be a reliable neuroimaging technique (McIn-
tosh et al. 2010; Toronov et al. 2007; Ward et al. 2015;
Wijeakumar et al. 2012b). To expand this, we employ a
complex visual stimulus, which uses binocular disparity to
induce depth perception and involves high-level neural
processing. By employing fNIRS with healthy young
adults we measured absolute changes of [HbO] and [HbR]
in response to dynamic depth perception.

Methodology
Participants

We recruited 13 healthy young adults (mean age
23 &£ 4 years, range 18-30, 11 females). All participants had
a visual acuity (VA) of at least 6/6 with optical correction
where required, and had no history of neurological or psy-
chological disorders. Participants completed a demographic
and health questionnaire, had comparable levels of education
and were all right handed. Inclusion was based on having
stereoacuity within normal clinical limits (Bohr and Read
2013), assessed using the Frisby Near Stereotest. The Frisby
test is a measure of ‘real’ depth perception as differences are
due to physical depth and no glasses need to be worn (Leat
et al. 2001). Participants have to identify the pattern that
looks ‘different’ in the four quadrants of a Perspex plate. All
participants had good stereoacuity correctly finding the tar-
get-in-depth for all plates, with an average stereoacuity of
40 s of arc. Glasgow Caledonian University’s Ethics Com-
mittee approved the research protocol, and informed written
consent was obtained from all participants prior to testing in
accordance with the Declaration of Helsinki.

Visual Stimuli

To investigate depth perception, we manipulated binocular
disparity, creating a test image with disparity and a control
image without. Consequently, in this study ‘depth’ refers to
this manipulation of horizontal binocular disparity within the
RDS. To induce depth perception, two variations of dynamic
RDS were presented; the test stimuli (Fig. 1b) and control
stimuli (Fig. 1a), with, and without depth, respectively. The
test stimuli contained horizontal binocular disparity; within
the moving dots, a vertical 3D sinusoidal wave would ‘pop
out’. From the peak to the trough of this simulated wave
pattern, the disparity amplitude was 11 min of arc and 3 sine
waves were presented per screen. The control stimulus had
zero disparity and the red and green dots appeared super-
imposed and therefore as a ‘flat’ surface. During testing,
participants wore red-green filtered glasses providing each
eye a selective view of the colour of the respective dots to
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Fig. 1 Image of the depth
stimuli (dynamic RDS) to be (a)
viewed with red—green
anaglyph glasses. a Shows the
fused ‘flat’ control stimulus
(dynamic RDS with zero
disparity, perceived as ‘flat’)
and b is the test stimulus
(dynamic RDS with binocular
disparity, induced depth percept
of 3D vertical sinusoidal
waves). ¢ Sequence of
experimental protocol timings
between the conditions (Color
figure online)

the filter. Throughout the experiment, participants fixated on
a stationary cross at the centre of the screen. A viewing
distance of 1 m was used (visual field size of 20.7° x 15.4°)
and the luminance of stimuli was maintained at 0.5 and
16 cd/m’.

Experimental Protocol

We utilised a block design with a single event of 60 s baseline
recording in response to the control image (dynamic RDS with
zero disparity, perceived as ‘flat’). Following baseline, par-
ticipants viewed the test stimulus (dynamic RDS with
binocular disparity, induced depth percept) followed by the
control stimulus (dynamic RDS with zero disparity, perceived
as ‘flat’) for 30 s each, 10 times (completing 10 cycles of
experimental data). Therefore, the baseline and control stimuli
were identical. This paradigm is depicted in Fig. 1d. By
employing identical images for the baseline phase and the
control cycles of testing we ensured there would not be a
generalised visual onset response (Odom et al. 2010).

HDR Recording

The fNIRS system used was the two-channel frequency-do-
main multi-distance (FDMD) tissue oximeter (OxiplexTSTM).
This system is frequency modulated at 110 MHz and data
points are sampled at 1 Hz. Ituses 2 wavelengths of light (690
and 830 nm) to capture both [HbO] and [HbR]. Along with the

Control

Baseline (60s)

Test (30s)

Test

Control (30s)

photon absorption, scattering and phase information, data are
subsequently used to determine accurate and absolute quan-
tification of changes in cerebral oxygenation. FDMD-fNIRS
calculates changes in regional haemoglobin concentration in
the cortex in absolute concentration (WM/L). This instru-
mentation has been described in detail elsewhere (Fantini et al.
1995; Gatto et al. 2006; Mclntosh et al. 2010). In order to
capture the HDR to depth-inducing stimuli, we recorded
fNIRS over the parieto-occipital cortex (PO3, PO4) which
approximates to Brodmann area 19 (Koessler et al. 2009).
Additionally, measurements over the primary visual cortex
(V1) were also carried out with recordings over O1 and O2
according to the EEG 10-20 International System of Electrode
Placement (Jasper 1958). Participants completed the stimulus
block twice with fNIRS measurements recorded in a coun-
terbalanced randomised order.

Data Analysis

Data pre-processing was completed with a custom-written
MATLAB script. All data were normalised with respect to
the pre-stimulus baseline using a simple subtraction method.
This calculation was carried out according to the most
stable response to the control image: an average of the 20 s
prior to stimulation. This normalisation procedure addresses
individual cerebral oxygenation fluctuations at rest. A
moving average low-pass filter was applied with a window
size of 8 data points and all data was then detrended. These
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processes removed potential signal drift and reduced any
noise in the data. The HDR to the stimuli was calculated by
averaging across all data responses to test and control
stimuli cycles. In order to capture only depth perception, we
subtracted each post-test response from the previous control
cycle, thereby removing any effects of stimuli movement.
This difference score was used to compare the effect of
depth to the baseline measure (control image of dynamic
RDS with zero disparity, perceived as ‘flat’). A grand
average was taken of the last 15 s of both the difference
scores and baseline, representing the greatest stable change
of the HDR (Mclntosh et al. 2010; Ward et al. 2015;
Wijeakumar et al. 2012a, b. This data analysis procedure
ensured all parametric assumptions were met and the grand
averages were used for inferential statistics, namely repeated
measures ANOVA’s and post hoc paired samples t-tests. As
there was significant individual variation in the HDR, we
additionally Z-transformed participants’ average HDR for
the parieto-occipital recordings to determine the importance
of this variability. This MATLAB function centres the
individual’s responses to have a mean of 0 and a standard
deviation of 1, thereby providing a standardised approach
for group comparisons across hemispheres.

Results
Stimulation Effect

There was a clear response to the depth-inducing dynamic
RDS in all subjects, although with a great deal of hetero-
geneity. When examining the group average parieto-occip-
ital (PO3, PO4) HDR to the test stimulus, it can be seen that
the right parieto-occipital hemisphere produced a charac-
teristic increase in [HbO] and decrease in [HbR] during
depth stimulation compared to the control image (Fig. 2d),
whereas the left did not (Fig. 2c). PO3 produced a greater
amplitude of response compared to PO4. However, our
interest here was not the amplitude of the HDR but the
changes between the control and test stimulus conditions.
Occipital (O1, O2) HDR produced a fluctuating signal with
a bimodal response (Fig. 2a, b); indicating that perhaps each
test and control stimuli generated an independent HDR. We
attribute this lack of response to binocular disparity specif-
ically, to the comparison between the stimuli, both of which
induce a complex visual percept processed in V1. Due to the
lack of findings for the occipital data, our results focus on
parieto-occipital HDRs only.

Grand average group data were submitted to a median
absolute deviation (MAD) outlier analysis and removal was
applied. The MAD method provides a robust statistical
approach for the removal of outliers relying on median values
(Pernet et al. 2013). To examine the effect of stimulation and
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cerebral oxygenation, separate 2 (induced depth difference
score, control stimulus at baseline) x 2 (HbO, HbR) repeated
measures ANOVA’s were conducted for each ROI (PO3,
PO4, O1, 02). To reduce the likelihood of a Type 1 error
(Wilcox 2005), alpha levels were adjusted to provide 98.75 %
confidence intervals (CI). Only right hemisphere parieto-oc-
cipital recordings produced a significant result, with no
stimulation effects in the remaining ROIs. Over PO4, there
was a main effect of depth stimulation (F;;, = 13.90,
p <0.01, n? = 0.537), and an interaction between depth
stimulation and cerebral oxygenation (F;, = 22.61,
p < 0.001, n? = 0.655). Pairwise comparisons indicated
greater [HbO] compared to [HbR], and an increase of cerebral
oxygenation during depth stimulation compared to baseline
(p < 0.05). To determine where this difference occurred, an
adjusted Bonferroni corrected (p < 0.01) post hoc paired
samples  test was run calculating Cohen’s d,, effect sizes for
within-subject designs (Cumming 2012; Lakens 2013).
Compared to the control image shown at baseline, depth
stimulation induced a significant increase in [HbO] (t;, = 6.0,
p < 0.001, 99.99 % CI [0.008-0.294], Cohen’s d,, = 6.85)
and a non-significant result for [HbR] (Fig. 3). These results
indicate that there is a strong likelihood that PO4 [HbO]
increases significantly during binocular disparity compared to
fused ‘flat’ stimuli, regardless of inter-subject variability.
Although a similar trend can be seen in PO3, the variance in
the data perhaps prevented statistical significance.

To examine this variation in the data we Z-transformed
participants’ average HDR for the parieto-occipital record-
ings providing a standardised approach. Based on the above
findings, we present only PO3 and PO4 HDR for the
Z-transformed group average (Fig. 4). Parietal-occipital
cortical responses differ between hemispheres and inter-
subject variability within this data is evident with large error
bars. Individual Z-transformed average HDR can be found
in the supplementary material. There is a great deal of
heterogeneity within observers, which may be due to the
nature of the binocular disparity within the images used.
Yet, Fig. 4 shows that compared to the control ‘flat” image,
PO4 [HbO] increased in response to depth stimulation (test
image of depth inducing 3D sinusoidal wave).

Discussion

The current study used fNIRS to measure the HDR asso-
ciated with depth perception in response to a dynamic
depth stimulus. Reliable visual stimulation effects were
seen in the right parieto-occipital hemisphere wherein there
was a characteristic increase of [HbO] and decrease of
[HbR] during presentation of the test stimulus (horizontal
disparity, induced depth percept), compared to the control
stimulus (zero disparity, perceived as ‘flat’). Our data
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Fig. 2 Average HDR to the test stimulus (dynamic RDS with
binocular disparity, induced depth percept, grey area), and the control
‘flat’ stimulus (dynamic RDS zero disparity, perceived as ‘flat’, white
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Fig. 3 Parieto-occipital grand average cortical responses comparing
the test image during depth perception responses ([HbO] plotted in
red, [HbR] in blue) to the control image at baseline ([HbO] plotted in
dark grey, [HbR] in light grey). Means and SEM plotted. Significant
differences between depth perception and baseline found for PO4
[HbO] only at p < 0.001 (Color figure online)

concurs with and expands on BOLD evidence that relates
predominantly to [HbR] (Fabiani et al. 2014; Mehagnoul-
Schipper et al. 2002; Nisi et al. 2010; Rees et al. 1997). In
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¢ PO3, d PO4). [HbO] plotted in red and [HbR] in blue, mean +
SEM (Color figure online)

the parieto-occipital cortex, we report coupling in cerebral
oxygenation with a mirrored image between [HbO] and
[HbR] during depth perception (Fig. 2c). An additional
significant finding was that of a hemispheric dominance
effect with the right hemisphere producing statistically
significant changes in [HbO] compared to the left which
produced a bimodal HDR (Fig. 2d). Our results contribute
to the literature supporting a right hemisphere bias in depth
perception (Baecke et al. 2009; Durnford and Kimura
1971; Hirsch et al. 1995; Nishida et al. 2001; Taira et al.
2001) directly contradicting evidence relating to no depth
perception lateralisation (Backus et al. 2001; Buckthought
and Mendola 2011; Fang and He 2005; Lehmann and
Julesz 1978; Mendola et al. 1999; Merboldt et al. 2002;
Tsao et al. 2003). This hemispheric dominance controversy
is no doubt fuelled by the extent of heterogeneity both in
previous research and the current dataset. In Fig. 4 this
variability is highlighted and can be seen as Z-transformed
group averaged HDRs plotted from both parieto-occipital
cortices. Previous research has similarly shown such vari-
ation, for example, Huppert et al. (2006) report fNIRS
findings with considerable inter-subject variability in the
shape and timing of the HDR relating to motor activity.
With respect to complex visual stimulation and fMRI,
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Test stimulus (dynamic RDS with binocular disparity, induced depth
percept) in grey area, and control ‘flat’ stimulus (dynamic RDS,

Baecke et al. (2009) describe varied data with less than half
of their participants demonstrating a right hemisphere bias
in depth perception. The authors stress that the inconsis-
tency of results relating to hemispheric dominance may be
masked in smaller sample sizes. Therefore, the current
results presenting absolute values of [HbO] in the right but
not left parieto-occipital cortex in response to induced
depth are compelling.

Although the left parieto-occipital cortex appeared to
have a trend in the dataset, the lack of statistical response
need not be surprising. A previous unpublished fNIRS
study in a thesis by Wijeakumar (2011) reports a similar
bimodal HDR for PO3, as well as the primary visual cortex
(V1), in response to dynamic RDS. We propose the vari-
ance and small sample size to potentially occlude results of
depth processing in PO3. Our V1 recordings showed
responses to both stimulus images, with no significant
HDR to depth perception. It can be argued that V1 HDR
present as bimodal signals with V1 activity relating to both
of the complex stimuli, regardless of the difference
between the images in binocular disparity. Although V1
contains both binocularly and monocularly activated cells
and is involved in depth processing, evidence indicates this
specialisation occurs higher in the visual pathway. Maca-
que studies have proposed individual V1 neurons are not
selective for conscious processing of stereoscopic depth
(Cumming and Parker 1997). It is now widely accepted that
single V1 cells generate the cascade of higher-level pro-
cessing where depth is fully perceived (Herpers et al. 1981;
Hirsch et al. 1995; Iwami et al. 2002; Merboldt et al. 2002;
Rees et al. 2002). Indeed, high resolution fMRI imaging
(7T) has shown that although V1 does show cortical acti-
vation in response to binocular disparity, it is not to the
same extent as V3A. This is shown to be consistent
regardless of the width of disparity used, and Goncalves
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et al. (2015a) conclude that activity in area V3A relates
directly to the reported perceptual discrimination thresh-
olds of binocular disparity images. High resolution imaging
provides promising insights into V1 processing of stere-
opsis as recent work has suggested it is the deep layers of
V1 that show a preference for binocular disparity (Gon-
calves et al. 2015b). These findings are in accordance with
the current proposed feedback mechanisms between corti-
cal areas within the visual system.

A similar study with fNIRs and static RDS found
responses to both occipital and parietal-occipital cortices
to depth perception (Wijeakumar et al. 2012a). However,
Wijeakumar et al.’s control stimulus image was a black
screen, therefore the test stimuli was a ‘novel’ response
with the consequences of the first presentation always
eliciting an onset response. In the current study, both
control and test stimuli were identical with the exception
that the test RDS had a shift in the dots that induced
binocular disparity, therefore capturing the response made
specifically to depth. However, both studies (Wijeakumar
et al., and the current one) found a parieto-occipital HDR to
depth perception. This supports the notion of shared neural
correlates of depth perception between types of stimuli, as
previously discussed. Additional support for this comes
from a fMRI study on humans and macaques in which both
static and dynamic RDS activated the same ROI (Tsao
et al. 2003). Furthermore (Gonzalez et al. 2005) report
similar ROI for both types of depth stimuli in recordings of
subdural electrode VEPs in a 47-year old woman. Multi-
modal imaging has provided us with valuable insights
regarding this integration between the vascular HDR and
the neural electrical counterpart, i.e. neurovascular cou-
pling (Fabiani et al. 2014; Iwaki et al. 2013). Iwaki and
colleagues combined data from both fMRI and MEG and
describe the parieto-occipital, intraparietal and posterior
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infero-temporal regions to be active during perception of
3D objects from moving dots. Further multimodal or
combination neuroimaging studies will enlighten this
seemingly complex relationship between the neural and
vascular responses of the brain regarding depth perception.

Although this study has inherent limitations of one NIRS
channel per hemisphere of recording, and a small sample,
we report absolute values of [HbO] and [HbR] and therefore
oxygenation, in response to depth perception in healthy
young adults. An avenue of future work would be to use the
same depth stimuli with EEG in order to couple the data
with fNIRS, combining two approaches. We also intend to
examine the HDR in participants with limited stereoacuity,
e.g. amblyopia. Individuals with amblyopia may have
reduced or absent stereoacuity, therefore we hypothesise that
they would present with an attenuated HDR in the parieto-
occipital cortex. Similar results have been presented using
EEG where patients with reduced stereoacuity (mostly
microstrabismus) have higher VEP thresholds to RDS, par-
ticularly in the right visual field (Skrandies 2009).

In conclusion, we have successfully recorded the HDR
associated with dynamic depth perception using fNIRS.
Healthy young adults showed a characteristic increase of
[HbO] and decrease of [HbR] during complex visual
stimulation in the parieto-occipital cortex. In line with
previous neuroimaging work, we report a HDR over right
hemisphere Brodmann area 19 for processing depth per-
ception, with a large effect size. Occipital recordings
fluctuated due to the complexity of both the test and control
images. Within our young adult sample there was a strong
coupling between [HbO] and [HbR]. Our study demon-
strates that fNIRS is a suitable technique to investigate the
HDR during high-level visual processing of complex
stimuli.
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