
NeuroImage: Clinical 6 (2014) 379–387

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
White matter correlates of sensory processing in autism
spectrum disorders
Jennifer R. Prywellera, Kimberly B. Schauderb, AdamW. Andersonc,d,e, Jessica L. Heacockf, Jennifer H. Foss-Feigg,
Cassandra R. Newsomf,h,i, Whitney A. Loringf,h,i, Carissa J. Casciof,h,*

aDepartment of Radiological Sciences, St. Jude Children3s Research Hospital, Memphis, TN, USA
bDepartment of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, USA
cVanderbilt University Institute of Imaging Science, Nashville, TN, USA
dDepartment of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
eDepartment of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
fVanderbilt University Department of Psychiatry, Nashville, TN, USA
gYale University Child Study Center, Yale University, New Haven, CT, USA
hVanderbilt Kennedy Center, Nashville, TN, USA
iVanderbilt University Department of Pediatrics, Nashville, TN, USA
* Corresponding author at: Vanderbilt University Scho
South Suite 3057, Nashville, TN 37211, USA. Tel.:+1 615 9

E-mail address: carissa.cascio@vanderbilt.edu (C.J. Cas

http://dx.doi.org/10.1016/j.nicl.2014.09.018
2213-1582/© 2014 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 May 2014
Received in revised form 24 September 2014
Accepted 26 September 2014
Available online 13 October 2014
Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimo-
tor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence
and nature of abnormality inwhite matter integrity that may contribute to the behavioral phenomena that char-
acterize ASD. Although atypical patterns of sensory responding in ASD arewell documented in the behavioral lit-
erature, much less is known about the neural networks associated with aberrant sensory processing. To address
the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD,
our investigation focused onfivewhitematterfiber tracts known to be involved in these various stages of sensory
processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the in-
ternal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD
and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments
to examine brain-behavior relationships betweenwhitematter integrity and sensory variables. Our findings sug-
gest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early at-
tention processes in ASD. Increased tactile defensivenesswas found to be related to reduced fractional anisotropy
in the inferior longitudinal fasciculus, whichmay reflect an aberrant connection between limbic structures in the
temporal lobe and the inferior parietal cortex. Our findings also corroborate themodulatory role of the splenium
in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in
ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white
matter microstructure.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

1.1. DTI studies of typical white matter development and abnormalities in
ASD

Autism spectrum disorder (ASD) has been characterized by atypical
socio-communicative behavior, sensorimotor impairment and abnor-
mal neurodevelopmental trajectories. Diffusion tensor imaging (DTI),
which measures the displacement of water molecules in the brain
ol of Medicine, 1601 23rd Ave.
36 3598; fax:+1 615 936 3563.
cio).

. This is an open access article under
(Basser et al., 1994; Le Bihan et al., 2001) and is used to characterize
white matter microstructure, has been used to describe both typical
and aberrant white matter development. White matter volume in-
creases with typical development in all four major lobes of the
brain, with the most rapid increases occurring before age 10 (Giedd
et al., 1999; Giedd, 2004; Iwasaki et al., 1997; Pfefferbaum et al., 1994;
Rivkin, 2000) and progressing in parallel with regional maturation
of function. Higher fractional anisotropy (FA, a measure that reflects
the orientational coherence of fiber tracts) and a lower apparent
diffusion coefficient (ADC, an intravoxel measure of diffusion magni-
tude) tend to reflectmore developed tracts with higher signal transmis-
sion speeds (Basser & Pierpaoli, 2011; Bonekamp et al., 2007; Cascio
et al., 2007).
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DTI has been used to determine the presence and nature of white
matter abnormalities thatmay contribute to the behavioral phenomena
that characterize ASD. This literature has been reviewed recently (Aoki
et al., 2013; Travers et al., 2012), and suggests that althoughwidespread
differences in white matter integrity have been reported (Cheng et al.,
2010; Shukla et al., 2011), the most commonly replicated findings in-
volve the corpus callosum, cingulum bundle, superior longitudinal fas-
ciculus, and temporal white matter tracts. A lack of a clear consensus
likely reflects methodological differences, including means of address-
ing data quality, choice of comparison groups, and inclusion criteria
such as age and developmental level. One large scale study suggested
that when groups were carefully matched on degree of motion, the
only apparent FA differences were in the inferior longitudinal fasciculus
(Koldewyn et al., 2014). In addition to controlling for motion, another
important way to clarify white matter differences specific to ASD is to
control for age and development. While this is best accomplished with
large scale longitudinal studies, another approach is to use cross-
sectional studieswith a focus on narrowage ranges. This approach ame-
liorates themasking of differences that could occur through averaging a
range of developmental white matter profiles into a single sample.
1.2. Sensory symptoms of ASD and putative neural correlates

Sensory processing abnormalities have been reported in ASD since
the earliest clinical and autobiographical accounts (Cesaroni & Garber,
1991; Grandin & Scariano, 1986; Kanner, 1943), and have been added
to thediagnostic criteria for ASD in theDiagnostic and StatisticalManual
of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association,
2013). Among the specific sensory symptoms featured in the DSM-5 are
sensory hyper-responsiveness (an oversensitivity to sensory stimuli
that often include a defensive reaction such as covering one3s ears to
an innocuous sound) and sensory hypo-responsiveness (a depressed
sensitivity that includes failure to orient to salient stimuli, e.g., pain;
Baranek et al., 2006; Ben-Sasson et al., 2009). These sensory patterns re-
late to both the social communication impairments (Brock et al., 2012;
Foss-Feig et al., 2012; Watson et al., 2011) and restricted and repetitive
behaviors that characterize ASD (Baranek et al., 1997; Boyd et al., 2010;
Foss-Feig et al., 2012; Wiggins et al., 2009). A third pattern of sensory
responding in ASD – sensory seeking (unusual interest in sensory prop-
erties of environmental stimuli) – is less understood, but has been
theorized to serve as a compensatory mechanism for both hypo-
responsiveness (e.g., seeking to increase sensory input to overcome
high thresholds; Dunn, 1997) and hyper-responsiveness (e.g., seeking
limited, repetitive sensory stimuli to soothe over-arousal; Liss et al.,
2006).

Although these patterns of sensory responding in ASD are well doc-
umented in thebehavioral literature,much less is known about the neu-
ral networks associated with processing basic sensory stimuli in ASD. A
recent fMRI study using simple auditory and visual stimuli showed in-
creased activation in the primary sensory cortices, as well as in limbic
areas related to emotion processing and regulation in children with
ASD, relative to controls. These findings suggest atypical lower (i.e., at
the level of primary or association sensory cortex) and higher (i.e., at
the level of attentional or limbic cortices) order processing of sensory
stimuli in ASD (Green et al., 2013). On the contrary, previous fMRI stud-
ies investigating both visual (Hadjikhani et al., 2004) and auditory
(Gomot et al., 2008) stimuli report intact processing in primary sensory
regions. Similarly, ERP studies routinely note higher order processing
abnormalities (e.g., Ceponiene et al., 2003), with a subset also showing
early (lower order) sensory differences (Donkers et al., 2013). The com-
plexity of the sensory stimulus (Bertone & Faubert, 2003; Bertone et al.,
2005) and the degree of social relevance (Greene et al., 2011) also play
important roles in neural processing, and behavioral data further sug-
gest a potentially important distinction between social and nonsocial
sensory orienting in ASD (Baranek et al., 2013).
1.3. White matter tracts for sensory processing and orienting

In this study, our goal was to focus on white matter tracts with
known roles in sensorimotor processing, and in early attentional
processes, including alerting and orienting, which are relevant to
aberrant sensory behaviors seen in ASD. The superior corona radiata
(SCR) and centrum semiovale (CS) contain both motor and sensory
fibers projecting to and from the anterior parietal and posterior
frontal lobes. The integrity of the fibers contained in these pathways
may modulate the transmission of cortical sensory signals and subse-
quently impact reactivity patterns in ASD, such as hypo- or hyper-
responsiveness, implicating primary involvement of early sensory
processing, rather than attention or limbic processes. The inferior longi-
tudinal fasciculus (ILF) carries fibers between the occipital, temporal,
and parietal sensory association cortex (Martino & De Lucas, 2014;
Schmahmann et al., 2007) and may be important for linking integrated
sensory input with limbic structures for the evaluation of affective sig-
nificance, thus its integrity in ASD might reflect the degree to which
higher order processing drives sensory abnormalities.

Each of three component functional processes in attention– alerting,
orienting and executive function – have been linked to a unique neural
network (Fan et al., 2009; Posner & Petersen, 1990; Posner & Rothbart,
2007; Posner et al., 2006; Raz & Buhle, 2006). Fibers carried by the pos-
terior limb of the internal capsule (PLIC) are associated with the func-
tion and modulation of attentional alerting (Callejas et al., 2005; Fan
et al., 2009; Fan et al., 2005; Fimm et al., 2001; Rueda et al., 2004;
Sturm & Willmes, 2001; Yin et al., 2012), while the splenium of the
corpus callosum (SPLEN) is heavily linked to orienting (Luders et al.,
2009; Noudoost et al., 2006; Weber et al., 2005). Niogi et al. (2010)
found correlations between FA in the SPLEN and orienting, and between
FA in the PLIC and alerting. Thus, we focused our investigation on
these five tracts (SCR, CS, ILF, PLIC, SPLEN) in order to address the
roles of basic sensory (SCR, CS), sensory association (ILF), and early
attentional processes (PLIC, SPLEN) in sensory hyper- and hypo-
responsiveness in ASD.
2. Methods

2.1. Participant characterization

Thirty-two children with ASD and 26 typically developing (TD) chil-
dren between the ages of 5 and 8 years completed this study. After ex-
cluding participants with poor image quality resulting from excessive
motion (n = 13) and scanner/acquisition errors(n = 4), the final sam-
ple resulted in 19 children with ASD (7.34 years ± 0.72; 17 males) and
22 children with TD (7.10 years ± 1.11; 18 males). Within each group,
included and excluded participants did not differ in chronological age,
mental age, or autism severity as measured by the ADOS (all ps N .1).
Participants in the ASD group were recruited from the university medi-
cal center and surrounding community, and a diagnosis of ASDwas con-
firmed with research-reliable administration of the Autism Diagnostic
Observation Schedule (ADOS; Gotham et al., 2007) and the Autism
Diagnostic Interview-Revised (ADI-R; Lord et al., 1994), as well as
the judgment of a licensed clinical psychologist based on DSM (4th
ed.; DSM-IV; American Psychiatric Association (2000)) criteria. Partici-
pants in the TD control group were excluded if they had a diagnosed
psychiatric or learning disorder or had a first-degree relative with
ASD. Additionally, control participants were screened using the
Social Communication Questionnaire (SCQ; Berument et al., 1999;
Rutter et al., 2003) and the Child Behavior Checklist (CBCL; Achenbach
et al., 2001) to confirm that ASD and other psychiatric symptomatology
did not reach an at-risk level for diagnosis. All participants were
screened and excluded for any genetic and neurological problems,
had not experienced head injuries, and were free of all MRI
contraindications.
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2.2. Cognitive and sensory assessments

Participants3 cognitive abilitywas assessed by trained research assis-
tants using the Kaufman Brief Intelligence Test, Second Edition (KBIT-2;
Kaufman & Kaufman, 2004) or Mullen Scales of Early Learning (MSEL;
Mullen, 1995), dependent on the language level of the participant.
Nonverbal and verbal mental age scores were calculated using mental
age equivalents provided in the KBIT-2 and MSEL manuals. Although
the groups did not differ on chronological age, mental age was signifi-
cantly higher in the TD group (ASD: 7.01 ± 2.11, TD: 8.94 ± 2.37,
t(41) = −2.81, p = 0.008), which was driven by verbal mental age
(ASD: 6.47± 1.59, TD: 9.00±1.98, t(41)=−4.5, p b 0.001). Nonverbal
mental age, however, did not differ significantly between groups (ASD:
7.55±3.22, TD: 8.87±3.04, t(41)=−1.38, p=0.17). See Table 1 for a
summary of participant characteristics.

Participants completed two structured sensory assessments — the
Sensory Processing Assessment (SPA; Baranek, 1999) and the Tactile
Defensiveness and Discrimination Test-Revised (TDDT-R; Baranek,
2010), administered by trained personnel and consensus coded by
blind raters under the supervision of a teammember who had achieved
reliability with the author of the instruments. Both assessments are
play-based and involve toys and activities that have specific sensory fea-
tures. The SPA measures response to sensory stimuli across multiple
sensory domains, with novel toys presented to measure both sensory
avoidance and sensory fascination/repetitive engagement, while simul-
taneously presenting both social (name call, tapping of shoulder, and
hand wave) and nonsocial (sound stick, air puff to the back of the
neck, and a light flash) distracter items to observe orientation and
habituation patterns to such salient stimuli. The TDDT-R includes self-
directed activities and experimenter-administered items to assess
sensory defensiveness and seeking, specifically limited to the tactile
domain. Scores from four sensory measures of interest were included
in this study: two general sensory orientation measures from the SPA
(‘social orienting’ and ‘non-social orienting’) and two tactile-specific
measures from the TDDT-R (‘tactile seeking’ and ‘tactile defensiveness’).
High scores on eachmeasure are associated with more atypical sensory
processing patterns.

2.3. Image processing

All images were acquired during a single scan session on a
3 Tesla Philips Achieva MRI scanner (Philips Healthcare, Inc., Best,
Netherlands), located at the Vanderbilt University Institute of Imaging
Science. During scanning procedures, participants wore foam earplugs
in both ears and Philips headphones to attenuate noise, and watched a
video of their choice for the duration of the scan. A high-resolution
T1-weighted anatomical volume (TR = 9 ms, TE = 4.6 ms, FOV =
256mm2, 1mm isotropic voxels, 170 sagittal slices, 6min 30 s duration)
was collected to provide a template for image registration. Diffusion
Table 1
Participant characterization and sensory scores for ASD and TD groups. For each group (ASD=
reported for participant characteristics, including chronological age, sex and mental age (calcul
age. Group mean sensory scores (calculated using the SPA and TDDT-R) are also reported. For
sponding p values.

Group Age % Male Mental age (Mean ± SD)

Average Nonv

ASD (N = 19) 7.34 (±0.72) 89.47% 6.96 (±2.22) 7.49 (
Range 5.9–8.4 3.0–13.0 3.17–
TD (N = 22) 7.1 (±1.11) 81.81% 9.10 (±1.92) 9.06 (
Range 5.3–8.9 5.0–14.0 5.0–1
Test statistic t = 0.843 χ2 = 0.478 t = –2.98 t = –

p-value 0.404 0.489 0.005 0.127

a Statistically significant between-group difference in sensory score.
weighted data were acquired using a high angular-resolution diffusion
imaging (HARDI) sequence (2.5 mm2 isotropic voxels, 50 axial slices,
14 min 34 s). We collected 92 diffusion directions (b = 1600 s/mm2)
and one T2-weighted volume(b = 0 s/mm2).

A novel image processing pipelinewas developed tomeasure FA and
ADC in the SCR, CS, ILF, PLIC and SPLEN of individual brains (Fig. 1). All
images were visually inspected for common artifacts such as fat shift
and ghosting and underwent standard preprocessing and quality assur-
ance procedures that incorporated head motion, artifact propensity,
variance, and bias of estimatedmeasures (Lauzon et al., 2013). A QA rat-
ing between 1 and 5 was assigned based on these measures and only
scans with ratings above 3 were included in the analysis. HARDI data
were eddy current and motion corrected, and skull stripped in FMRIB
Software Library (FSL; Jenkinson et al., 2012; Smith et al., 2004). Raw
T1-weighted images were re-oriented along the anterior commissure–
posterior commissure (ACPC) line in Brain Voyager (Formisano et al.,
2005; Goebel et al., 2006), then skull stripped in FSL. Each subject3s
brain-extracted HARDI and T1W/3D images were coregistered, and a
tensor fit was performed for each ACPC-oriented HARDI image in DTI
Studio (Jiang et al., 2006). Pixel-based outlier rejection was used to
eliminate noisy pixels by the following threshold criteria: “Minimum
bad area” = 80 (based on recommended value of 30 pixels per
1 mm2), “Minimum Z-value” = 3 (standard deviations from global
mean signal), and “Minimum B0-value” = 100 (intensity threshold to
remove floor noise). The proportion of rejected pixels did not differ sig-
nificantly between groups (t(39)=1.06, p=.299; see also Supplemen-
tary Table S1). Tensor fit output files were used as input in Reproducible
Objective Quantification Scheme (ROQS), a software-based tool to ob-
tain regional white matter measurements of diffusion tensor imaging
parameters (Niogi et al., 2007).

ROQS exploits fiber information from the diffusion tensor to semi-
automatically segment anatomically distinctWM fiber tracts for quanti-
tative DTI analysis. ROQS is able to segmentWM fiber tracts faster than
manual delineation and with better reproducibility and accuracy. For
each brain, nine WM fiber tracts were delineated on a best-fit 2D
slice: SPLEN, and bilaterally CS, SCR, PLIC, and ILF (Fig. 2, Supplementary
Fig. S1). Bilateral fiber tracts were delineated separately for each side.
We obtained measures of FA and ADC (mean diffusivity) from each
tract, for each individual, calculated in native space. For the TD group
and the ASD group separately, within each tract, individual outliers
(having an individual FA or ADC value greater or less than 3 standard
deviations from the group mean) were excluded for quality assurance.

2.4. Statistical analyses

Group differences in sensory behavior were analyzed using a
multivariate analysis of covariance (MANCOVA) test, with group
as the independent variable and each of the four sensory behavior
scores (nonsocial orienting, social orienting, tactile seeking, tactile
autism spectrum disorder; TD= typically developing), means and standard deviations are
ated using the KBIT-2 or theMSEL). Ranges are also reported for chronological and mental
each variable, between-group comparison values (t- or χ2 tests) are reported with corre-

Sensory score (mean rank)

erbal Verbal Social
Orienting

Nonsocial
Orienting

Tactile
Defesnsive

±3.40) 6.43 (±1.68) 25.03 21.97 26.37
18.5 2.63–9.5
±2.98) 9.14 (±1.92) 17.52 20.16 16.36
6.0 5.83–13.0
1.56 t = –4.69 U = 132.5 U = 190.5 U = 107

b0.001 0.033a 0.622 0.008a



Fig. 1. Image processing pipeline. Raw T1W/3D (3D T1-weighted image; PAR/REC =
Philips image file format) imagewas reconstructed and reoriented to ACPC (anterior com-
missure–posterior commissure orientation) using Brain Voyager software (VMR = file
format inherent to Brain Voyager software); following, the T1W/3D image was brain ex-
tracted in FMRIB3s FSL software program. HARDI (high angular-resolution diffusion
image) data were converted to Analyze format in DTI Studio and motion corrected, eddy
current corrected and brain extracted in FSL. Preprocessed T1W/3D images were
coregistered with preprocessed HARDI data using FSL. Coregistered images were subse-
quently converted to DAT file format in DTI Studio where tensor fit and ADC calculation
was then performed, incorporating pixel-based outlier rejection. Themean ADCmap, cal-
culated using FSL, and other files resulting from the tensor fit were used as input files to
perform image analysis in Reproducible Objective Quantification Scheme (ROQS)
software.

Fig. 2.Whitematterfiber tracts identified in representative participant.Whitematterfiber
tracts include superior corona radiata (SCR), centrum semiovale (CS), posterior limb of the
internal capsule (PLIC), splenium (SPLEN) and inferior longitudinal fasciculus (ILF). Tracts
are shownon an FA colormapof a representative participant, givingfiber orientation – red
(right–left), green (anterior–posterior), blue (superior–inferior) – indicated by legend
(encircled in middle of figure). Brain is in radiological orientation, as indicated by right
(R) and left (L) hemispheric labels.
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defensiveness), as dependent variables. Mental agewas used as a covar-
iate because it has been shown to influence sensory responses (Baranek
et al., 2006, 2013) and differed between groups. For the DTI data, FA and
ADC were analyzed as separate dependent variables, using analysis of
covariance (ANCOVA) tests. Laterality (left, right, commissural) and
tract (SPLEN, CS, SCR, PLIC, ILF) were within-subject variables while
group was the between-subjects variable. Because there was a trend
for a group difference (p= 0.0549, see Supplementary Table S1 for de-
tails) in image quality rating even after our rigorous QA procedure, the
QA rating was included as a covariate. Post hoc, independent samples
two-tailed t-tests or Mann–Whitney U tests (for variables where data
were not normally distributed, given by a Shapiro–Wilk test) were
used to assess between-group differences for each of the four sensory
behavior scores and both FA and ADC in each white matter fiber tract.

A Spearman rank correlation test was used to evaluate correlations
between significant DTI parameters and sensory behavior scores in
the ASD group. Spearman rank was chosen for correlation testing to ad-
dress the non-normal distribution of most of the sensory variables.

3. Results

3.1. Sensory assessment

There was an overall significant effect of group (F(4,34) = 7.27,
p b 0.001), but no effect of mental age (F(4,34) = 1.074, p = 0.384)
on sensory scores. ASD group mean scores were higher across all four
variables, consistent with more aberrant sensory responsiveness.
Follow-up tests revealed significant effects of group for three of the
four sensory scores (social orienting: F(1,40) = 4.26, p= 0.046; tactile
seeking F(1,40) = 23.93, p b 0.001; and tactile defensiveness:
F(1,40) = 4.51, p = 0.041). There was no significant effect of group
on nonsocial orienting (F(1,40) = 0.438, p = 0.512).

3.2. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in
white matter fiber tracts

An ANCOVA, with laterality (left, right, or commissural fiber) and in-
dividual tract (SPLEN, CS, ILF, SCR, and PLIC) as within-subject variables,
group as a between-subjects variable, QA rating as a covariate, and FA as
the dependent variable, revealed main effects of group (F(1, 346) =
8.75, p = 0.003) and tract (F(3,346) = 225.5, p b 0.001) as well as a
group by tract interaction (F(3,346) = 3.96, p = 0.008). There was
not a significant main effect of laterality, or the QA rating covariate
(F(1,346)=1.48, p N .1) nor any other significant interactions. These re-
sults indicate tract-specific differences in FA in children with ASD.

Because there was no effect of laterality, right and left FA values for
the four bilateral tracts (CS, ILF, SCR, PLIC) were then collapsed into av-
erage bilateral values to reduce the number of post-hoc comparisons. A
Shapiro–Wilk test for normality revealed normal distributions of FA
values within each tract, within each group, with the exceptions of CS
in the ASD group (p = 0.041) and PLIC in the TD group (p = 0.049).
An analysis of group means with QA rating included as a covariate
revealed that FA was significantly lower for the ASD group than the
TD group in two tracts (Fig. 3): SPLEN (F(1,38) = 5.36, p = 0.026,
ηp
2 = .12) and ILF (F(1,36) = 6.14, p = 0.018, ηp

2 = .17). There was
also a nonsignificant trend for lower FA in the CS (F(1,38) = 3.66,
p = 0.063, ηp

2 = .14). There was no significant effect of QA rating on
any of these tests (all ps N .1). Mean FA values for each collapsed tract
in each group and post-hoc analyses are summarized in Table 2.

A separate ANCOVA with ADC as the dependent variable revealed
similar main effects. There were significant main effects of group
(ASD N TD; F(1, 349) = 4.67, p = 0.031), tract (F(3, 349) = 188.6,

image of Fig.�1
image of Fig.�2


Fig. 3.Mean FA by group and tract. Mean fractional anisotropy (FA) for the ASD (blue, N=
19) and TD (green, N = 22) groups for the centrum semiovale (CS), superior corona
radiata (SCR), splenium (SPLEN), posterior limb of the internal capsule (PLIC), and inferior
longitudinal fasciculus (ILF). Error bars: ±1 SE. *= Statistically significant between-group
difference in tract-specific FA.

Table 3
MeanADC values for ASD and TD groups. For eachof thefive target tracts, themean appar-
ent diffusion coefficient (ADC) is shown for each group (ASD=autism spectrumdisorder;
TD = typically developing). Bilateral tracts showed a significant main effect of laterality
and are therefore displayed individually (R = right; L = left).

Apparent diffusion coefficient

Tract ASD TD

SPLEN 8.65E−04 (±6.20E−05) 8.48E−04 (±5.19E−05)
R CS 6.68E−04 (±2.35E−05) 6.70E−04 (±2.26E−05)
L CS 6.84E−04 (±2.80E−05) 6.79E−04 (±2.39E−05)
R SCR 6.44E−04 (±2.57E−05) 6.42E−04 (±1.68E−05)
L SCR 6.57E-04 (±1.79E−05) 6.49E−04 (±1.75E−05)
R PLIC 6.50E−04 (±1.43E−05) 6.40E−04 (±1.26E−05)
L PLIC 6.60E−04 (±2.00E−05) 6.47E−04 (±1.62E−05)
R ILF 7.32E−04 (±3.95E−05) 7.26E−04 (±3.30E−05)
L ILF 7.59E−04 (±2.99E−05) 7.52E−04 (±4.32E−05)
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p b 0.001), and laterality (F(1, 349) = 20.4, p b 0.001). There was no ef-
fect of QA rating and no significant interactions, suggesting generalized
increases in ADC in childrenwith ASD.Mean ADC values for each tract in
each group are summarized in Table 3.

3.3. Sensory assessment correlations with WM integrity

We used the Spearman Rank correlations (ρ = correlation coeffi-
cient) within groups to test for relationships between the four sensory
scores obtained from behavioral observations and FA in three tracts:
SPLEN and ILF (the two regions that showed significant differences in
post-hoc tests), and CS (considered exploratory as the effect of group
did not reach statistical significance). In the ASD group, nonsocial
orienting was found to significantly correlate with FA in the SPLEN
(ρ=−0.49; p=0.03) and tactile defensiveness significantly correlated
with FA in the ILF (ρ=−0.57; p=0.01), such that lower FA was asso-
ciated with more abnormal scores (less orienting and more tactile de-
fensiveness, respectively). These relations between sensory response
and FA are depicted in Fig. 4. No significant ASD group correlations
were found for FA in the CS. No significant correlations were found
within the TD group for any measure.

4. Discussion

Consistentwith the growing literature supporting pervasive sensory
processing impairments in ASD (Marco et al., 2011; Rogers & Ozonoff,
2005), the ASD group scored higher on all sensory variables measured
Table 2
MeanFA values for ASD andTDgroups. For eachof thefive target tracts, themean fraction-
al anisotropy (FA) is shown for each group (ASD = autism spectrum disorder;
TD = typically developing; F = between-group F-test value with QA rating covaried
out; p = p-value). Bilateral tracts have been collapsed due to no main effect of laterality.

Tract Fractional anisotropy F p

ASD TD

SPLEN .658 (±.04) .678 (±.03) 5.358 0.026a

CS .413 (±.03) .431 (±.03) 3.663 0.063
SCR .483 (±.03) .479 (±.05) 0.28 0.599
PLIC .567 (±.02) .572 (±.01) 0.042 0.839
ILF .434 (±.04) .467 (±.04) 6.138 0.018a

a Statistically significant between-group difference in tract-specific FA.
by behavioral observation, suggesting impairments related to tactile
processing and sensory orienting across modalities. Failure to orient to
salient stimuli is commonly observed in individuals with ASD and has
been shown to predict deficits in social-communication abilities
(Dawson et al., 2004). In the current study, although social orienting
was significantly decreased in the ASD group, nonsocial orienting did
not show a difference between groups. This finding suggests some de-
gree of specificity to these commonly observed behavioral deficits, in
agreement with previous work (Baranek et al., 2013). It will be impor-
tant for future studies to examine social and nonsocial orienting sepa-
rately in order to better understand the scope of orienting deficits in
ASD.

A lack of tract-specific differences in ADC suggests a global increase
in intravoxel diffusion in the ASD group, consistent with current evi-
dence describing global white matter abnormality in ASD (Alexander
et al., 2007; Barnea-Goraly et al., 2004; Brito et al., 2009; Keller et al.,
2007; Lee et al., 2007; Shukla et al., 2010; Sundaram et al., 2008). The
measurement of ADC is influenced by the complexity of fiber architec-
ture, where higher values indicate simpler configurations such as a sin-
gle dominant fiber orientation or multiple fibers that cross at a smaller
angle (Vos et al., 2012). Under this assumption, globally increased
ADC may reflect an aberrantly simple neuroarchitecture in ASD.
This supports the idea that, rather than being limited to socio-
communicative networks, impairments in ASD affect a range of sensori-
motor, socio-communicative and cognitive domains.

There was also a main effect of group for FA whereby FA was de-
creased in the ASD group. A reduction in FA reflects a loss of white mat-
ter integrity caused by underlying microstructural abnormalities that
may be influenced by decreased fiber density and/or reduced direction-
al coherence of fiber bundles related to demyelination and/or compro-
mised axonal integrity (Basser & Pierpaoli, 2011; Pierpaoli & Basser,
1996). In contrast to ADC findings, the group by tract interaction for
FA and particular brain–behavior relationships suggest tract-specific
differences in FA among children with ASD.

Reduced FA in the SPLEN is consistent with previous findings in ASD
(Egaas et al., 1995; Frazier & Hardan, 2009; Hardan et al., 2009; Piven
et al., 1997; Shukla et al., 2010), and a disruption in SPLEN myelination
would support the neurophysiologic profile of ASD as a late information
processing disorder (Minshew et al., 1997; Novick et al., 1980). In the
ASD group, decreased FA in the SPLEN was related to decreased nonso-
cial orienting, consistent with a modulatory role for the splenium in
orienting patterns (Luders et al., 2009; Noudoost et al., 2006; Weber
et al., 2005), although a similar relation was not seen in the TD group.
The association between SPLEN FA and nonsocial orienting in ASD cor-
roborates recent evidence that inefficient visual orienting and associat-
ed SPLEN white matter integrity reduction may be early markers of risk
for ASD (Elison et al., 2013). Decreased FA in this region has also been
associatedwith sensory inattention in a sample of childrenwith sensory
processing disorder (Owen et al., 2013),whichmay relate to the current
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Fig. 4.Mean FA by group and tract. Scatter plots depicting relation of (A) nonsocial sensory
orienting score and FA value in the SPLEN, and (B) tactile defensiveness and FAvalue in the
ILF. Higher scores on sensory measures indicate more atypical behavior and values were
calculated according to the SPA and TDDT-R manuals.
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finding of reduced SPLEN FA and orienting in ASD. Although the associ-
ation between sensory orienting behaviors and the SPLEN (Niogi et al.,
2010) and its relevance for ASD (Elison et al., 2013) have been reported
previously, the specific relationship to nonsocial (and not to social)
orientingwas surprising. In particular, even though behavioral evidence
suggested specificity related to social orienting deficits in ASD, the
brain–behavior relationship revealed a pattern specific to nonsocial
orienting in ASD. Imaging studies have shown a number of brain regions
that are preferentially involved in social orienting, including the
extrastriate cortex (Engell et al., 2010; Greene et al., 2009; Hietanen
et al., 2006; Tipper et al., 2008), inferior frontal gyrus (Engell et al.,
2010),medial frontal cortex (Tipper et al., 2008), and superior temporal
sulcus (Kingstone et al., 2004). Therefore, it is possible that a more dif-
fuse network is involved in orientation to social stimuli and relies less
on the specific modulatory role of the SPLEN.

Reducedwhitematter integrity in the ILF is consistentwith previous
studies (Jou et al., 2011; Koldewyn et al., 2014; Shukla et al., 2011). The
ILF primarily comprises association fibers that connect ventral temporal
and occipital regions (Schmahmann et al., 2007). It has been heavily as-
sociated with social functions (Peters et al., 2011) that are affected in
ASD, such as face processing (Philippi et al., 2009; Tavor et al., 2014). Re-
duced ILF FA in the ASD group may reflect decreased myelination or di-
minished microstructural integrity of these white matter fibers,
suggesting differences at the level of sensory association and limbic pro-
cessing. Although reduced FA in the ILF in ASD replicated previous
studies, the correlation between FA in the ILF and tactile defensiveness
in the ASD group was a novel finding. The vertical branch of the ILF
connects temporal limbic structures with the inferior parietal lobule
(Schmahmann et al., 2007; Seltzer & Pandya, 1986), which is a multi-
modal sensory association region (Banat et al., 2000) that integrates
input from the somatosensory association cortex and is important for
bodily perception and agency (Hargreaves et al., 2012; Yang et al.,
2011). Thus, the relation between FA in this pathway and negative emo-
tional reaction to touch in the ASD group may reflect an aberrant con-
nection between the inferior parietal cortex and limbic structures
deep within the temporal lobe. As with orienting, the variability of de-
fensiveness scores in the TD group was restricted, whichmay have lim-
ited our ability to detect a similar relation in this group.

The current study has several strengths. Our use of validated obser-
vational sensory measures with blind raters, rather than parent report,
was a unique strength, eliminating some of the drawbacks of parent re-
port such as response bias and variability in interpretation of question-
naire items. The integration of this rich sensory data with neuroimaging
data is also a strength of the study. Our data are gathered from younger
children than many neuroimaging studies, allowing a snapshot of the
brain at a time when sensory features are more prominent than later
in life. The narrow age range of our sample also minimizes the “blur-
ring” that comes with obtaining cross-sectional behavioral and neuro-
imaging measures across many developmental stages. A 92-direction
acquisition provides high signal to noise ratio.

Regarding limitations of the current study, ROQS uses semi-
automated tract selection for anatomically reliable definition; using
TBSS or tractography in a whole-brain analysis may provide a more ro-
bust assessment ofwhitemattermicrostructure and the opportunity for
additional metrics such as tract volume and fiber density. Further, to in-
vestigate the potential of aberrant connections, such as that between
the inferior parietal cortex and temporal limbic structures, tractography
would provide a means for the identification of innervated cortical re-
gions. Finally, a potential limitation was that our processing pipeline
did not allow for re-orientation of the b matrix, which may have intro-
duced bias in our results (Leemans and Jones, 2009).

5. Conclusion

We used high angular-resolution diffusion imaging in children with
and without ASD to investigate a brain–behavior relationship in white
matter tracts with known roles in sensorimotor and early attentional
processing. We targeted the centrum semiovale (CS), superior corona
radiata (SCR), inferior longitudinal fasciculus (ILF), splenium of the cor-
pus callosum (SPLEN) and posterior limb of the internal capsule (PLIC),
whichwe predicted all might be relevant to aberrant sensory behaviors
seen in young children with ASD. At the time of publication, this is the
first known study of ASD to link sensory variables in directly observed
behaviors towhitematter integrity. The relationship between increased
tactile defensiveness and reduced FA may reflect an aberrant connec-
tion between limbic structures in the temporal lobe and the inferior pa-
rietal cortex. Our findings also corroborate the modulatory role of the
SPLEN in orienting deficits in ASD, but suggest the possibility that a
more diffuse or separable network may underlie the social orienting
deficits that are more specific to ASD. Future investigation should con-
sider the use of whole brain analyses, including tractography, for a
more robust assessment of white matter microstructure. In summary,
our findings suggest a modulatory role of ILF and SPLEN in atypical sen-
sorimotor and early attention processes in ASD.
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