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ABSTRACT

Summary: W-ChIPMotifs is a web application tool that provides a
user friendly interface for de novo motif discovery. The web tool is
based on our previous ChIPMotifs program which is a de novo motif
finding tool developed for ChIP-based high-throughput data and
incorporated various ab initio motif discovery tools such as MEME,
MaMF, Weeder and optimized the significance of the detected motifs
by using a bootstrap resampling statistic method and a Fisher test.
Use of a randomized statistical model like bootstrap resampling can
significantly increase the accuracy of the detected motifs. In our web
tool, we have modified the program in two aspects: (i) we have refined
the P-value with a Bonferroni correction; (ii) we have incorporated the
STAMP tool to infer phylogenetic information and to determine the
detected motifs if they are novel and known using the TRANSFAC
and JASPAR databases. A comprehensive result file is mailed to
users.
Availability: http://motif.bmi.ohio-state.edu/ChIPMotifs. Data used
in the article may be downloaded from http://motif.bmi.ohio-state
.edu/ChIPMotifs/examples.shtml.
Contact: victor.jin@osumc.edu

1 INTRODUCTION
DNA motifs are short sequences varying from 6 to 25 bp and can be
highly variable and degenerated. Understanding how transcription
factors usually selectively bind to these motifs is important for
understanding the logic and mechanisms of gene regulation. One
major approach is using position weight matrices (PWMs; Stormo
et al., 1982) to represent information content of regulatory sites.
However, when used as the sole means of identifying binding
sites suffers from the limited amount of training data available
(Roulet et al., 1998) and a high rate of false positive predictions
(Tompa et al., 2005). Many de novo motif finding tools have
been developed to detect these unknown motifs. Typical tools
include hidden Markov models (Pedersen and Moult, 1996), Gibbs
sampling (Lawrence et al., 1993), exhaustive enumeration (i.e.
detecting the set of all nucleotide n-mers, then reporting the most
frequent or overrepresented; e.g. Weeder (Pavesi et al., 2004),
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greedy alignment algorithms [e.g. CONSENSUS (Hertz and Stormo,
1999)], expectation-maximization (MEME) (Bailey and Elkan,
1995) and probabilistic mixture modeling (NestedMica; Down and
Hubbard, 2005).

ChIP-based high-throughput techniques such as ChIP-chip (Ren
et al., 2000; Weinmann et al., 2002), ChIP-seq (Barski et al., 2007;
Robertson et al., 2007) and ChIP-PET (Loh et al., 2006) have
been used to interrogate protein–DNA interactions in intact cells
and is well-documented in many comprehensive reviews (Hanlon
and Lieb, 2004). The identified enrichment DNA sequences usually
ranging from ∼150 to ∼1500 bases from these techniques are
currently considered to be highly reliable datasets for detecting the
novel motif. Many computational tools including ours (Ettwiller
et al., 2007; Gordon et al., 2005; Hong et al., 2005; Jin et al., 2007)
have been recently developed to de novo find the motifs for the data
generated from these techniques.

There exist many kinds of available computational tools.
However, most of them are platform-dependent stand-alone
executable programs, and not easily used by biologists. In this
application, we have built a web-based de novo motif discovery
tool for identifying novel motifs for ChIP-based high-throughput
techniques. Although the web tool is based on our previous program,
ChIPMotifs, we have significantly modified the program with
a refined P-value computation using Bonferroni correction and
incorporated a new STAMP tool (Mahony and Benos, 2007) to
find the phylogenetic information and similar motifs in TRANSFAC
(Wingender et al., 2000) and JASPAR (Sandelin et al., 2004)
databases. The web interface is friendly and accessible by this
research community.

2 DESCRIPTION OF W-ChIPMotifs
Usage of W-ChIPMotifs web service is simple and does not
require any knowledge of the underlying software. The structure
of W-ChIPMotifs is shown in Figure 1. There are three required
inputs from the user: the DNA sequence data, contact information
and a transcription factor name. DNA sequences are required to be
in the FASTA format. They can be uploaded either by selecting an
existing file, or by directly copying the data into the form. Results
will be emailed to the address given in the contact information.
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Fig. 1. A schematic view of W-ChIPMotifs.

The transcription factor name is used as a label in the results. Also,
control data can be specified as an optional input, which is used to
infer the statistical significance for detected motifs. In case of no
control data input from users, we will use default control datasets
where we randomly selected 5000 promoter sequences per run from
all human or mouse promoter sequences depending on the user
selected species.

After the server validates and retrieves the input, the DNA
sequences are processed by a group of existing ab initio motif
discovery programs. This group is currently composed of MEME
(Bailey and Elkan, 1995), MaMF (Hon and Jain, 2006) and Weeder
(Pavesi et al., 2004). These three are frequently used by the
community, and have proven to be relatively accurate in detecting
motifs. The programs are included in a modular fashion which
enables the easy addition of other components in the future. Using
these programs, we identified a set of n candidate motifs (usually
<10 motifs), then constructed n PWMs for each candidate motif.
A bootstrap resampling method is then used to infer the optimized
PWM scores. In this method, a new dataset is created by randomizing
the user input’s sequences of each with 100 times. This new set no
longer corresponds to the original ChIP identified binding sequences,
but shares the same nucleotide frequencies and therefore can be used
as a negative control set. The negative control is used for scanning
the identified motifs at a minimal core score of 0.5 and a minimal
PWM score of 0.5. Then, we retrieve core and PWM scores at the
top 0.1, 0.5 and 1% percentiles. A Fisher test was applied and the
P-value was used to define the significant cutoff for these scores.
We also apply the Bonferroni correction by adjusting the P-value
multiplying by the number of samples being input. If the adjusted
P-value ended up >1.0, it would be rounded down to 1.0.

To provide users with more flexible and useful information
about detected motifs, W-ChIPMotifs also uses the STAMP tool
(Mahony and Benos, 2007) to determine if the motifs are known
or novel by finding phylogenetic information and motif similarity
matches in the TRANSFAC and JASPAR databases. Phylogenetic
information implemented in STAMP tool is based on two tree-
building algorithms: an agglomerative method and a divisive

method. Both take input motifs’ PWMs aligned by multiple
alignment strategies, and iteratively build tree nodes until reaching
each leaf node containing a single PWM.

The results from W-ChIPMotifs are composed of two files. The
first file contains detected motifs with their SeqLOGOs, PWMs, core
and PWM scores, P-values and Bonferroni correction P-value at
different percentile levels. The second file contains matched similar
motifs from the STAMP tool. These files are in PDF format.

In the future, we plan on adding more accurate and efficient motif
detecting programs, and optimizing the running time of the statistical
methods.

3 IMPLEMENTATION
W-ChIPMotifs is written in Perl, and uses a web interface developed
with PHP. Multiple scripts are used to produce output from
the included motif discovery programs, parse this output and
apply statistical techniques. The sequence logos for the motifs
are generated using the WEBLOGO tool (Crooks et al., 2004).
The open-source HTMLDOC program is used to convert these
logos to PDF format (http://www.htmldoc.org/). A tree from
the newicks format is created with the DRAWTREE tool. The
PHPGmailer package is used for sending results to the user from
the W-ChIPMotifs email account.

4 SAMPLE TESTS
The W-ChIPMotif server is tested with different well-known datasets
from the ChIP-seq and ChIP-chip experiments with different sizes
of inputs. Some of such datasets include E2F4, FOXA1, NRSF and
OCT4, the test data and results are available online at http://motif.
bmi.ohio-state.edu/ChIPMotifs/examples.shtml.
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