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Compressive Sensing (CS) theory has great potential for reconstructing Computed Tomography (CT) images from sparse-views
projection data and Total Variation- (TV-) based CT reconstruction method is very popular. However, it does not directly
incorporate prior images into the reconstruction. To improve the quality of reconstructed images, this paper proposed an improved
TV minimization method using prior images and Split-Bregman method in CT reconstruction, which uses prior images to obtain
valuable previous information and promote the subsequent imaging process. The images obtained asynchronously were registered
via Locally Linear Embedding (LLE). To validate themethod, two studies were performed. Numerical simulation using an abdomen
phantom has been used to demonstrate that the proposed method enables accurate reconstruction of image objects under sparse
projection data. A real dataset was used to further validate the method.

1. Introduction

Research on how to reduce Computed Tomography (CT)
scanning dose of patients while the image quality is not dete-
riorated has very important significance not only in theory
but also in practical applications [1].The dose depends on the
number of projections, tube voltage, tube current and tube
current-exposure time product, X-ray filters, organ shields,
and so on. In our study we assume that other factors are
fixed during the scanning, except the number of projections.
Comparing with traditional CT reconstruction approaches
[2–4], algorithms based on Compressive Sensing (CS) [5–
10] are more popular with the conditions of incomplete
projections. But they still can be improved by bringing in
prior images.

Generally, patients are not scanned only once; repeat-
ing CT scans contained some same structural information.
Normally, the information embedded in previous scanning is
called prior knowledge which is valuable for reconstructing
better images with low-dose in the following CT scanning
[11–15]. The same object can be scanned at different time
to monitor the changes of the object. At the first time the

object should be scanned with normal views to produce CT
images with high quality. Then the subsequent scanning will
be carried out under the low-dose circumstance, that is, few-
views projections. As the previous normal-dose scans and
low-dose scan are not performed simultaneously or even not
with the same scanner, the prior images and reconstructed
images cannot be utilized directly because of rigid or nonrigid
object motion and other differences among these scans.
Registration is necessary and how to register them is a huge
challenge.

In this paper, we propose an improved Total Variation
(TV) minimization method using prior images and Split-
Bregman [16] method in CT reconstruction (PISPTV) which
tries to take fully advantage of prior images in order to
get high-quality CT images with the conditions of incom-
plete projections. The images obtained asynchronously are
registered via Locally Linear Embedding (LLE) and Split-
Bregman method is used to solve the optimization problems.
We introduce the proposed algorithm in the next section,
show the results in the third section, and conclude the paper
in the last section.
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2. Theory and Method

2.1. CS-Based CT Reconstruction. For CT reconstruction
algorithm based on CS, TV algorithm which is proposed by
Sidky and Pan [6] is popular. Briefly, it can be defined as
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where ⃗
𝑓 is the reconstructed image, 𝐴 is the projection

matrix, �⃗� is the projection data, 𝜎 is permissible error, and
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where ∇ ⃗
𝑓 represents gradient operator of an image ⃗
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and 𝑗 stand for 𝑥-coordinate and 𝑦-coordinate, respectively.

2.2. Proposed Algorithm. We propose an improved TVmini-
mization method using prior images and Split-Bregman [16]
method which can be defined as follows:

min 
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where ⃗
𝑓PI represents a prior image obtained by a conven-

tional algorithm such as Algebraic Reconstruction Technique
(ART) [3] from previous normal-view projections and
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where 𝑡 represents the number of prior images and
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where ℎ is the parameter to control the sensitivity.
Split-Bregman method is used to solve (3); it contains

three iteration steps.
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Step 2. Consider the following:
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Step 3.
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where 𝑘 is the iteration index of Split-Bregman method, 𝜆, 𝜇,
and 𝛾 are tuning parameters, and ⃗

𝑑 and ⃗
𝑏 are intermediate

variables.

Equation (6) is solved by the steepest descentmethod [17]
and the derivative of (6) is
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ate step size, 𝑑(𝑛) is gradient descent scaling parameter
of PISPTV, 𝑔[𝑘,𝑚] is the normalized �⃗�[𝑘, 𝑚], and their
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2
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The ART method is used to get initial image of iteration.
Equation (7) can be computed as (10) using the shrinkage
operator:
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2.3. Calibration with LLE. Prior images are obtained by
ART-TV algorithm from previous normal-view projections.
Because the previous normal-dose scans and low-dose scan
are not acquired simultaneously or even not scanned using
the same scanner, the reconstructed images ⃗

𝑓 and ⃗
𝑓PI(𝑡)

generally are not the same because of rigid or nonrigid
object motion and other differences among these scans. In
practiceweneed to register these reconstructed images before
further processing, and X-ray CT Geometrical Calibration
via Locally Linear Embedding (LLE) which was provided by
Chen et al. [18] can be used. In thismethod, an important step
is to calculate the projection matrix which is affected by the
geometric parameters; that is,

A = 𝐴 (
⃗

𝐷) , (11)

where ⃗
𝐷 is a parameter vector containing source-object dis-

tance, object-detector distance and detector offset distance,
detector tilt angle, projection angle, and so on.The geometric
parameters are estimated by the following equation:
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�⃗� is the measured projection data, and ̃
�⃗�
𝑠
(𝑠 = 1, 2, . . . , 𝑆)

is the corresponding reprojection data during CT recon-
struction. 𝑆 is the number of reprojections. The geometric
calibration problem is solved by dimensionality reduction via
LLE. Specifically, the LLE consists of three steps.
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are the same at that for (15). Therefore, the real parameter
estimation can be refined by searching for the 𝑅 nearest
reprojected projection vectors and updating the parameter
vector with the weight coefficients and the corresponding
sampled parameters.

2.4. Implementation of Proposed Algorithm. Specifically, our
method is flowcharted in Figure 1 and the implementa-
tion steps of our proposed algorithm which is shown in
Algorithm 1 contain two loops; the outside loop operates
ART which is labeled by 𝑛 and the total number of outside
iterations is 𝑁iter. The inside loop operates PISPTV which is
labeled by 𝑘 and the total number of inside iterations is𝐾. ⃗

𝑓PI
is a prior image obtained by a conventional algorithm such as
ART and ART-TV from previous normal-view projections.
The prior images are registered via LLE, respectively (the
estimated parameter vectors are obtained via LLE before). ⃗

𝐷

is an estimated parameter vector obtained by LLE and it is
used to register this reconstructed image.

3. Simulation and Experiment

To evaluate the performance of our proposed algorithm, the
numerical and experimental datasets were used. The ART-
TV and our proposed algorithm (PISPTV) were used for
comparison. For fairness, both of them were implemented
using the Split-Bregman technique. In our study, we selected
𝛼 = 0.15, 𝜆 = 100, 𝜇 = 50, and 𝛾 = 800. Image quality was
assessed with the relative Root Mean Square Errors (RMSE)
and Structure Similarity (SSIM) [19].

Scanning from normal-dose

Scanning from low-dose

Getting the estimated parameters of 
normal-dose scans via LLE

Getting the estimated parameters of low-dose 
scan via LLE 

Image reconstructions of normal-dose 
scans via ART-TV

Image reconstruction of low-dose scan via PISPTV 

Figure 1: Flowchart for PISPTV reconstruction.

RMSE is the most widely way applied to evaluate image
quality, and it is defined as
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% Initialization
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exit
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end

Algorithm 1: Implementation steps of PISPTV reconstruction.

𝑐(
⃗

𝑓,
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𝑓

∗

), and structures V( ⃗
𝑓,

⃗
𝑓

∗

). In our study, we selected
𝛿 = 𝜍 = 𝜂 = 1, 𝑐

1
= 2 × 10

−8, c
2

= 1 × 10

−8, and
𝑐
3
= c
2
/2 = 5 × 10

−7.
The value of SSIM is between −1 and 1. When two images

are the same, the SSIM between them is 1.

3.1. Simulation Study. In this study, an abdomen phantom
as shown in Figure 2 was used. The size of phantom image
was 256 × 256. In order to reflect changes of projections in
different scan, we added circular patches with different size in
the phantom as shown in Figure 3 (their radii were 8 pixels, 10
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Figure 2: Abdomen phantom.

pixels, and 12 pixels, resp.).The number of prior images was 2.
In the first scanning, Figure 3(a) was reconstructed by ART-
TV algorithm from 180 projections. In the second scanning,
Figure 3(b) was reconstructed by ART-TV algorithm from
90 projections. In the current scanning, Figure 3(c) was
reconstructed by PISPTV algorithm from 30 projections.
We assumed they were registered in simulation study. The
iteration numbers were 50; the reconstructed images are
shown in Figure 4.

It can be observed that the image reconstructed by
PISPTV is visually much better than that by ART-TV.
The differences between Figures 4(a) and 4(d) are clearly
identified, which means that PISPTV can produce high-
quality image with much less streak artifacts than the ART-
TV. Figures 4(c) and 4(f) are the difference images obtained
by reconstructed imageminus original image.We can see that
the difference between ⃗

𝑓PISPTV and ⃗
𝑓original is much smaller

than the difference between ⃗
𝑓ART-TV and ⃗

𝑓original.
Furthermore, we zoom in one part of the reconstructed

images as shown in Figure 5. In order to enhance the contrast
ratio, all images are shown in the window [0.3, 0.7] while the
total grey value is between 0 and 1. We find ⃗

𝑓PISPTV contains
less artifacts, and the inner distribution near edge is more
uniform than ⃗

𝑓ART-TV.
Table 1 lists the RMSE and SSIM calculated from recon-

structed abdomen phantom with ART-TV and PISPTV. It
is obvious that the RMSE of reconstructed image using
PISPTV method is much smaller than that of reconstructed
image using ART-TVmethod; the SSIM is much bigger.Thus
PISPTV method can reconstruct image with higher quality.

3.2. Experimental Study. In this study, we tested our algo-
rithms on a real dataset from a chip which was acquired
by a Micro CT scanner (provided by Nuclear Technology
Application Research Center, High Energy Physical Institute,
ChineseAcademy of Science).The tubewas operated at 70 kV
and 100mA. Both the nominal source-object distance and
object-detector distance were 38 cm, the number of detector

Table 1: RMSE and UQI of reconstruction images.

Methods Abdomen Real data
ART-TV PISPTV ART-TV PISPTV

RMSE 0.0303 0.0106 0.0414 0.0107
SSIM 0.9877 0.9985 0.9696 0.9971

elements was 1024, and the length of detector was 13.0048 cm.
Both detector tilt angle and detector offset distance were zero.
The calibrated rotation center offset was −0.3847 cm. The
number of projection angles was 900 in the angular range
[0, 2𝜋]. These parameters were used to register images. To
demonstrate the performance of our proposed approach, we
reduced the number of views to 100 which was about 1/9 of
original projection number. And as shown in Figure 6(a), we
evaluated the reconstructed image using ART-TV with 900-
projection data as a standard image. The number of prior
images was 3; they were images reconstructed previously
by ART-TV algorithm from 900, 450, and 225 projections,
respectively. The iteration numbers were 10, and the recon-
structed images are shown in Figure 6.

In Figure 6, it is clear that comparing to ART-TV,
PISPTV has better performance. We zoom in one part of
the reconstructed images as shown in Figure 7. In order to
enhance the contrast ratio and see the artifacts problem, the
images are shown in the window [0.01, 0.1] while the total
grey value is between 0 and 1. We find that the reconstructed
image using ART-TV method contains more artifacts. The
profiles of line 350 in different reconstructed real images
are plotted in Figure 8. We can see that the ART-TV profile
fluctuates larger than the PISPTV profile, which means that
the PISPTV reconstruction is much closer to standard image.
And as shown inTable 1, its RMSE is lower and SSIM is higher.
These observations suggest that our method is powerful for
sparse CT reconstruction data.

4. Conclusion

In conclusion, we propose an improved TV minimization
method using prior images and Split-Bregmanmethodwhich
uses prior images to obtain valuable previous information
and promote the subsequent imaging process. Split-Bregman
method is used to solve the optimal problems. Simulated
abdomen phantom and a real dataset are used to validate
the method. In the simulation study, different sized circular
patches were added to reflect the changes of projections in
different scanning. Due to the difficulty of getting real data
with these clinical and changes, this kind of comparison will
be carried out in further study. For experimental research, X-
ray CT Geometrical Calibration via LLE is used to register
different reconstructed images. The results demonstrate that
the proposed method can reconstruct high-quality images
from few-views data and has a potential for reducing the
radiation dose in clinical application.
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(a) First scanning abdomen phantom (b) Second scanning abdomen phantom (c) Current scanning abdomen phantom

Figure 3: Different scanning abdomen phantoms.

− =
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f(a) ART-TV reconstruction ( ！２４-４６) f(b) Original image ( ＩＬＣＡＣＨ；Ｆ) f f(c) Difference image ( ！２４-４６ − ＩＬＣＡＣＨ；Ｆ)

f(d) PISPTV reconstruction ( ０）３０４６) f(e) Original image ( ＩＬＣＡＣＨ；Ｆ) f f(f) Difference image ( ０）３０４６ − ＩＬＣＡＣＨ；Ｆ)

Figure 4: Reconstructed abdomen phantoms for comparison.
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(a) Original image (b) ART-TV reconstruction (c) PISPTV reconstruction

Figure 5: One magnified part of abdomen phantoms for comparison.

(a) Standard image (b) ART-TV reconstruction (c) PISPTV reconstruction

Figure 6: Reconstructed real images for comparison.

(a) Standard image (b) ART-TV reconstruction (c) PISPTV reconstruction

Figure 7: One magnified part of reconstructed real images for comparison.
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Figure 8: The profile of line 350 in different reconstructed real images.
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