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Abstract

Neuroscience is increasingly focusing on developmental factors related to human structural and functional connectivity.
Unfortunately, to date, diffusion-based imaging approaches have only contributed modestly to these broad objectives,
despite the promise of diffusion-based tractography. Here, we report a novel data-driven approach to detect similarities and
differences among white matter tracts with respect to their developmental trajectories, using 64-direction diffusion tensor
imaging. Specifically, using a cross-sectional sample comprising 144 healthy individuals (7 to 48 years old), we applied k-
means cluster analysis to separate white matter voxels based on their age-related trajectories of fractional anisotropy.
Optimal solutions included 5-, 9- and 14-clusters. Our results recapitulate well-established tracts (e.g., internal and external
capsule, optic radiations, corpus callosum, cingulum bundle, cerebral peduncles) and subdivisions within tracts (e.g., corpus
callosum, internal capsule). For all but one tract identified, age-related trajectories were curvilinear (i.e., inverted ‘U-shape’),
with age-related increases during childhood and adolescence followed by decreases in middle adulthood. Identification of
peaks in the trajectories suggests that age-related losses in fractional anisotropy occur as early as 23 years of age, with mean
onset at 30 years of age. Our findings demonstrate that data-driven analytic techniques may be fruitfully applied to extant
diffusion tensor imaging datasets in normative and neuropsychiatric samples.
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Introduction

Throughout the lifespan, the human brain is continuously

shaped by genetic and environmental factors, as well as their

developmental interplay [1]. Histological studies in human and

non-human primates have shown that these complex patterns of

age-related changes involve both gray and white matter [2,3,4,5].

In longitudinal studies of human development, high-resolution

anatomic MRI studies of cortical thickness as well as gray and

white matter volumes have detected complex region-specific

maturational trajectories (e.g., quadratic, cubic) in vivo [6].

Analyses of white matter development have been enhanced

by the availability of diffusion tensor imaging (DTI), which

provides information regarding white matter microstructure,

including fractional anisotropy (FA) [7]. Studies directly

comparing children and adults, and those examining linear

age-related trends, have consistently demonstrated developmen-

tal increases in FA from childhood into early adulthood [8]

[9,10,11,12,13,14,15,16]. At the other end of the developmental

spectrum, age-related decreases in FA have been observed

beginning in middle adulthood and accelerating rapidly in later

life [10,11,12,13,14,15,16,17,18,19,20].

This pattern of increasing FA from childhood to adulthood,

with subsequent decreases late in life, strongly suggests that white

matter maturation follows non-linear trajectories across the

lifespan. Many initial efforts to characterize white matter

maturation have assumed linear age effects, an assumption that

is not necessarily justified and can lead to false negatives as a result

of inadequate fitting [19]. More recent developmental studies of

FA suggest that exponential models provide a better fit than linear

models [18,20]. However, exponential curves may be suboptimal

for appraising lifespan developmental changes in FA, where

inverted u-shaped trajectories are expected [17,18,19,20]. Addi-

tional challenges arise when attempting to identify differential

rates of white matter maturation across different tracts, or across

subdivisions within the same tract. One common approach to

address this challenge is to define tracts on the basis of previously

established probabilistic atlases [20]. Such atlases tend to provide

only large-scale tract definitions, thus limiting the resolution at

which tracts and their subdivisions can be differentiated in terms of

developmental trajectories. Boundary regions between tracts can

be another significant source of variation across subjects. To

bypass these problems in tract definition, investigators have relied

on tractography-based approaches [19]. Yet, tractography is also

subject to several sources of error, including the requirement for

user-based specification of seed and termination locations and

other parameters (e.g., stop length, Euler integration), as well as

inadequate spatial resolution, particularly in the vicinity of fiber

crossing/kissing [21]. Potentially most problematic is the current

paucity of sophisticated approaches for assessing inter-individual
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and group-related differences in tractography, which limits the

utility of tractography approaches for characterizing white matter

maturation in the developing brain.

Here, in a cross-sectional sample composed of 144 individuals (7

to 48 years old), we demonstrate an alternative approach for

exploring differential developmental trajectories across white

matter tracts and their subdivisions that requires no a priori

information. Specifically, we used k-means cluster analysis [22] to

separate white matter voxels based on their age-related trajecto-

ries. This approach was grounded in two fundamental principles;

1) that, in a given dataset, a finite number of differential

developmental trajectories would be detectable within the central

‘‘skeleton’’ of major white matter tracts [23], and 2) that

structurally related voxels would exhibit similar developmental

trajectories, and thus cluster together [24,25]. We employed an

established clustering index [26] to identify optimal solutions and

avoid over-clustering (i.e., dividing a single population of voxels

across multiple clusters). Lower order cluster solutions can reveal

large-scale structural systems (i.e., sets of tracts), while higher order

solutions reveal individual tracts and their subdivisions (i.e., the

higher the number of clusters examined, the more detailed the

differentiation), thus permitting a more systematic examination of

white matter structures and their development. Finally, to

demonstrate the ability of our method to delineate well-established

tracts, we sort the findings in terms of the DTI-81 Atlas, which was

used as a ‘‘gold standard’’.

Materials and Methods

Participants
This study is based on DTI data obtained from 144 healthy

individuals aged 7–48 years (mean age = 20.8612.0 yrs, 69 males).

All participants were free from psychiatric disorders, as confirmed by

semi-structured psychiatric interviews. Specifically, absence of DSM-

IV axis-I psychiatric disorders was established per the Schedule for

Affective Disorders and Schizophrenia for School-Age Children –

Present and Lifetime Version (KSADS-PL) [27] administered to

parents and their children. The Structural Clinical Interview for

DSM-IV-TR Axis I Disorders, Research Version, Non-patient

Edition (SCID-I/NP) [28] and the Adult ADHD Clinical Diagnostic

Scale (ACDS) V.1.2 [29] were administered to adults (.18 years).

Right-handedness, absence of chronic medical conditions, and of

contraindications for MRI were required for all participants. The

institutional review boards of the New York University School of

Medicine and New York University approved this study. Prior to

participation, written informed consent and assent (for partici-

pants,18 years) were obtained from all participants and their

parents/legal guardians (for participants,18 yrs). Participants re-

ceived monetary compensation for completing the study.

Acquisition
Imaging data were acquired using a Siemens Allegra 3T (NYU

Center for Brain Imaging). A T1-weighted image (MPRAGE,

TR = 2530 ms; TE = 3.25 ms; TI = 1100 ms; flip angle = 7u; 128

slices; FOV = 256 mm; voxel-size = 161.361.3 mm), and two

DTI scans were acquired from each participant using a twice-

refocused diffusion-weighted EPI sequence (TR = 5200 ms;

TE = 78 ms; 50 slices; acquisition matrix 64664; FOV = 192 mm;

acquisition voxel size = 36363 mm; 64 diffusion directions chosen

to be uniformly distributed around a unit sphere [30] with b-value

1000 s/mm2; 1 image with no diffusion weighting). Bandwidth

was 3720 Hz/pixel. A gradient echo field map (TR = 834 ms;

TEs = 5.23 and 7.69 ms) was also acquired with the same slice

positioning and resolution as the diffusion-weighted data.

DTI preprocessing
The two diffusion weighted imaging (DWI) datasets for each

participant were concatenated. Motion correction was performed

by applying 9 degrees of freedom linear registration to a warped

template, derived from the field map. Local magnetic field

inhomogeneities were accounted for by field map reconstruction

[31]. Diffusion gradients were rotated to improve consistency with

the motion parameters and data for each of the 128 corrected

directions (i.e., from the two 64-direction scans) were used to fit the

tensor parameters, to improve signal to noise ratio [30]. Diffusion

tensors were fitted for each voxel to obtain FA images, which were

registered to the FMRIB58_FA standard space image with 1 mm3

resolution using the non-linear registration tool FNIRT [32,33]. A

group-mean FA skeleton was created, and each participant’s

standard space FA data was projected onto the FA skeleton using

the standard preprocessing scripts provided with FSL’s Tract-

Based Spatial Statistics (TBSS). The resultant skeletonised FA

images were used for further analysis.

Cluster Analysis
Prior to cluster analysis, differences among participants related to

registration to standard space were removed from the data by

regressing out the mean squared difference between each

participant’s FA map and the FMRIB58_FA template [34]. Next,

the k-means algorithm was used to sort voxels into clusters based

upon their zero-centered FA age-related trajectory (i.e., the FA

values obtained across participants, corresponding to the measured

FA values at 144 points over the age range 7–48 years). The k-

means algorithm [22] is a computationally efficient approach that

tends to produce tighter clusters than more basic algorithms (e.g.,

hierarchical clustering [35]), as it optimizes the distance between

voxels and cluster centroids. The k-means algorithm has a single

free parameter: the number of clusters. Given the lack of a priori

expectations with respect to the number of clusters, we repeated the

algorithm varying the number of clusters from 2 to 16.

A classic challenge for data-driven approaches such as cluster

analysis is the determination of an ‘‘optimal solution’’. A common

way to address this challenge is to calculate a measure of cost for

each cluster solution, and identify those solutions with local

minima in the cost measure as optimal. Here, to assess the stability

of each clustering solution, we used the Davies-Bouldin cluster

validation index (DBI) [26]. This measure is a ratio of the mean

within-cluster distance to the mean distance between cluster

centers, weighted by the number of clusters. Solutions that

represented local DBI minima were identified as optimal and

reported in the present work.

Standard Model-Based Analyses. Using FSL 4.1.5

(FMRIB Software Library, Oxford, UK; http://www.fmrib.ox.

ac.uk/fsl/) we applied a general linear model to each voxel of raw

statistical TBSS images using permutation-based non-parametric

testing. We corrected for multiple comparison using threshold-free

cluster enhancement (p,0.05, corrected) [36]. To evaluate the

improvement of the second order fit over linear fit we fitted linear

and quadratic models to the skeleton voxels and carried out an F-

test using in-house developed MATLAB (The MathWorks, Inc.,

Natick, MA) functions.

Results

Overview
Cluster analyses grouped and differentiated white matter voxels

on the basis of their age-related FA trajectories. The Davies-

Bouldin cluster validation index (DBI) suggested that the 5-, 9- and

14- cluster solutions were optimal. The resulting clusters appeared

Development of Human Brain White Matter Tracts
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to meaningfully recapitulate well-established white matter tracts

and subdivisions within tracts, as well as relationships among

tracts. Importantly, across cluster solutions, many clusters

exhibited a notable degree of stability (e.g., clusters one and two

remained relatively stable across the 3–6 cluster solutions, cluster 3

was relatively stable across the 4–6 cluster solutions, and so on),

with changes occurring in a progressive hierarchical manner from

one solution to the next (Figures S1a and S1b depict the evolution

of the first five cluster solutions). Figures 1a and 1b depict the

optimal cluster solutions. Importantly, clusters were generally

found to be composed of large continuous tracts (see Table S1 for

quantifications of continuity). Lower order cluster solutions tended

to combine a larger number of tracts into a single cluster, while

higher order solutions better differentiated larger tracts from one

another (i.e., separated them into different clusters). Higher order

solutions (e.g., 11, 13, 14) tended to have some clusters that

comprised smaller collections of continuous voxels, generally

located near the gray-white interface.

As expected, across all cluster solutions, age-related increases in

FA were observed during childhood and adolescence. Across

clusters, marked variation was noted in the magnitude of FA

increases during development, even when differences in the initial

FA values (i.e., FA values at age 7) were taken into account (i.e., by

analyzing %-increase in FA; see Figure 2). Importantly, the F-test

suggested that the quadratic fit was significantly better than the

linear fit for all clusters except one, which was based in the middle

and inferior cerebellar peduncles (see Figure 1B: cluster 4 in the

14-cluster solution). For the remaining clusters, examination of

peak-ages obtained from the quadratic trajectories suggested that

age-related decreases in FA during adulthood begin at a

surprisingly early age (median peak age: 30.1 years; range: 23–

34; see Table 1 for cluster trajectory characteristics).

Given the large number of results provided by our method, here

we highlight key tracts and distinctions that illustrate the utility of

this approach and potential resulting insights derived from the

optimal cluster solutions (see Figures 1a and 1b). To demonstrate

the ability of our method to delineate well-established tracts, as

well as potential subdivisions within them, we also compared the

14-cluster solution with tracts defined by a ‘‘gold standard,’’ the

DTI-81 Atlas [37] (see Tables 1 and 2). FA trajectory parameters

for the DTI-81 Atlas tracts themselves are reported in Table S2.

Unless otherwise noted, a high degree of homotopy was noted for

our findings.

Specific Findings
Corpus Callosum. First, we draw attention to the corpus

callosum (CC), the primary conduit for interhemispheric

communication between the cerebral hemispheres. Despite the

lack of a priori specification or bias, cluster analyses delineated

three well-established divisions within the CC based upon

differences in their developmental trajectories – namely, the

splenium (posterior), the genu (anterior) and the body

Figure 1. Optimal Cluster Solutions. Panel A (Skeletonized Fractional Anisotropy [FA]): The 5-, 9- and 14- cluster solutions identified by the Davies-
Bouldin cluster validation index as optimal are depicted here, along with the 2-cluster solution, for reference. Cluster analysis recapitulated well-
established white matter tracts, as well as key distinctions within white matter tracts. Notable examples include separation of the corpus callosum
(CC) into three major divisions (splenium, body, genu) and differentiation of anterior and posterior limb of the internal capsule. Across all solutions,
the cerebral peduncles and anterior limb of the internal capsule demonstrated consistent clustering patterns, likely reflecting fronto-pontine
pathways. Tract Marker Key: [A: splenium (CC), B: body (CC), C: genu (CC), D: corticospinal tract (marked at interface with cerebral peduncle), E:
anterior limb of the internal capsule, F: posterior limb of the internal capsule, G: forceps minor, H: optic radiations, I: superior longitudinal fasciculus, J:
superior corona radiata, K: body (CC), L: cingulum bundle]. Panel B (Trajectories and Atlas-Based Projections): For each of the optimal cluster solutions
(5-, 9- and 14-clusters), we depict the mean trajectory across voxels in each of the clusters; all trajectories are baselined with respect to the initial
trajectory value to facilitate visual comparison. Values on the ordinates represent change in FA from the initial value obtained for each trajectory for
each cluster. Age in years is shown on the abscissas. Across clusters, the mean age at which peak FA was reached was 30.1 years. To facilitate
visualization, we provide ICBM-81 atlas-based tract projections, with each tract color-coded based upon the dominant cluster to which its voxels were
assigned (note: clusters 11 and 12 were not dominant in any atlas-based tract). Immediately to the left of each anatomic projection is the overlay of
the trajectories for each solution.
doi:10.1371/journal.pone.0023437.g001
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(intermediate) [38]. The splenium differentiated from the

remainder of the CC as early as the 2-cluster solution. The

three CC divisions fully separated from one another by the 5-

cluster solution. Among the three divisions, the splenium, which

supports interhemispheric transfer between visual cortex,

exhibited the largest age-related increases in FA, more than

doubling that observed in the genu and nearby prefrontal areas

(10.3% vs. 4.3%); the body of the CC fell between the two other

divisions (7.2%).

Of note, with respect to absolute FA values, the CC body

exhibited the highest initial and peak FA, and the genu the lowest.

These differences are consistent with prior findings regarding fiber

size and myelination [39]. Specifically, the CC body, which

supports communication among motor and somatosensory

regions, has the greatest preponderance of gigantic and large

axons. In contrast, the genu, which is intimately associated with

prefrontal cortex, is populated primarily by small and medium

myelinated axons, and contains the highest fraction of unmyelin-

ated neurons among callosal regions [39].

Cerebral Peduncles, Internal Capsule and Cingulum

Bundle. Across cluster solutions, the cerebral peduncles

consistently clustered with the anterior limb of the internal

capsule. The two combined exhibited the greatest increases in FA

during development (indexed with both absolute difference and

%-increase). They also ranked among the lowest with respect to

measures of loss during adulthood, suggesting relative

preservation of their integrity with age. The strength of the

relationship between voxels within the anterior limb of the

internal capsule and the cerebral peduncles is not surprising,

given that the fronto-pontine tracts, which project from the

frontal cortex to the pons, travel through the anterior limb of the

internal capsule [40,41]. Interestingly, the cingulum bundle and

portions of the superior longitudinal fasciculus do not

differentiate from the cerebral peduncle-internal capsule tracts

until the 9-cluster solution. This underlines a remarkable degree

of similarity among these tracts with respect to their

developmental trajectories.

We note that distinctions between the anterior and posterior

limbs of the internal capsule were prominent across all cluster

solutions – likely reflecting their different functions. The anterior

limb conveys the fronto-pontine and thalamo-cortical pathways,

both of which are critical to information transfer with the

prefrontal lobes [40,41]. In contrast, the posterior limb transmits

sensory and motor information [42,43,44]. Consistent with this

distinction, tracts such as the optic radiations and the corticospinal

tracts (above the level of the cerebral peduncles) were associated

with the posterior limb rather than with the anterior limb. Finally,

with respect to the corticospinal tracts, we note that our analyses

consistently differentiated portions above the level of the cerebral

peduncles from those within (see Figure 1a).

Figure 2. Absolute Trajectories and Relative Changes of Skeletonized Fractional Anisotropy (FA) Values. The trajectories for the 2-, 5-,
9- and 14-cluster solutions (from top to bottom) are depicted as absolute FA values (left column; ordinate shows FA absolute values), FA difference
from initial trajectory value (middle column; ordinate shows relative FA change in absolute units), and percent change in FA relative to initial value
(right column; ordinate shows percent change in FA). Abscissas show age in years. Initial FA trajectory value and percent change in FA were not
significantly related across any of the clusters.
doi:10.1371/journal.pone.0023437.g002
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Table 1. 14-Cluster Solution Fractional Anisotropy (FA) Trajectory Characteristics.

Cluster #

Cluster Components
Based on ICBM DTI
Atlas

Initial
FA

FA at
Peak

Age at
Peak

Increase in
FA (Initial
to Peak)

% Increase
in FA (Initial
to Peak)

Loss in FA
(Peak to
Final)

% Loss in
FA (Peak
to Final)

Trajectory
Curvature
(1e-4)

(tracts accounting
for 5% or more of
cluster voxels)

1 12% Anterior limb
of internal capsule R

0.43 0.49 34.7 0.059 13.67 20.014 22.7976 20.7674

11% Anterior limb
of internal capsule L

10% Cerebral peduncle R

10% Cerebral peduncle L

8% Anterior corona
radiata R

2 81% Body of corpus
callosum

0.54 0.58 31.6 0.042 7.69 20.018 23.1647 20.6862

15% Genu of corpus
callosum

3 20% Superior corona
radiata R

0.46 0.47 23.1 0.013 2.90 20.032 26.7291 20.5110

19% Retrolenticular
part of internal capsule R

18% Superior corona
radiata L

10% Posterior limb of
internal capsule R

10% Posterior limb of
internal capsule L

9% Posterior corona
radiata R

4 96% Middle cerebellar
peduncle

0.37 0.40 48.0 0.025 6.84 * * *

5 23% Anterior corona
radiata L

0.42 0.44 26.2 0.018 4.34 20.023 25.3427 20.4926

22% Genu of corpus
callosum

21% Anterior corona
radiata R

7% Superior corona
radiata L

6% Superior corona
radiata R

6% Splenium of corpus
callosum

6 49% Posterior thalamic
radiation R

0.48 0.50 24.6 0.016 3.40 20.029 25.8145 20.5299

44% Posterior thalamic
radiation L

7 25% Superior longitudinal
fasciculus R

0.37 0.42 32.7 0.045 12.19 20.016 23.8303 20.6867

22% Superior longitudinal
fasciculus L

10% External capsule L

9% External capsule R

9% Cingulum (cingulate
gyrus) L

8% Cingulum (cingulate
gyrus) R

8 13% Middle cerebellar
peduncle

0.32 0.35 33.6 0.030 9.47 20.009 22.5351 20.4232

Development of Human Brain White Matter Tracts
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Cluster #

Cluster Components
Based on ICBM DTI
Atlas

Initial
FA

FA at
Peak

Age at
Peak

Increase in
FA (Initial
to Peak)

% Increase
in FA (Initial
to Peak)

Loss in FA
(Peak to
Final)

% Loss in
FA (Peak
to Final)

Trajectory
Curvature
(1e-4)

(tracts accounting
for 5% or more of
cluster voxels)

9% Fornix (cres) / Stria
terminalis L

9% External capsule L

7% Sagittal stratum L

7% External capsule R

6% Anterior corona
radiata L

9 39% Splenium of corpus
callosum

0.48 0.53 30.1 0.050 10.30 20.030 25.6402 20.9343

11% Posterior corona
radiata L

9% Posterior thalamic
radiation R

9% Posterior thalamic
radiation L

7% Retrolenticular part
of internal capsule L

6% Superior longitudinal
fasciculus L

6% Posterior corona
radiata R

10 21% Cingulum
(hippocampus) R

0.37 0.41 31.2 0.043 11.70 20.021 25.0106 20.7304

15% Splenium of corpus
callosum

15% Body of corpus
callosum

12% Cingulum
(hippocampus) L

8% External capsule L

11 16% Splenium of corpus
callosum

0.34 0.39 30.2 0.040 11.63 20.024 26.1696 20.7473

14% Superior longitudinal
fasciculus L

12% Posterior thalamic
radiation L

6% Sagittal stratum L

6% Genu of corpus
callosum

12 41% Posterior corona
radiata R

0.37 0.39 25.6 0.022 6.04 20.032 28.3368 20.6427

24% Posterior corona
radiata L

17% Superior longitudinal
fasciculus R

11% Splenium of corpus
callosum

6% Superior longitudinal
fasciculus L

13 17% Retrolenticular part
of internal capsule L

0.37 0.40 29.0 0.033 8.91 20.024 26.0646 20.6716

10% Sagittal stratum R

8% Superior corona
radiata L

Table 1. Cont.
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General Linear Model Based Voxel-wise Results
Although not the primary focus of the proposed work, we

carried out traditional multiple regression-based analyses of voxel-

wise increases in FA. For these analyses we used linear and

quadratic models. Linear models revealed overall age-related

increases in FA for most WM tracts (p,0.05, corrected).

Quadratic models, which detected curvilinear trends associated

with age-related decreases in adulthood, were also significant

(p,0.05, corrected). F-test comparisons revealed a significantly

better fit for the quadratic models, further highlighting the non-

linearity of age-related changes in FA. No significant linear

negative effects of age were noted (see Figure 3).

Discussion

Cluster analyses of FA of skeletonized white matter tracts

successfully differentiated the major tracts and subdivisions, based

on their developmental trajectories in a cross-sectional DTI

sample spanning ages 7–48 years. While nearly all tracts exhibited

quadratic trajectories for FA, they differed with respect to the

magnitude of increases in white matter during childhood and

adolescence, as well as in the rates and extent of decreases during

middle adulthood. These findings recapitulate those of prior DTI

and histological studies [37,45], thus validating our proposed

analytical approach. Additionally, they provide new insights

regarding the nature of the different developmental trajectories

and age-related compromises associated with distinct white matter

tracts and subdivisions.

Despite its initial development in the mid 1980’s [46,47], the

application of DTI to the examination of brain development has

lagged behind other anatomical and functional MRI approaches.

Recent years have witnessed numerous methodological innova-

tions in the acquisition, reconstruction and processing of diffusion

data with the goal of overcoming imaging artifacts that hamper

tractography-based approaches [48,49,50,51,52]. Our findings

suggest that a wealth of information can be extracted with existing

technologies and datasets. In the present work, cluster analysis

based on developmental trajectories not only captured well-

established structural distinctions within tracts such as the corpus

callosum and internal capsule, but highlighted developmental

similarities between tracts such as the anterior limb of the internal

capsule and the cerebral peduncles, the posterior limb of the

internal capsule and the optic radiations, and the cingulum bundle

and cerebral peduncles. While the commonalities among such

tracts may represent sources of error for tractography approaches,

they become rich sources of information for model-free analyses.

Equally exciting is the ability of our approach to reveal consistent

distinctions within a tract across all or most cluster solutions.

Examples of structures that divided as early as the 2-cluster

solution and remained separate include: the splenium, which

separated from the remainder of the CC, the anterior and

posterior limbs of the internal capsule, and the corticospinal tract,

which divided at the level of the cerebral peduncles. An important

advantage of our approach over tractography approaches is its

independence from a priori expectations. As such, it lends itself well

to both hypothesis generation and replication studies.

The prominence of quadratic trajectories in our sample is

particularly noteworthy, as the findings do not simply reflect

curvilinear patterns during early development. Rather, they

appear to reflect decreases in white matter integrity that are

estimated to begin in the 3rd decade of life for nearly half the tracts

examined. A striking aspect of our results was the young age at

which maximal FA was estimated to be reached, which

presumably is also when age-related decline in FA can be

estimated to begin. Across clusters, peak ages based on quadratic

fits varied between 23 and 34 years old, and estimated absolute

loss by age 48 reached between 5 and 8% for several clusters. This

age range surprised us, as WM volume loss has generally been

documented to occur at or after age 40 [53]. However, Salat et al.

[54] noted that FA and white matter volume are not strongly

Cluster #

Cluster Components
Based on ICBM DTI
Atlas

Initial
FA

FA at
Peak

Age at
Peak

Increase in
FA (Initial
to Peak)

% Increase
in FA (Initial
to Peak)

Loss in FA
(Peak to
Final)

% Loss in
FA (Peak
to Final)

Trajectory
Curvature
(1e-4)

(tracts accounting
for 5% or more of
cluster voxels)

8% Anterior corona
radiata L

7% Superior corona
radiata R

7% Posterior limb of
internal capsule L

6% Anterior corona
radiata R

14 18% External capsule R 0.34 0.35 26.1 0.014 4.15 20.018 25.2006 20.3821

17% External capsule L

10% Splenium of corpus
callosum

8% Middle cerebellar
peduncle

In the second column, cluster components are presented in terms of the relative contributions of ICBM-81 Atlas defined tracts. Columns 3–10 provide measures of age-
related increases in FA during development, as well as age-related decreases during adulthood and trajectory curvature (second-order parameter from quadratic
model).
doi:10.1371/journal.pone.0023437.t001
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related prior to age 40. These authors also suggested that FA

changes related to aging are ‘‘due to microstructural alterations

that are antecedent to WM hyperintensities or volume loss

commonly measured in MR studies’’ (p. 45, [54]). It is also

possible that our ability to detect age-related changes was

enhanced by pooling FA across voxels within structural units in

a data-driven manner (i.e., tracts, sub-regions of tracts, sets of

tracts revealed by the cluster analysis). This may have avoided

potential false negatives due to noise associated with averaging

across voxels that, while geographically members of the same

large-scale anatomical tract, exhibit differential developmental

trajectories. Replication of these findings is clearly warranted,

ideally with a broader range of ages and denser sampling at the

age extremes to avoid potential artifacts. If replicated, our findings

would suggest that correlates of brain aging can be detected earlier

than previously thought, with implications for the development of

potential interventions.

Intriguingly, well-established subdivisions of the corpus callo-

sum were delineated by cluster analyses. Specifically, the genu,

which supports interhemispheric transmission among frontal

regions, showed a more gradual pattern of increases in FA

[55,56] and earlier age-related losses, relative to the splenium,

which supports transmission in posterior sensory regions. These

findings suggest both the primacy of myelination in tracts

supporting sensory function, as well as their preservation. Across

clusters, it was subcortical and brainstem-based tracts, along with

the splenium, that tended to exhibit the earliest and most

preserved increases in FA. In combination, these findings are

consistent with the larger developmental and aging literatures, and

appear to reflect ontogenic and phylogenic providence and fates in

terms of lifespan development. Specifically, phylogenetically

primitive sensorimotor brain structures tend to show the most

rapid development and greatest preservation, while more

phylogenetically advanced structures, such as prefrontal cortex,

tend to show slower development and faster declines, suggesting a

first-in-last-out pattern of development across the life span

[55,56,57].

While model-free data-mining is extensively used in the

biological community, particularly in genetics, it is only recently

gaining acceptance in neuroimaging. In particular, independent

component analysis (ICA) has played a major role in revealing the

brain’s functional architecture, and more recently, its structural

architecture [57]. Cluster analysis has also emerged as powerful

tool for exploring functional and structural datasets, with a

number of recent successes [58,59,60,61,62]. Graph theory and

machine-learning approaches to data-mining have also begun to

emerge [63,64,65,66,67], further increasing the array of data-

mining tools available to neuroscientists – each with unique

strengths and limitations. Although this diversity of options is

gratifying, it also calls for rigorous comparisons of the relative

advantages and disadvantages of data-mining approaches to

minimize the introduction of false positive and negatives into this

rapidly developing literature.

We note a number of methodological considerations and

limitations related to our results - particularly the limitations

inherent to our sample. Our age range did not capture the

developmentally active period prior to age 7 years, nor did it

include adulthood beyond the fifth decade, when the greatest

losses of structural integrity in the brain occur. The limited age

range may explain the relatively low complexity of trajectories

identified, which mostly tended to be quadratic. We chose to avoid

higher-order models (e.g., cubic) for characterizing trajectories, to

prevent artifactual fits that can arise at the extremes of smaller

samples, such as ours. A larger sample including individuals

spanning the entire lifespan will likely reveal more complex

developmental trajectories. Greater sampling densities (i.e., greater

number of participants per age bracket) in future cross-sectional

studies will bolster efforts to define age-based trajectories with a

higher degree of fidelity. Even more important will be the

incorporation of longitudinal designs. Future work may also take

advantage of the proposed approach to allow exploration of

developmental trajectories in clinical populations, without as-

sumptions based upon neurotypical populations (e.g., tract

definition, developmental relationships between tracts).

Figure 3. Model-Based Trajectory Analyses. Permutation-based non-parametric testing, using a general linear model containing linear and
quadratic terms, revealed significant age-related changes in skeletonized white matter throughout the brain (p,0.05, corrected). We employed an F-
test to determine optimal fit (linear vs. quadratic). Tracts for which the optimal fit was the inverted quadratic (‘U-shaped’) developmental trajectory
are shown in blue, and those for which the optimal fit was the linear trajectory are shown in red.
doi:10.1371/journal.pone.0023437.g003
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Additionally, the resolution of our diffusion data was relatively

low (3-mm isotropic), and we did not take advantage of more

advanced acquisition and/or reconstruction strategies (e.g.,

HARDI, Q-BALL, DSI) [52,68,69,70]. Nonetheless, a strength

of the present approach is its applicability in datasets that are

otherwise poorly suited for tractography (i.e., those containing few

diffusion directions). However, higher resolution and higher

quality diffusion datasets should allow for more fine-grained

parcellations of white matter tracts. Future work needs to consider

the relative merits of carrying out cluster analyses at the full brain

level, as in the present work, compared to more limited

examinations designed to yield greater differentiation in complex

tracts of interest. Finally, the present work was carried out using

skeletonized FA generated with the FSL TBSS processing pipeline,

which limits white matter to voxels thresholded at FA.0.2. This

analysis therefore excludes gray matter and CSF, as well as

portions of white matter with less robust diffusion signal. Future

work should explore the utility of cluster analysis based approaches

in alternative DTI estimation processing pipelines.

In conclusion, data-driven clustering methods applied to DTI

FA in a cross-sectional sample extending from childhood to mid-

adulthood revealed distinct developmental trajectories in major

white matter tracts and their subdivisions. Independent replication

of these results will provide a powerful means of generating and

testing novel hypotheses regarding structural connectivity in the

human brain.

Supporting Information

Figure S1 Evolution of Cluster Solutions. Panel A (Skeleton-

ized Fractional Anisotropy [FA]): K-means cluster analysis was

employed to group and differentiate white matter voxels based

on their cross-sectional age-related fractional anisotropy (FA)

trajectory across individuals aged 7–48 years. Skeletonized FA for

the first five cluster solutions are depicted in each column in MNI

space, revealing a high degree of stability across solutions. In each

column (solution), each color represents a distinct cluster. Panel B

(Trajectories and Atlas-Based Projections): The first five cluster solutions

are depicted in rows. Scatter plots for each cluster in a given

solution show the data points included in each cluster and their

mean trajectories. All trajectories are baselined with respect to the

initial trajectory value to facilitate visual comparison. Age in years

is shown on the abscissas. The middle graph (solid black line) in

the top row shows the Davies-Bouldin cluster validation index

(DBI) for determining optimal clustering solutions. Local minima

were detected for the 5-, 9-, and 14-cluster solutions. The

trajectories for all clusters in each solution, set to initial baseline,

are shown in the second column from the right. To facilitate

visualization, the right-most column provides an ICBM-81 atlas-

based tract projection, with each tract color-coded based upon the

dominant cluster to which its voxels were assigned.

(TIF)

Table S1 Evaluation of tract continuity within 5, 9, and
14-cluster solutions. For each solution, we list the following for

each cluster: 1) % of voxels contained in the largest continuous

tract within the cluster, and 2) the percentages of voxels that are

part of large continuous tracts within the cluster (i.e., tract

size. = 500 voxels). Measures are reported separately for each

hemisphere (left, right) and the whole brain (whole).

(XLS)

Table S2 Fractional Anisotropy (FA) Trajectory Char-
acteristics for ICBM-81 DTI Atlas Tracts. Measures of age-

related increases in FA during development are provided for each

of the ICBM-81 DTI Atlas Tracts, as well as age-related decreases

during adulthood and trajectory curvature (second-order param-

eter from quadratic model).

(XLS)
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