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Wound management in Space is an important factor to be considered in future Human
Space Exploration. It demands the development of reliable woundmonitoring systems that
will facilitate the assessment and proper care of wounds in isolated environments, such as
Space. One possible system could be developed using liquid crystal films, which have
been a promising solution for real-time in-situ temperature monitoring in healthcare, but
they are not yet implemented in clinical practice. To progress in the latter, the goal of this
study is twofold. First, it provides a full characterization of a sensing element composed of
thermotropic liquid crystals arrays embedded between two elastomer layers, and second,
it discusses how such a system compares against non-local infrared measurements. The
sensing element evaluated here has an operating temperature range of 34–38°C, and a
quick response time of approximately 0.25 s. The temperature distribution of surfaces
obtained using this system was compared to the one obtained using the infrared
thermography, a technique commonly used to measure temperature distributions at
the wound site. This comparison was done on a mimicked wound, and results
indicate that the proposed sensing element can reproduce the temperature
distributions, similar to the ones obtained using infrared imaging. Although there is a
long way to go before implementing the liquid crystal sensing element into clinical practice,
the results of this work demonstrate that such sensors can be suitable for future wound
monitoring systems.

Keywords: temperature sensing, infrared thermography, colorimetric sensor, temperature distribution,
thermotropic liquid crystals

1 INTRODUCTION

Although injuries, traumatic events, and surgical emergencies have been unlikely during the current
space missions, their occurrence must be considered for future human space explorations. During
long-lasting Space-missions, wound treatment and monitoring could become a fundamental
problem, demanding more research in this area (Barratt and Pool, 2008; Cialdai et al., 2020).
For example, first-degree burns can occur as a result of ultraviolet (UV) light exposure through
unfiltered spacecraft windows (Barratt and Pool, 2008). Space represents a very special remote
environment, and solutions developed for Space applications could inspire the creation of a better
healthcare system in remote areas on-ground.

When a wound occurs, the first step is to assess its severity, which will form the basis for the
following treatment. Clinical assessment of the wound is still the most common and cost-efficient
method to assess wound severity. This method relies on a subjective evaluation of the wounds’
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external features, such as size of the wound, wound edges, site of
wound, wound bed (colour, amount of granulation tissue),
presence of necrotic tissue, wound’s depth, level of exudate,
and pain caused by the wound (Grey et al., 2006). The
advantages of this method are that it is a rapid method and
does not require specialized equipment. However, it is subjective.
For instance, a nurse and clinician may have different evaluation
and assessment criteria depending on their prior experiences
(Nagle et al., 2020). Seeing that wound severity is usually
diagnosed by a specialist, a problem appears when wound
injury happens in places that lack wound care specialists, a
situation common in remote areas. One way to face these
problems is to develop diagnostic tools and utilities that are
cost-efficient, easy-to-use, and that could support medical
workers in wound diagnosis and evaluation of the healing by
monitoring one or more biomarkers.

Among many clinical biomarkers, special attention has been
given to pH (Shukla et al., 2007; Schreml et al., 2011; Jones et al.,
2015; Power et al., 2017), oxygen (Schreml et al., 2010), and
exudate composition, with the focus on matrix metalloproteinase
analytes (MMPs) (Muller et al., 2008; Liu et al., 2009; Power et al.,
2017). Also, temperature (Dini et al., 2015; Chanmugam et al.,
2017; Jaspers et al., 2017; Power et al., 2017; Cwajda-Białasik et al.,
2020) and moisture (Bishop et al., 2003; Milne et al., 2016) are the
physical parameters that are frequently associated with the
wound healing process. In particular, the temperature is
considered as an informative parameter for all types of
wounds, and it can provide information about infections of
wounds, even before clinical signs appear (Power et al., 2017).

A common way to measure wound temperature is by means of
Infrared (IR) thermography (Ring and Ammer, 2012). Thanks to
the development of portable high-resolution affordable thermal
cameras, interest in their use for wound assessment has increased.
This is mainly due to their non-invasive and easily interpretable
results obtained in a very short period. Various studies (Dini et al.,
2015; Chanmugam et al., 2017; Jaspers et al., 2017; Martínez-
Jiménez et al., 2018; Cwajda-Białasik et al., 2020; Ganon et al.,
2020) have used the temperature difference between wound and
healthy skin (ΔT), measured by using IR thermography, to
characterize the wound status. An increase of ΔT can be
related to hyperaemia, inflammation, or infection in venous
leg ulcers (Dini et al., 2015; Cwajda-Białasik et al., 2020) or
pressure ulcers and surgical wounds (Chanmugam et al., 2017). In
burns, the temperature is often correlated to the burn depth and
the burn healing time (Jaspers et al., 2017; Martínez-Jiménez
et al., 2018; Ganon et al., 2020). Instead of just measuring the
temperature locally, these studies demonstrated the importance
of measuring the temperature distribution on the wound site and
the surrounding healthy skin. Despite these promising results, IR
thermography is not yet applied in daily clinical practice for
wound assessment, mainly because standard guidelines and
protocols have not been established yet (Shterenshis, 2017).

The field of flexible and wearable bioelectronics, capable of
monitoring physiological information and assisting in proper
treatment is growing exponentially (Rogers et al., 2018; Chen
et al., 2020). Researchers and engineers are working on the
development of new technologies for smart point-of-care

systems (Zhang et al., 2016; Coppola et al., 2021). Therefore,
the development of a point-of-care device for wound monitoring
is more feasible. Such a device could reduce hospitalization times,
the suffering of the patients, and costs (Mehmood et al., 2014;
Derakhshandeh et al., 2018). Moreover, it could provide the
ability to face emergency surgery, acute trauma, burns, and
wounds, in remote and closed environments, such as Space.
At present, wearable technology in wound care is limited to
laboratory testing, and commercial wearable point-of-care
systems are not broadly available. The reason could be found
in the complexity of the wound healing process, the broad variety
of wounds’ types, and the limited understanding of relevant
wound biomarkers.

Ideally, a smart sensor for wound monitoring should have
specific properties, such as 1) wearability/ability to adapt to the
body shape, 2) biocompatibility, 3) high sensitivity, 4) easy-to-
use, and 5) no external power. Due to these requirements, sensors
based on the colourimetric approach appear as an ideal solution
(Ajay et al., 2017; Isapour and Lattuada, 2018). In that respect,
liquid crystals (LCs) have emerged as a promising technology for
wound management sensing. The most interesting property of
LCs is their structural colouration that can be manipulated by
changing the external parameters, such as temperature. This
makes them ideal candidates for the development of easy-to-
use, label-free, and passive sensors, where the output signal is a
change in colour detectable by the naked eye. LCs have a long
history of being used as responsive materials in different
technologies, thanks to their unique properties. Numerous
studies have demonstrated the possibility to produce rapid
diagnostic optical sensors for temperature (Gao et al., 2014),
pH (long Chen et al., 2018), humidity (Saha et al., 2012; Zhao
et al., 2019), gas (Esteves et al., 2020) and molecules (ang Niu
et al., 2017; Zhang et al., 2018) based on LCs. The most
widespread sensors are those for temperature, owing to the
diversity and availability of thermotropic LCs.

LCs are a unique state of matter between crystalline solid and
isotropic liquid. In thermotropic LCs, phase transitions from
crystalline solid to smectic, cholesteric and, finally, isotropic
liquid, are caused by temperature changes, and they are
mainly composed of rod-like molecules. In cholesteric LCs,
also known as chiral LCs, molecules are inherently chiral, and
the average molecular orientation is twisted with a certain
periodicity, leading to a helical structure. This structure is
characterised by a helical pitch that refers to the distance over
which the LC molecules undergo a whole 360° twist. The size of
this pitch determines the wavelength of the reflected light. The
pitch of a cholesteric LC can be of the order of magnitude that
corresponds to the wavelength spectra of visible light, allowing
structural colouration to occur. An increase in the temperature
results in a decrease in the pitch, which causes a shift in the
wavelength of the reflected light. This presents the basis of the
sensing principle of cholesteric LCs (Mitov, 2012). Thermotropic
LCs, intended to be used as colourimetric temperature sensors,
are characterized by three parameters: the lower clearing point
temperature, optical activation range, and the higher clearing
point temperature (Abdullah et al., 2010). The lower clearing
point temperature is the temperature at which LCs first reflect
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colour in the visible spectrum (red). The optical activation range
is the temperature range at which thermotropic LCs actively
reflect visible light. When the thermotropic LCs pass through
their optical activation range, they reflect visible light from longer
wavelengths (red) to shorter wavelengths (blue) as temperature
increases until their higher clearing point temperatures are
reached. The higher clearing point (further in the text referred
as clearing point) temperature is the temperature at which
thermotropic LCs stop to reflect colours in the visible
spectrum. Beyond the clearing point temperature,
thermotropic LCs are transparent again (Abdullah et al., 2010).

A study from 2017 (LeSar et al., 2017) investigated the
possibility to use commercial thermotropic LC–coated fabric
for the early detection of high-risk foot complications. Using
direct visual analysis, they demonstrated that the fabric could
accurately map temperatures on the surface of a hand, which
supported the hypothesis that this approach can be used to
develop a temperature-sensitive system to monitor
complications high-risk foot. They used two different types of
LC fabrics to expand the active range. The most recent
prospective study (Hodorowicz-Zaniewska et al., 2020) used
the Brast Tester–LC foil (Braster SA, Ozarów Mazowiecki,
Poland) for the early detection of breast cancer. Despite the
good performance, this contact LC thermography did not find
its way into commercial use. Reasons for this include that the
protocol still requires a medical specialist for its implementation,
it lacks standardization, and it has been commonly replaced by
contactless infrared thermography. Gao et al. (2014) were the first
ones to propose a skin-like system that consists of thermotropic
LCs patterned into large-scale, pixelated arrays on thin
elastomeric substrates, demonstrating that such a system could
be used as an epidermal temperature sensor.

This work compares the sensing ability of LCs with respect to
IR thermography. To this aim, temperature mappings of surfaces
of different topographies obtained using LCs sensing elements are
compared against the ones obtained using IR thermography. The
IR thermography is chosen as a reference since it is the most
widespread technique used in wound temperature studies (Dini
et al., 2015; Chanmugam et al., 2017; Jaspers et al., 2017;
Martínez-Jiménez et al., 2018; Cwajda-Białasik et al., 2020;
Ganon et al., 2020). This comparison will bring new insights
into the possibility of using LCs-based systems for wound
temperature monitoring. Some challenges in their application
in clinical practice will be highlighted. Although, the final aim of
the research here presented is temperature wound analysis, this
paper is focused on preliminary construction and analysis of the
measuring potential of the envisaged device.

2 MATERIALS AND METHODS

2.1 Cholesteric Liquid Crystals
In this work, thermotropic LCs were prepared using Cholesteryl
oleyl carbonate, Cholesteryl pelargonate and Cholesteryl
benzoate (Sigma-Aldrich). Four thermotropic LCs were
prepared, with different pitch values, by varying the
concentration of the aforementioned components, as shown in

Table 1. In order to mix the components appropriately, the
powder mixture was heated until 60°C, at which a uniform
isotropic liquid is obtained.

2.2 Spectrophotometry of LCs
The first step in the research presented here was the choice of LCs
formulation that has an optical activation range in a temperature
range that is useful for wound monitoring. For this purpose,
transmission spectra of 4 LCs formulations (see Table 1) were
measured. Spectrophotometric analysis of LCs thin films was
carried out to determine the temperature range of the cholesteric
liquid crystals in which they exhibit reflection peaks in the visible
spectrum (390–700 nm). For this analysis, UV-Vis Spectrometer
(UV3600, Shimadzu, Japan) was used. The temperature inside the
spectrophotometer was controlled using a water temperature
controlling system. A thin film of LCs was uniformly coated
on the cell wall. A thermocouple was placed directly inside the cell
on the level where the beam is passing, and the temperature was
measured in real-time on the screen. During the test, the
temperature was increased with steps of 0.5°C. Transmission
measurements were carried out once the temperature inside
the cell was stabilized. Transmittance spectra of different LCs
were collected while changing the temperature from 29.9 to
44.6°C, in steps of 0.5°C.

2.3 Patch Design and Fabrication
The liquid crystal sensing element (also referred as sensing patch)
consists of three layers: a bottom polydimethylsiloxane
elastomer/carbon black (PDMS/CB) layer, a middle LC
sensing layer and a top transparent PDMS elastomer (PDMS)
layer. The sensing patch was produced following the steps shown
in Figure 1A.

The first step in the fabrication process was a production of a
thin black bottom elastomer layer. PDMS SYLGARD™ 184 (Dow
Inc.) and CB, particle size 4 μm (Nanografi) were used to produce
elastomer layers. PDMS components were mixed in a ratio 10:1,
with the addition of 1 wt% of carbon black powder to produce the
black bottom layer. Themixture was placed under the vacuum for
15 min to remove air bubbles. Tomake a thin film, PDMS/CBwas
spin-coated on the glass substrate (50 mm × 50 mm) and cured at
100°C for 30 min. For the glass substrate with 50 mm × 50 mm
dimensions, PDMS/CB was spin-coated for 30 s using a speed of
500 rpm. The thickness of the bottom layer was measured using a
digital optical microscope (Keyence VHX-6000) and its build in-
feature–Plane measurements between two points. After the curing
sample was peeled from the glass substrate and cut in half and
fixed between two acrylic blocks. The fixed sample was placed
under the microscope (magnification ×20) in a vertical position to
visualise the cross-section. The thickness was then measured ten
times across the section, and the average value of approximately
200 μm is calculated. The black bottom layer was chosen for the
best visualization of the colours. Thermal conductivity of pure
PDMS and PDMS/CB was measured using Hot disk TPS 2500 S.
Sample thickness was 5 mm, heating power 20 mW and time 10 s.
Thermal conductivity of pure PDMS was 0.19 W/mK, while
PDMS/CB had thermal conductivity of 0.18W/mK. This
measurement showed that addition of CB in this small
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concentration (1 wt%), does not influence the thermal
conductivity of PDMS.

The second step was PDMS/CB surface activation with oxygen
plasma, to increase the hydrophilicity of PDMS/CB film. Before
plasma treatment, PDMS films were cleaned from dust using
scotch tape. Films were treated with oxygen plasma using a
plasma cleaner (PDC-002 (230 V) Haarrick Plasma) for
15 min, using the maximum power–30W. The water contact
angles before and after the treatment are shown in Figure 1B. An
oxygen plasma treatment of 15 min using this procedure
increased hydrophilicity of PDMS enough for successful
printing. The contact angle before surface treatment was 112°,
and after treatment, it became less than 10°.

The third step was an LCs dots array fabrication on the PDMS/
CB layer, achieved using the blade coating technique. The plane

surface was converted to a grid of dots to obtain the uniform
colour response, and this was achieved by blade coating over the
patterned paper mask. The mask was designed in CorelDraw,
with the final dimensions of 50 mm× 50 mm, containing 324 dots
with a diameter of 1.5 mm, and a 1 mm distance between them. A
laser cutter (EpilogLaser mini) was then used to cut the paper
sheet (thickness 100 μm) into the designed pattern. After
removing spin-coated PDMS/CB from the plasma cleaner, the
mask was glued on top of the sample, and LCs in liquid form
(0.5 g for each patch) were blade coated, using a glass slide, moved
by amotor with the speed of 50 rpm. Themask was removed once
the LC film cooled down. The goal of the process is to cover as
much as possible the original shape to maximize the sensing area,
keeping at the same time the high sensibility related to
homogeneity. With this configuration, the sensing area was
covering approximately 23% of the total one, with 324
homogeneous highly sensitive components.

The final step was to cover LC pattern film with the protective
transparent PDMS layer, using the spin coating technique (speed
500 rpm, time 30 s). Digital photos of the patch adapting to the
different body surface is shown in Figure 1C.

2.4 Experimental Setup
In general, an experimental setup for the calibration of
thermotropic LCs should consist of a calibration surface with

TABLE 1 | Liquid crystals samples series.

Sample
name

Cholesteryl oleyl
carbonate

(wt%)

Cholesteryl
pelargonate (wt%)

Cholesteryl
benzoate (wt%)

LC1 35 55 10
LC2 32.5 57.5 10
LC3 30 60 10
LC4 25 65 10

FIGURE 1 | Liquid crystal sensing patch with arrays: production steps. (A) Schematic description of LC sensing patch preparation: (1) thin layer (200 μm) of black
PDMS (PDMS and CB) was spin-coated on a glass substrate, after curing thin film was transformed into hydrophilic surface using oxygen plasma (2) patterned paper
mask (thickness 100 μm) was glued on top of PDMS film, and a drop of LC was poured on top of the mask. A uniform layer was created by blade coating (3) mask was
removed when LC cooled down (4) another thin layer of transparent PDMSwas spin-coated on top. After curing at the room temperature patch was peeled off from
the glass. (B) PDMS contact angle before and after oxygen plasma treatment. (C) Different forms of LC patches adapting to different body parts.
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a temperature sensor, imaging system, heating and cooling
system, and illumination source. The experimental setup,
shown in Supplementary Figure S1, was used to record the
LC patch’s colour changes with the temperature. Peltier elements
with an aluminium plate was used as heating and cooling systems.
The aluminium plate was used to obtain uniform plate
temperatures. Two temperature sensors were within system. A
temperature sensor, TS1, was placed below the aluminium plate
and was used to control the temperature of the Peltier element,
while another temperature sensor, TS2, was placed on top of the
aluminium plate. The imaging system includes hardware [colour
camera (Jai GO-5000-USB)] and software for colour extraction. A
5500K LED light was used as an illumination system. There are
different types of illumination-viewing arrangements. Here, an
on-axis arrangement was used. This arrangement was achieved by
placing an LED light ring around the colour camera.

2.5 Assessment of the Liquid Crystal Sensor
Functioning
2.5.1 The Relation Between Temperature, Colour
and Hue
In order to use thermotropic LCs for quantitative temperature
measurements, the determination of the relation between
temperature and colour is a necessary step. Several ways to
specify colour include the Red, Green and Blue (RGB), and
the Hue-Saturation-Value (HSV) model. Researchers have
widely used Hue to quantify colour due to its simplicity and
independence with respect to illumination intensity. It is
considered that the analysis of HSV data represents the
simplest and most straightforward analysis approach. Hue (in
degrees °) is what people typically refer to when using the term
“colour.” Saturation describes the degree to which a pure colour is
diluted with white. It identifies how pure or intense the colour is.
The value (brightness) of colour identifies how light or dark the
colour is. In the following graphs, Hue will be used to quantify the
colour.

This calibration of the patch should be done in an
environment as close as possible to the conditions in which it
will be used. The calibration was then performed in a laboratory
open space so as to simulate normal utilization conditions, e.g.,
patients at home. Before each test, temperature and humidity in
the laboratory were measured.

Before placing the sample on the aluminium plate, an
automatic white balance was carried out on the white
background to calibrate the colour temperature. Once the
sample was placed, TS2 was in direct contact with the bottom
of the patch. During the test, the temperature was increased or
decreased in the cooling case, with steps of 0.1°C. When the
temperature measured with TS2 was stable, photos were taken.
Exposure time was set to 10,200 ms and ten pictures for each
temperature were taken. RGB values were collected from dots that
were in direct contact with the TS2.

2.5.2 Repeatability Test
In general, the sensor’s repeatability is considered to be an
important parameter, mainly if the sensor should be used

multiple times and be exposed to heating and cooling
conditions, like in the case of a sensor that would be used in
wound monitoring. To test this property systematically, six
different full-range calibrations were performed within 3 days.
Each day, the first test was dedicated to heating, and the second
test for cooling. Between these calibrations, the patch was stored
in ambient conditions. The sample was not moved from its
original place during this 3-day period, and hue values were
calculated on the same spot.

2.5.3 The Dynamic Test
Response time is another important sensors’ characteristic. In this
study, response time wasmeasured using a dynamic test. First, the
sample patch was placed on the aluminium plate and then the
temperature was set to 34°C. The monitoring started after the
system was stabilised, i.e., TS2 temperature and Hue were not
changing. During the test, temperature from sensor TS2 was
constantly monitored (20 values per second), and images were
taken automatically (10 frames per second) using a colour
camera. When the monitoring started, the set-point
temperature was changed from 34 to 37°C.

2.5.4 Application for Colour/Hue Quantification
A C++ application was developed to allow quantitative reading of
the temperature using the LCs patch. An example of the
temperature reading is shown in Figure 2. The size of the
selected area can be directly modified in the integrated
window. We can choose the number of pixels on each side of
the central point, which provides the Hue values for each pixel.
From this, the application will then calculate the average hue
value converting it to the temperature of the selected area, using
the data from the calibration curves (see later in Figure 5).

2.5.5 Comparison With IR Thermography
The goal was to directly compare the temperature distribution of
the same surface obtained using the LCs patch with the one
recorded using an Infrared Thermal Imaging Camera, FLIR T425
with a 320 × 240-pixel resolution. This test was performed on the
same setup used for calibration. In this case, instead of an
aluminium plate, we used flat surfaces composed of two
materials with different thermal conductivities, aluminium
(thermal conductivity 237W/mK) and an acrylic sheet (0.2 W/
mK). Three different surfaces were prepared, where the base was
an aluminium plate with different 3D shapes engraved using a
CNC machine and opposite acrylic masks. The goal of creating
these plates is to get a flat surface that will, during heating, have
different temperature distributions on the top. This will mimic
the temperature distribution at the wound and surroundings.
Digital photos of the surfaces are shown in Supplementary
Figure S2. All surfaces were sprayed with conductive black
spray to make IR imaging more accurate. Firstly, an LC patch
(50 mm × 50 mm) was placed on the heated surface and photos
were taken. Following that, the patch was removed, and a
corresponding IR images from the same surface were taken.
The IR photos were taken at room temperature, and FLIR was
left on for at least 10 min for stabilization before imaging. The
distance between the FLIR camera and the mould was 0.2 m, and
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emissivity was set to 0.75. The value for the emissivity was chosen
based on the calibration measurements, where two sensors (with
accuracy 0.1°C) were placed directly on the surface and the
temperature measurements were compared to the IR
measurements from the top.

3 RESULTS

3.1 Choice of LC Formulation
Transmittance spectra of LCs are shown in Figure 3. For each LC
formulation, reflection peaks were shifted towards a lower
wavelength, i.e., blue region, with temperature increase.
Calibration curves were created by taking the reflections’ peak
wavelength values for each temperature, presented in Figure 4, to
establish which liquid crystals combination was the best for the
described application. As expected, different LC formulations
showed the optical active range in different temperature ranges,
shown in Table 2. On average, the temperature span was 5°C. All
calibration curves showed a second-order polynomial trend. For
more straightforward representation, calibration curves were
divided into two linear regions, higher and lower sensitivity
regions. Sensitivity and range for these regions are shown in
Table 2. The sensitivity was calculated as the slope of the
calibration curve, and it is presented in nm/°C. All formulations
showed the same trend, higher sensitivity (78 nm/°C) for lower
temperature ranges (red-green colour range) and lower sensitivity
(25 nm/°C) for higher temperature ranges (blue colour range). This
trend is well-aligned with reports in the literature (Stasiek et al.,
2014). Accordingly, for lower temperature ranges, the resolution is
0.013°C. While for higher temperatures the resolution is 0.04°C.
Both resolutions are fulfilling requirements for a wound
temperature sensor. LC2 system was chosen to produce the

sensing patch, since the temperature range (32.5–38.7°C), where
pitch corresponds to the wavelength of visible light, is connected to
the wound healing temperature range. However, the described
procedure can be used to produce patches with any thermotropic
LC formulation.

3.2 Relation Between Temperature and Hue
Photos used for calibration are shown in Figure 5A. RGB values
were taken from two spots, each 50 × 50 pixels, that were in direct
contact with sensor TS2. Representative calibration curves,
including RGB-temperature dependence and Hue-temperature
dependence, are shown in Figures 5B,C. The Hue—temperature
relationship is strongly non-linear, as can be seen in Figure 5C.
The non-linear trend of Hue-temperature dependency for
thermotropic LCs is expected and previously reported in the
literature (Sabatino et al., 2000; Anderson and Baughn, 2004).
The hue-temperature curve shown in Figure 5C can be well fitted
by a 5-order polynomial (R2 0.991), which is used to convert LCs
colour images to the temperature distribution. The part where
hue increases monotonically with temperature is known as the
effective temperature range or hue bandwidth. From Figure 5C it
can be seen that the effective temperature range in LC2 is
approximately 3.5°C, from 34 to 37.1°C. These types of LCs
that have bandwidths within the range of 0.5–4°C are typically
referred to as narrowband thermotropic LCs. Although they
cover smaller temperature ranges than wideband LCs, the
advantage is their higher precision in temperature
measurements and are less affected by variations in
illumination intensity (Abdullah et al., 2010). Sensitivity in the
effective temperature range, corresponding to lower temperatures
(34–37.1°C) and red and green hue values, is 73°/°C. However,
entering the blue regions (37.1–38.6°C), sensitivity drops to
4.5°/°C.

FIGURE 2 | The interface of the application used for quantitative analysis of temperature from the LC patch.
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3.3 Repeatability
3.3.1 Temperature Shift in Time
Hue-saturation values are presented in Figure 6A, and Hue-
temperature curves on Figure 6B. It is observed from
Figure 6A that colours are less saturated as time increases. The
temperature shift in the calibration curves at four points (Hue =
50°, 100°, 150° and 200°) is presented in Table 3. Compared to the
first calibration curve, the temperature shifts increased with time,
and was the highest on the last day during cooling, reaching 0.47°C.
The ageing had a maximum effect on the hue-temperature relation
for lower hue values. The magnitude of the temperature shift is in
agreement with literature, but it shows the opposite trend. Wiberg
and Lior (2004) reported a maximum shift of 0.4°C but towards
higher temperatures, while shifts towards lower temperatures were
observed in our study. In addition, this experiment showed that
time is causing the drop in sensitivity, see Table 4.

3.3.2 Hysteresis
During the repeatability test, it was observed that the hue temperature
relationship depends upon whether the crystals are undergoing a

cooling or heating cycle. This difference is known as the hysteresis
effect. The hysteresis effect was studied by heating the patch until 40°C
and cooling it down until 32.5°C. Hue was calculated during heating
and cooling for steps of 0.1°C. Corresponding RGB-temperature and
Hue-temperature curves are presented inFigures 7A,B. In the cooling
cycle, a shift in R, G and B peaks is observed, resulting in a shift to a
higher hue for the same temperature. The hysteresis effect was the
highest in the temperature range around 35°C, whereas for the same
hue value the difference in the temperature was approximately 0.26°C.
Several other studies (Dixon and Scala, 1970; Zink andBelyakov, 1997;
Sabatino et al., 2000; Anderson and Baughn, 2004; Kakade et al., 2009)
reported a hysteresis effect in thermotropic LCs. These studies
observed that the hysteresis effect appears if LCs are heated above
their clearing point.

3.4 Dynamic Test–Response Time
Changes in temperature and hue are presented in Figure 8. The first
change in Hue was detected 0.25 s after the first changes in
temperature, which indicates an almost immediate response of hue
on temperature colour. This response cannot be clearly seen in the

FIGURE 3 | The colorimetric response of different LC upon changing temperature (29.9–44.6°C): (A) LC1: reflection peaks in the visible spectrum for temperature
range 29.9–35°C (B) LC2: reflection peaks in the visible spectrum for temperature range 32.6–38.7°C (C) LC3: reflection peaks in the visible spectrum for temperature
range 36.9–41.9°C (D) LC4: reflection peaks in the visible spectrum for temperature range 40.9–44.7°C.
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graph because the first change occurred in the red region, before the
effective temperature region. The response time is the same in both the
heating and cooling cycles.

3.5 Comparison Between LCs Wearable
Patch and IR Imaging
Results are shown in Figure 9; Table 5. Although a relatively accurate
temperature distribution of the surface using the LC paths was
achieved, the pattern recognition and sensing quality were higher
using the IR camera. ΔT was calculated for IR and digital images for
each shape (see Figure 9), as the difference between the average
temperature of the hotter and colder surface. The difference in ΔT,
calculated using IR and LC images varied for different shapes. The
highest difference was observed for shape 1, where the difference
between the two measurements was 0.7°C. In contrast, there was no
difference between IR and LC techniques for shape 3. This
phenomenon can be contributed to the quality of the contact
between the surface and the bottom of the patch. Although the
results are encouraging, some improvements are in order, which
will be discussed in the following section.

4 DISCUSSION

As described in the introduction, IR thermography is
commonly used to measure temperature distributions in

wound studies. IR thermal cameras are sensitive to
environmental conditions. Before imaging, IR cameras
require input values including room temperature, humidity,
distance from the object and its emissivity. It is not always
possible to correctly determine these parameters, although
they are directly influencing the reading output. The
emissivity of human skin is considered to be between
0.97–0.99 (Boylan et al., 1992; Keenan et al., 2017), while
different studies have found that the emissivity of wounds can
be greater by 0.01–0.03. This could result in an
underestimation of the ΔT value by 0.1–0.2°C (Boylan
et al., 1992), and could prove significant in clinical
evaluations of some studies. Depending on the location and
size of the wound, the temperature of the healthy surrounding
skin can vary for several degrees (Carriere et al., 2020). Hence
directly influencing the ΔT value and the reading outcome.
Moreover, the wound bandage should be removed for each
temperature measurement using IR thermal cameras. This is a

disadvantage because it prevents continuous temperature
monitoring.

In general, this study showed that LCs have the potential to
fabricate advanced temperature distribution sensors. This is not
common to other sensing elements, such as resistance or
impedance-based ones, that could measure only point-wise
values. Another important advantage of this configuration is its
simplicity in reading the output. When compared with infrared
imaging, LCs are capable of reproducing the main features of the
temperature fields surrounding a wound mimicking shape, even
geometrically complex. However, the recognition of the patterns
was somewhat less sharp for the LCs with respect to the IR camera.
This might be caused by the contact between the patch and the to-
be-measured surface.

The thermotropic LCs used in this research can detect even
small temperature variations (high sensitivity) and have a good
repeatability as well as a fast response time (less than 0.5 s).
However, LCs used here have a narrow bandwidth, resulting in
high sensitivity but a small effective temperature range. The
temperature range can be extended by changing the type of
thermotropic LCs or by changing the component ratio.
According to (Ochoa et al., 2014), the preferred requirements
for temperature wound monitoring sensors depend on the
wound’s type. However, during the wound healing process,
the dynamic temperature range is 25–41°C. The other
formulations (see Figure 4), showed that it is possible to
cover from 29–44°C. In this study only one of them was used

FIGURE 4 | Thermotropic LC spectrophotometry: calibration curves. All
calibration curves showed a second-order polynomial trend.

TABLE 2 | Liquid crystals response range and sensitivity. Measurement done using the spectrophotometer.

Sample Name Linear response range
1 (°C)

Linear range
sensitivity 1

(nm/°C)

R2 Linear response
range 2
(°C)

Linear range
sensitivity 2

(nm/°C)

R2

LC1 29.9–32.0 89.7 0.95 32.1–35.1 25.3 0.98
LC2 32.6–35.9 71.2 0.98 36.0–38.7 18.9 0.98
LC3 36.9–39.5 78.6 0.97 36.6–41.9 23.7 0.98
LC4 40.9–43.1 81.6 0.88 43.2–44.7 31.2 0.94
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in order to focus on the principle and show the feasibility of such
an approach, but the same study can be performed on the other
liquid crystals.

The ageing of LCs reduces their shelf life. Proper
preparation and storage are necessary to minimize their
ageing. It was suggested that pure thermotropic LCs should

FIGURE 5 | LC2 patch colorimetric response during heating and calibration. (A) How the temperature is increasing LC are going through an optical active range,
which starts with red and finishes with blue colour. Average RGB and HSV values from two spots were used to create a calibration curve. Each spot is 50 × 50 pixels. (B)
Temperature and RGB dependence. (C) Hue-temperature calibration curve. During the calibration the ambient temperature was 23°C and relative humidity 45%.

FIGURE 6 | LC2 patch: repeatability. (A) Hue [°] and saturation [%] values during six separate tests, done in 3 days. (B) Hue [°]-temperature [°C] test performed to
study repeatability.
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not be exposed to fats, greases, organic solvents and dust.
They can also be susceptible to UV and IR radiation, and
exposure to these sources reduces the shelf life (Abdullah
et al., 2010). Another observation is that the hue–temperature
dependence is non-linear. The decrease in sensitivity is
particularly notable when entering in the blue region,
where small changes in temperature do not cause
significant changes in hue. The cause of hysteresis in
cholesteric LC is complex. Previously it was suggested that
hysteresis is strongly associated with chemical composition
(Dixon and Scala, 1970) and that hysteresis depends on the
sample thickness (Zink and Belyakov, 1997). In the case of a
narrowband LC, the thicker sample showed no hysteresis, and
the thinner sample showed up to about a 0.5°C bias toward
lower temperatures when cooled (Zink and Belyakov, 1997).

Moreover, the magnitude of the shift increases with increasing
maximum temperature before cooling. For this particular
application, hysteresis should be avoided since it can give
false information about temperature at the wound during
cooling. Hysteresis can be reduced significantly if the
operating temperature is regulated. Most importantly, the
operating and storage temperature should be kept below
the clearing point temperature (Zink and Belyakov, 1997).
However, this does not necessarily represent a problem if the
calibration is done with small steps (0.1°C) and a
computerised way of reading colour is included, such as
the application used in this work.

Note that the technological readiness of LCs, although promising,
does not directly translate into the possibility to include them in
clinical trials. Several issues should be considered in that respect and
they will be discussed below.

Wound contamination: the current status of the proposed
patch requires that it should be in direct contact with the
wound. In clinical practice, medical personnel are obliged to
use wound dressings to avoid contamination, protect
wounds, and promote wound healing. Nowadays, an ideal
wound should fulfil the following characteristics: 1) creating
a moist and warm environment around the wound, 2)
allowing gas exchange, 3) protecting the wound from
bacterial infections, 4) creating a mechanical protection,
5) controlling the exudate level, 6) being biocompatible,
non-toxic, non-allergenic, 7) being easily removable,
i.e., the material should be non-adhering to avoid
removing of a newly formed tissue, 8) being able to
stimulate healing, and 9) being costly acceptable (Sood
et al., 2014). Applying the proposed LC system on top of
the wound dressing could influence some of the
aforementioned dressing’s characteristics, such as gas
exchange, exudate and moist control properties.
Moreover, the LCs sensing characteristics could be
affected by the micro-environment of the wound and

TABLE 3 | LC2 patch: Temperature shift (°C) compared to the first heating
calibration curve.

Hue (°) Cooling 1 Heating 2 Cooling 2 Heating 3 Cooling 3

50 0.25 0.09 0.20 0.33 0.47
100 0.24 0.09 0.19 0.29 0.42
150 0.23 0.1 0.18 0.26 0.37
200 0.22 0.1 0.17 0.22 0.32

TABLE 4 | LC2 patch sensitivity in effective temperature region 34–37.1°C.

Measurement Sensitivity (°/°C) R2

Heating day 1 72.8 0.99
Cooling day 1 71.8 0.97
Heating day 2 73.1 0.98
Cooling day 2 71.6 0.98
Heating day 3 69.4 0.97
Cooling day 3 67.74 0.97

FIGURE 7 | LC2 patch: Hysteresis effect. The patch was first heated until reaching the isotropic phase, and cooled down. (A) Shift in RGB values during the cooling
process. (B) A corresponding shift in Hue values during the cooling process.
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surroundings. Another option would be to use the LC-based
sensor just during the bandage removal. In this case,
continuous monitoring is not possible.

Size of the wounds: in literature it is possible to find an
outstanding number of wound sensors, either based on LCs or
not. Everyone who participated to a real clinical study on
wound imaging knows that serious wounds, and especially
burns, could cover large portions of the body, sometimes even

the whole body. It is evident that the development of a contact
sensor that would monitor such a wound is currently not
possible.

Shape and 3D nature of the wounded tissues distributions:
although maybe technically possible, it is very difficult to
imagine a contact sensor when the shape and distribution of
the wounds is not flat or even worse, changing
“volumetrically” during the healing time. It would be
possible to think of an intermediate layer hosting the
sensing element. If this solution could potentially solve the
flatness problem, it will also challenge the capability of this
layer to transmit reliably biophysical signals from the wound
to the sensing element.

Although it is beyond the scope of this paper to provide a
complete overview of the clinical requirements for wound
diagnosis and follow-up, it is possible to draw preliminary
conclusions. LCs could represent a complementary element to
support themedical decision and follow-up in the case of wounds,
especially burns. However, the application of such kinds of
sensors in clinical practice is far from being straightforward,
and the plethora of sensors’ concepts presented in the literature
are still at a low-TRL stage.
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NOMENCLATURE

LC liquid crystal

IR Infrared

CB carbon black

TS temperature sensor
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