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Abstract

Motivation: Accurately predicting the quantitative impact of a substitution on a protein’s molecular function would
be a great aid in understanding the effects of observed genetic variants across populations. While this remains a
challenging task, new approaches can leverage data from the increasing numbers of comprehensive deep mutation-
al scanning (DMS) studies that systematically mutate proteins and measure fitness.

Results: We introduce DeMaSk, an intuitive and interpretable method based only upon DMS datasets and sequence
homologs that predicts the impact of missense mutations within any protein. DeMaSk first infers a directional amino
acid substitution matrix from DMS datasets and then fits a linear model that combines these substitution scores
with measures of per-position evolutionary conservation and variant frequency across homologs. Despite its simpli-
city, DeMaSk has state-of-the-art performance in predicting the impact of amino acid substitutions, and can easily
and rapidly be applied to any protein sequence.

Availability and implementation: https://demask.princeton.edu generates fitness impact predictions and visualiza-
tions for any user-submitted protein sequence.

Contact: mona@cs.princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Amino acid variation across protein sequences, whether considering
orthologous sequences across organisms or allelic variation across
populations, is a fundamental aspect of protein evolution and func-
tion. Mutations within proteins can result in antibiotic resistance
within bacteria (Woodford and Ellington, 2007), enhanced viral
virulence (Geoghegan and Holmes, 2018) and inherited or acquired
disease across individuals (Forbes et al., 2011; Stenson et al., 2014).
Thus, understanding the functional effects of amino acid substitu-
tions represents a central challenge in molecular biology.

Experimental methods to characterize the effects of mutations with-
in proteins have been performed for decades. Recently, deep mutational
scanning (DMS) has enabled measurements of many or all possible
single-residue substitutions within a protein in one experiment (Fowler
and Fields, 2014). To date, this high-throughput approach has been
applied to tens of proteins from a diverse range of organisms and has
provided activity data for thousands of variants in each protein
(Esposito et al., 2019). While DMS is an exciting technology that con-
tinues to be applied to additional proteins, it is not currently feasible to
use DMS to characterize all proteins of interest. This considerable
knowledge gap necessitates the development of computational methods
that can model and predict the impact of amino acid substitutions.

While numerous methods have been developed for variant im-
pact prediction (e.g. see Hu et al., 2019; Peterson et al., 2013 and
papers referenced therein), most have focused on predicting the ef-
fect of mutations on phenotypic outcomes at the whole-organism
level, and have trained supervised machine learning models on col-
lections of clinical mutation annotations in order to predict patho-
genicity in humans (e.g. Adzhubei et al., 2010; Carter et al., 2009;
Hecht et al., 2015; Pejaver et al., 2020; Rogers et al., 2018).
Alternatively, other methods have leveraged recent population-level
sequencing data and have instead trained on human- and primate-
derived alleles (e.g. Kircher et al., 2014; Sundaram et al., 2018).
Both of these types of approaches are geared toward pathogenicity
predictions in human and are not applicable to protein sequences
from other genomes. More recently, DMS data has been used in the
context of supervised machine learning methods to predict the quan-
titative impact of amino acid substitutions on protein activity (Gray
et al., 2018; Klesmith and Hackel, 2019). In theory, these types of
approaches are applicable to any protein sequence; however, in
practice, most of these supervised machine learning methods—both
pathogenicity and quantitative mutation impact predictors—utilize
a wide assortment of protein features (e.g. conservation, predicted
secondary structure and solvent accessibilty, etc.), and this limits
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their applicability to new sequences, as these features must be com-
puted for new sequences and are instead often precomputed for
genomes of interest. Alternatively, unsupervised methods for amino
acid variant prediction rely only on aligments of homologous pro-
teins and capture the effect of selection over long evolutionary dis-
tances (Choi et al., 2012; Hopf et al., 2017; Katsonis and Lichtarge,
2014; Kumar et al., 2009; Riesselman et al., 2018; Vaser et al.,
2016). These methods include those that predict the impact of
amino acid substitutions by considering just single sites at a time
[e.g. SIFT (Kumar et al., 2009; Vaser et al., 2016) and PROVEAN
(Choi et al., 2012)], as well as those that model the interdependen-
cies between positions within a protein [e.g. EVmutation (Hopf
et al., 2017), DeepSequence (Riesselman et al., 2018) and GEMME
(Laine et al., 2019)]; the latter tend to be more effective than the for-
mer but are also more complex, harder to interpret and require
larger numbers of homologous sequences.

Here, we introduce DeMaSk, a quantitative approach to predict
the impact of amino acid substitutions, which combines the versatil-
ity of alignment-derived methods with empirically grounded protein
fitness impact information as measured in DMS studies. Our main
contributions are as follows. First, we use DMS data to infer an
amino acid substitution matrix (AASM) that represents the average
impact across sites of substituting one amino acid by another. We
show that this AASM has notable asymmetries where the impact of
changing from one amino acid to another is markedly different from
the reverse; this asymmetry reflects the physicochemical properties
of amino acids and is in contrast to AASMs commonly used for se-
quence alignments (Dayhoff et al., 1978; Henikoff and Henikoff,
1992). Second, we train a linear model to predict the effect of an
amino acid substitution at a site by combining the appropriate value
from the DMS-derived AASM with two additional intuitive meas-
urements: (i) the amino acid conservation across homologs at the
site, which reflects the importance of the site to a protein’s function
(Capra and Singh, 2007), and (ii) the frequency of the variant amino
acid across homologs, which reflects whether the variant can be
accommodated at the site in other proteins performing similar func-
tions. Third, by testing on DMS datasets that are not used to fit the
model, we demonstrate that while each of these three component
measurements is by itself predictive of the impact of amino acid sub-
stitutions, the DeMaSk model combining all of them outperforms
any of them individually. We also show that replacing the DMS-
derived AASM feature within the DeMaSk model with a traditional,
alignment-based AASM leads to worse performance. Fourth, we
compare DeMaSk to several methods that use only homologous
sequences to predict the impact of mutations, and find that DeMaSk
performs as well as them; notably, we find that DeMaSk performs
as well or better than cutting-edge, elegant but time-consuming
methods based on undirected graphical models (Hopf et al., 2017)
and deep generative models (Riesselman et al., 2018) that require
numerous homologous protein sequences. We also demonstrate that
our method DeMaSk considerably outperfoms a non-linear stochas-
tic gradient boosting machine learning approach (Gray et al., 2018)
trained using DMS data along with numerous biological, structural
and physicochemical features. Finally, we provide a webserver and
open source software that takes as input any protein sequence and
outputs predicted impacts for all possible amino acid substitutions,
along with the individual contributions of the DMS-fit AASM, con-
servation values and variant frequencies to these predictions.
Overall, we establish that DeMaSk is an effective, interpretable and
easy to apply approach for predicting the quantative effect of mis-
sense mutations within protein sequences.

2 Materials and methods

Overview. DeMaSk uses data from mutagenesis experiments and
homologous sequence alignments to model the impact of amino acid
substitutions. In its first step, DeMaSk uses DMS variant fitness
data to derive a directional AASM D where each entry di;j represents
the average impact on a protein’s functionality when substituting
amino acid i with amino acid j. Second, for each sequence with
DMS data, homologs are obtained and per-position conservation

values and amino acid frequencies are computed. Third, a linear
model is fit to the measured DMS data using as independent varia-
bles the per-position conservation values, the frequencies of the vari-
ant amino acids across homologs, and the appropriate values from
the AASM. Finally, for a new query protein sequence, DeMaSk
obtains its homologs, computes per-position conservation and vari-
ant frequency values, and uses these values along with the AASM
and the fit coefficients to predict the functional impact of all possible
substitutions in a query protein. DeMaSk does not rely on any infor-
mation about a query protein aside from its sequence, requiring only
that homologous sequences are available via database search.

DMS data used to compute substitution matrix and fit the linear
model. Publicly available data are collected from the studies listed in
Supplementary Table S2 (Bloom, 2014; Brenan et al., 2016; Doud
and Bloom, 2016; Firnberg et al., 2014; Giacomelli et al., 2018;
Haddox et al., 2018; Heredia et al., 2018; Kelsic et al., 2016;
Klesmith et al., 2015; Mavor et al., 2016; Melnikov et al., 2014;
Roscoe et al., 2013; Roscoe and Bolon, 2014; Stiffler et al., 2015;
Thyagarajan and Bloom, 2014; Weile et al., 2017; Wrenbeck et al.,
2017). These include human, non-human eukaryote, bacteria and
virus proteins, and all 380 amino acid substitutions are represented
in each of these groups (Supplementary Table S3). Nonsense and
synonymous mutations are removed. Within each selected dataset,
the remaining per-variant values representing protein fitness are
rank-normalized so that higher ranks represent higher fitness. The
wild-type fitness quantile is then subtracted from all values, resulting
in a uniform distribution of scores per dataset with a range of 1 and
with 0 representing no fitness change. Usually, most of the values
are negative while a smaller number of variants are gain-of-fitness
and have positive values. Datasets are included only from DMS
studies that measured all or nearly all possible amino acid substitu-
tions in a protein so that rank-normalized scores have a consistent
interpretation across proteins. Furthermore, DMS datasets are
included only if the measure of fitness is related to the protein’s
function [e.g. excluding studies that measured the effect of muta-
tions on evasion of a host’s immune system (Ashenberg et al.,
2017)]. In cases where multiple datasets cover the same protein, the
datasets are merged by averaging normalized fitness scores for the
same variant. The normalized DMS value for a wt to var substitu-
tion in position p in sequence s is denoted by Dfitnesss;p;wt;var.

Computing the substitution matrix. We use the normalized DMS
data for each protein in Supplementary Table S2 to compute an
asymmetric AASM D by averaging fitness scores for each of the 380
possible amino acid substitutions. That is, for amino acids i and j,
we average the normalized values for mutation j at all positions
where the wild-type amino acid is i. This results in values di;j corre-
sponding to the average impact of substituting amino acid i with
amino acid j. Diagonal values are set to 0 since they represent no
substitution. Because the measured DMS scores are rank-normalized
per protein, the unit of fitness impact is the change in quantile across
the fitness levels of all possible single-residue variants of a protein.

Obtaining homologs and computing per-position conservation
scores. DeMaSk identifies homologs for a protein sequence (whether
the sequences with DMS data or a query sequence) using blastp with
the UniRef90 database (The UniProt Consortium, 2015) and requir-
ing an E-value threshold of 1e-5. Sequences are then filtered based
upon their alignments to the query sequence so as to remove those
that have < 20% identity or > 10% gaps in the alignments. After
filtering, the top 500 BLAST hits are retained. The combination of
blastp, UniRef90 and top 500 hits was chosen from among several
choices of search algorithm, database and number of sequences con-
sidered because this combination has one of the highest performan-
ces on the training set and has reasonable runtime (Supplementary
Fig. S1).

The residues aligned to each query sequence position are
extracted from the blastp output and a multiple sequence alignment
is built. For each position p in the alignment for sequence s, the
number of times each amino acid occurs is counted and a pseudo-
count of 10�4 is added to these counts. Then, using these counts, the
fraction fs;p;aa of times each amino acid aa occurs in each position p
in the alignment built for sequence s is computed, with gaps
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excluded so that the 20 fractions sum to 1. To determine how con-
served a site is, we compute the Shannon entropy of its distribution
of amino acids (Shenkin et al., 1991). Specifically, the Shannon en-
tropy of the residues in position p in the alignment for sequence s,
Hs;p, is computed as �

P
aa2fA;C;...;Yg fs;p;aa log 2fs;p;aa.

Model for predicting the impact of a mutation at a particular
site. For a sequence s, DeMaSk models the impact of a substitution
at a position p as a linear combination of (i) the Shannon entropy of
position p as computed across homologs of sequence s, (ii) the loga-
rithm of the frequency with which the variant amino acid occurs
across these homologs and (iii) the DMS-derived average impact for
the particular combination of wild-type and variant residue identity,
stored in the substitution matrix D computed above. That is, for a
substitution from residue wt to residue var at position p in sequence
s, we have

Dfitnesss;p;wt;var ¼ b0 þ b1Hs;p þ b2 log 2fs;p;var þ b3dwt;var: (1)

We use ordinary least squares regression to infer the coefficients
using the 109 378 normalized and merged variant fitness scores
from the datasets in Supplementary Table S2, along with the above
substitution matrix and the homologous sequences found for each
protein. Once fitted, the model can be applied to any variant in a
query protein by finding homologs, computing the relevant posi-
tion’s Shannon entropy and the frequency of the variant at that pos-
ition, and combining those with the appropriate substitution matrix
element. We note that it is possible to reformulate this regression so
as to fit the elements of the AASM while also considering per-
position Shannon entropy and variant frequency. However, in prac-
tice, we saw only small differences in performance between the two
approaches, and chose the approach which computes the AASM ele-
ments directly, as this matrix is more interpretable.

Other methods to predict the impact of substitution. We com-
pare the performance of DeMaSk to three broad types of methods.

First, we compare DeMaSk to its three component features. To
predict the impact of substituting residue wt with var in position p
in the alignment for sequence s, the first method uses only conserva-
tion and returns Hs;p. The second method uses only the relative fre-
quency of var at position p, and returns log2fs;p;var. The third
method returns the entry from the fitted directional AASM and
returns dwt;var.

Second, we compare DeMaSk to PROVEAN (Choi et al., 2012),
EVmutation (Hopf et al., 2017), DeepSequence (Riesselman et al.,
2018) and GEMME (Laine et al., 2019), as these methods are, like
DeMaSk, applicable to all protein sequences (e.g. not just human or
model organism sequences), require as input only a single protein se-
quence or a multiple sequence alignment, can in theory report im-
pact predictions for all possible substitutions within the input
sequence, and are designed to predict the effect of variants on mo-
lecular function (e.g. as opposed to binary classification of deleteri-
ousness); this is in contrast to most variant effect prediction
methods (Hu et al., 2019). We do not compare to SIFT (Kumar
et al., 2009), as it has been shown already to perform similarly to
PROVEAN (Choi et al., 2012). PROVEAN, EVmutation,
DeepSequence and GEMME are unsupervised, and rely only on se-
quence homologs. More specifically, PROVEAN is a simple ap-
proach based on scoring the change in sequence similarity scores to
homologs when introducing an amino acid mutation; its predictions
of mutation impact in well aligned regions are based just on the site
being mutated. EVmutation uses Markov random fields and expli-
citly incorporates parwise sequence dependencies across homologs.
EVmutation also returns impact prediction scores under the assump-
tion that all sites are independent of each other, and we refer to this
version of the method as EVmut-Indep. DeepSequence considers
higher-order dependencies via deep generative models. GEMME is a
fast phylogentic method that considers interdependencies between
all positions in a sequence. GEMME also returns impact prediction
scores ignoring epistasis between sites, and we refer to this version
of the method as GEMME-Indep.

Finally, we compare DeMaSk to Envision (Gray et al., 2018), a
stochastic gradient boosting machine learning method trained on
DMS data and a diverse set of amino acid sequence features.

Evaluation and comparison to other methods. In the primary
analysis reported here, we test all methods on DMS datasets for pro-
teins that are not used to derive DeMaSk’s directional amino acid
substitution matrix (Supplementary Table S4) (Araya et al., 2012;
Bandaru et al., 2017; Chan et al., 2017; Diss and Lehner, 2018;
Findlay et al., 2018; Kitzman et al., 2015; Matreyek et al., 2018;
McLaughlin et al., 2012; Melamed et al., 2013; Mishra et al., 2016;
Olson et al., 2014; Qi et al., 2014; Rockah-Shmuel et al., 2015;
Romero et al., 2015; Sarkisyan et al., 2016; Starita et al., 2013; Wu
et al., 2015; Zheng et al., 2018). We also perform leave-one-out
cross-validation, where proteins in the training set are individually
removed, the DeMaSk matrix and coefficients are fit from the
remaining data, and performance is reported on the left out protein.
For all testing, for each protein, we evaluate the predictions for each
method by computing the Spearman’s rank correlation coefficient,
or Spearman’s q, across measured variants between the predicted
impacts and the DMS values as reported by the authors. We note
that DeepSequence and EVmutation do not make predictions for all
positions, and when comparisons are made to those methods,
Spearman’s rank correlation coefficents for all methods are com-
puted across only those positions for which predictions are made by
DeepSequence and EVmutation.

Obtaining predictions for other published methods. Each protein
sequence was uploaded to the PROVEAN web server at http://pro
vean.jcvi.org/seq_submit.php along with the list of all possible sub-
stitutions to be computed. PROVEAN was run with the default
database, ‘NCBI nr, September 2012’. EVmutation predictions were
obtained by uploading each protein sequence to https://evcouplings.
org/job. The pipeline was run with default parameters, which
includes parallel runs for alignment bitscore cutoffs of 0.2, 0.3 and
0.4. The EVmutation scores for the run resulting in the highest num-
ber of effective sequences were chosen for each protein. Since the
EVmutation server accepted only query sequences up to 500 amino
acids in length, we truncated longer sequences to the first 500 amino
acids before submitting, with the exception of BRCA1 (residues
1–500 and 1364–1863 separately) Bgl3 (residues 2–501), Ube4b
(residues 674–1173), PSD-95 (residues 102–601), PA (residues 1–
500 and 217–716 to get predictions for residues 1–358 and 359–
716, respectively) and MurJ (residues 1–500 and 12–511 to get pre-
dictions for residues 1–256 and 257–511, respectively). The align-
ments computed for each chosen run were downloaded and used as
input to the DeepSequence standalone software (https://github.com/
debbiemarkslab/DeepSequence). DeepSequence was run on GPUs
using the default parameters provided for the examples included
with the software. GEMME predictions were obtained by uploading
protein sequence alignments to the web server at http://www.lcqb.
upmc.fr/GEMME/submit.html using default options. The uploaded
alignments were computed in the same way as for DeMaSk, but
with a maximum of 5000 homologs each. For Envision, we down-
loaded precomputed predictions from https://envision.gs.washing
ton.edu/shiny/envision_new/; this resource includes predictions for
human and six model organisms, and covers 10 of the proteins in
our test set, nine of which were not used in their training set.

3 Results

Inferred directional substitution matrix has notable asymmetries. We
first fit the DeMaSk matrix, as described above, using the DMS data for
18 proteins (Supplementary Table S2), and analyze its features. Each
entry i, j in the resulting matrix (Fig. 1a, Supplementary Table S1) corre-
sponds to the average impact, across contexts (i.e. when not considering
functional constraint as measured by homologous proteins), on a pro-
tein’s molecular function when substituting amino acid i with amino
acid j. While the diagonal entries are fixed to be zero, other entries are
negative and the DeMaSk matrix has clear asymmetries. For example,
changes to Proline are more detrimental on average than changes from
Proline; this is as expected since Proline imposes considerable constraint
on the protein backbone and mutations to it would destroy local protein
secondary structure (Morris et al., 1992). Conversely, changes from
Cysteine are more detrimental than changes to Cysteine; this is consist-
ent with the fact that substitutions from Cysteine may disrupt disulfide
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bonds (Betz, 1993). To quantify the asymmetries in the DeMaSk ma-
trix, for each i, jth entry, we subtract the j, ith entry (Fig. 1b). This
reveals that changes from hydrophobic amino acids to polar and
charged amino acids (bottom right of the matrix) tend to be more detri-
mental than the reverse (top left). Altogether, these asymmetries suggest
that directional matrices are more appropriate for predicting the impact
of amino acid substitutions than symmetric substitution matrices
derived from alignments (Dayhoff et al., 1978; Henikoff and Henikoff,
1992).

Notable differences between the directional DeMaSk substitu-
tion matrix and log-odds substitution matrices. We next directly
compare the DeMaSk matrix to the amino acid substitution matrices
used to align protein sequences. Substitution matrices such as
BLOSUM are derived from large sets of protein alignments and re-
flect the log-odds scores of the observed frequencies of pairs of
amino acids substituting for each other, as compared to the expected
frequencies (Altschul, 1991; Henikoff and Henikoff, 1992). The
Spearman’s rank correlation coefficients between the DeMaSk ma-
trix and BLOSUM substitution matrices varies, with higher correla-
tions for the BLOSUM matrices numbered 50 or higher (Spearman’s
rho ¼ 0.638–0.670) than 45 or lower (Spearman’s rho ¼ 0.512–
0.626, Fig. 1c), as might be expected because higher-numbered
BLOSUM matrices are computed from more similar sequences and
are less influenced by long evolutionary distances. The correlations
between the DeMaSk matrix and the BLOSUM matrices are all
lower than those between any pair of BLOSUM matrices
(Supplementary Fig. S2). We next consider correlations between the
DeMaSk matrix and the BLOSUM matrices at the amino acid level.
That is, for each amino acid, we compare the values for substitution
to other amino acids between DeMaSk and the BLOSUM substitu-
tion matrices (Fig. 1d). For BLOSUM62, Spearman’s rank

correlation coefficients vary from 0.526 to 0.947, with generally
higher values for hydrophobic amino acids and somewhat lower val-
ues for some of the charged and polar residues (e.g. Glutamic Acid,
Histidine, Glutamine and Serine). When comparing the correlations
between the DeMaSk estimated matrix and the BLOSUM45,
BLOSUM62 and BLOSUM80 matrices, we find that the
BLOSUM45 matrix has the lowest Spearman’s rank correlation
coefficients for more than half the amino acids. Further, just as in
the whole matrix comparisons, in general, the DeMaSk estimated
impacts correlate better for higher BLOSUM matrices than lower
ones. Overall, our findings suggest that alignment-based substitution
matrices contain biases introduced by long evolutionary timescales
that are helpful for alignment-based applications but are not reflect-
ive of the immediate consequences of a given substitution.

DeMaSk predictions on DMS datasets as compared to compo-
nent features. We use the DMS-derived substitution matrix, along
with per-position conservation values and the frequencies of the
variant amino acids and train DeMaSk as described above. We test
how well DeMaSk predicts the impact of substitutions by evaluating
it on data from a set of deep mutational scanning experiments for
proteins that are not included in the DMS data used to train
DeMaSk. As a first step, we compare DeMaSk to its three individual
components which predict variant fitness values as: (1) the corre-
sponding matrix element from the DMS-derived directional AASM;
(2) the conservation of the variant’s position as measure by Shannon
entropy using the multiple sequence alignment of that protein and
its homologs; and (3) the frequency of the variant in that position
across the aligned homologs.

The Spearman’s rank correlation coefficients of DeMaSk’s pre-
dictions on the set of 22 test proteins vary from 0.31 to 0.67
(Fig. 2a). For 20 proteins, DeMaSk’s predictions have higher
Spearman’s rank correlation coefficients with the measured fitness
values than any of its component features. For the remaining two
proteins, conservation performs slightly better than DeMaSk.
Across the proteins, DeMaSk’s predicted impacts have significantly
higher correlations with the DMS data than those that arise when
using only Shannon entropy, only the variant frequency, or only the
directional AASM (Fig. 2b, left, P-values of 3.3e-6, 4.8e-7 and
4.8e-7, respectively, by the Wilcoxon signed-rank test). The median
Spearman’s rank correlation coefficient for DeMaSk is 25.0%
higher than the median correlation of conservation, which is the
best of the component features. When considering performance on
the set of 18 training proteins using leave-one-out cross-validation
(Fig. 2b, right), we similarly find that DeMaSk outperforms its com-
ponent features. Moreover, for all methods, the leave-one-out cross-
validation performance is remarkably consistent with performance
on the test set.

We next analyze the relative contribution of the three features to
the DeMaSk linear model. We begin by noting that the learned b
coefficients cannot be directly compared as the three feature values
have very different ranges. Instead, for each experimentally meas-
ured substitution in the test set, we compute the contribution of
each feature to the impact predicted by the DeMaSk model as the
product of the feature value and the corresponding b coefficient in
the linear model. We find that the contributions of the sequence en-
tropy and DMS-fit matrix terms vary much more than the variant
frequency term and their absolute values are larger as well
(Supplementary Fig. S3). This suggests that the sequence entropy
and DMS-fit matrix terms contribute more to differentiating
amongst the predicted impacts, and even though the directional
AASM feature correlates less strongly to observed fitness impacts
than does variant frequency (Fig. 2b), it provides more unique infor-
mation when all three features are used.

To test whether the DMS-derived AASM is effective for dif-
ferent categories of organisms, we group the training proteins
into those from human, non-human eukaryotes, prokaryotes and
viruses, and then compute the DMS matrix and train the
DeMaSk model separately for each of these groups. We then
group test proteins likewise and test each group using all of the
trained models for each organism group. The organism-specific
DMS-derived matrices have high correlation with each other and

(a) (b)

(c) (d)

Fig. 1. The DeMaSk mutational impact matrix. (a) The DeMaSk matrix fit from the

DMS datasets in Supplementary Table S2. Entry i, j represents the average impact,

across positions, on a protein’s functionality when amino acid i is substituted with

amino acid j. Substitutions resulting, on average, in higher impacts are shown in

darker colors. (b) To show the asymmetry per amino acid pair for the DeMaSk ma-

trix, the matrix in (a) with its transpose subtracted from it element-wise is shown.

Entry i, j is blue when the substitution from i to j is on average more detrimental

than the substitution from j to i, and red when the substitution from j to i is on aver-

age more detrimental than the substitution from i to j. (c) Spearman’s rank correl-

ation coefficient between the 400 elements of the DeMaSk matrix and the elements

of each BLOSUM matrix. (d) The Spearman’s rank correlation coefficients between

each row of the DeMaSk matrix and the corresponding row of BLOSUM45,

BLOSUM62 and BLOSUM80
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the learned models are no less capable of predicting on proteins
of different organism groups than those of the same group, sug-
gesting that DeMaSk effectively models protein properties that
are shared even between organisms that diverged billions of years
ago (Supplementary Fig. S4).

We then consider what happens to the performance of DeMaSk
if BLOSUM62 is used in place of the DMS-based matrix when fit-
ting our linear model (i.e. BLOSUM62 is used in place of dwt;var in
Equation 1). We find that for 20 of the 22 proteins, the DeMaSk
model fit with the BLOSUM62 matrix results in lower correlations
than when using the DMS-fit matrix (Fig. 2c). Using BLOSUM30 or
BLOSUM90 instead of BLOSUM 62 results in even lower correla-
tions across the proteins (Supplementary Fig. S5). Furthermore, add-
ing BLOSUM62 (or BLOSUM30 or BLOSUM90) as a fourth
feature to the DeMaSk model has minimal effect on performance
(Supplementary Fig. S5). Altogether, these comparisons suggest that

DeMaSk’s ability to predict variant impact comes from both se-
quence homologs and DMS data, and that matrices derived from
DMS data are better suited than log-odds derived substitution matri-
ces for this task.

DeMaSk has state-of-the-art performance in predicting substitu-
tion impact. We next compare DeMaSk to previous methods for
predicting the impact of amino acid substitutions that use only align-
ment information. We first consider PROVEAN (Choi et al., 2012),
along with EVmut-Indep and GEMME-Indep, the versions of
EVmutation (Hopf et al., 2017) and GEMME (Laine et al., 2019),
respectively, that do not consider epistasis between sites; all three of
these methods, like DeMaSk, consider each site independently.
Across proteins, DeMaSk’s predictions tend to have higher
Spearman’s rank correlations with the measured DMS values than
the other three methods (Fig. 3a, top). Notably, DeMaSk consider-
ably outperforms PROVEAN and EVmut-Indep.

(a)

(b) (c)

Fig. 2. Performance on DMS fitness measurements. (a) Spearman’s rank correlation coefficients between measured fitness impact and prediction methods for test proteins

grouped by organism of origin. DeMaSk performance shown in filled circles, with dot sizes indicating the number of single-residue variants measured in the original DMS

study, and the performance of the three component features alone—conservation as measured by sequence entropy, variant frequency and the directional DMS-derived

AASM—shown using squares, triangles and diamonds, respectively. (b) Boxplots of the per-protein Spearman’s rank correlation coefficients between measured DMS-measured

fitness impact and predictions for test proteins (left) and training proteins using leave-one-out (LOO) cross-validation (right). (c) For each protein in the test set, the

Spearman’s rank correlation coefficients between DeMaSk predictions and substitution impact scores is shown when using the typical DMS-fitted DeMaSk matrix (y-axis) ver-

sus when using the BLOSUM62 (x-axis) in its place within Equation 1. For nearly all proteins, higher performance is obtained using the DeMaSk matrix
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We next compare DeMaSk to EVmutation (Hopf et al.,
2017), DeepSequence (Riesselman et al., 2018) and GEMME
(Laine et al., 2019), methods that consider relationships between
sites. Despite considering just a single site at a time, DeMaSk
outperforms EVmutation and DeepSequence, which are sophisti-
cated approaches based on Markov random fields and deep
latent-variable models, respectively, and performs almost as well
as GEMME, a phylogenetic approach requiring numerous hom-
ologous sequences for optimal performance (Fig. 3a, bottom).
The Spearman’s rank correlations between predictions and DMS
scores are given for all proteins and all methods in
Supplementary Table S5, and show that the accuracies of all
methods vary widely across the proteins.

DeepSequence’s predictions have correlations near zero on two
proteins; while it has been noted previously that DeepSequence has
relatively poor performance on viral proteins (Riesselman et al.,
2018), perhaps due to the lack of sequence diversity, these two pro-
teins are bacterial and human (Supplementary Table S5). There are
three proteins for which fewer than 500 homologs were retrieved by
DeMaSk. While DeMaSk performs worse on these proteins as com-
pared to its average performance on the other proteins, it neverthe-
less outperforms the other tested methods on each of the three
(Supplementary Fig. S6). We note that PROVEAN, EVmutation,
EVmut-Indep, DeepSequence, GEMMA and GEMMA-Indep use
only protein sequence alignments, whereas DeMaSk also utilizes
DMS data, which clearly gives it an advantage. On the other hand,
DeMaSk is based on a simple linear model that is can easily be

decomposed to extract the contributions of individual components,
and performs similarily or better than these more complex methods.

We next consider how well the methods predict the impact of a
mutation within each protein position; that is, for each position, we
compute Spearman’s rank correlation coefficients between the
DMS-measured impact of substitutions at that position with the pre-
dicted impacts. To avoid trivial correlations of -1 and 1, we only
consider positions with at least three substitutions with measured
and predicted impacts. We find that DeMaSk tends to better predict
the ordering of variant fitness effects per position than all of the
other methods (Fig. 3b), with Spearman’s rank correlation coeffi-
cients significantly higher for DeMaSk as compared to GEMME-
Indep, EVmut-Indep, PROVEAN, GEMME, DeepSequence and
EVmutation (P-values of 2.7e-18, 3.2e-37, 2.0e-26, 2.9e-5, 8.6e-22
and 4.5e-14, respectively, Wilcoxon signed-rank test). We note that
the relative ordering of DeMaSk’s predicted impacts within a pos-
ition do not depend on conservation, and thus are determined using
only variant frequency across homologs and the AASM derived
from DMS data on the training set.

Finally, we compare the performance of DeMaSk to Envision
(Gray et al., 2018), an earlier method that also leverages DMS data.
DeMaSk has better performance for eight of the nine proteins in the
test set for which Envision provides pre-computed impact scores
(Fig. 3c, Supplementary Table S6). The superior performance of
DeMaSk as compared to Envision is notable, as the latter is a gradi-
ent boosting machine learning method trained on DMS data and a
diverse set of sequence features, whereas DeMaSk is based on a

(a)

(b) (c)

Fig. 3. Comparison to existing prediction methods. (a) Boxplots of per-protein Spearman’s rank correlation coefficients between each method’s predictions and DMS-measured

fitness scores. Methods are grouped by whether they use alignment positions independently (top) or consider epistasis (bottom). (b) Letter-value (or boxen) plots of per-pos-

ition Spearman’s rank correlation coefficients between each method’s predictions and measured fitness scores. In letter-value plots, the widest boxes show half the data (from

the 25th to 75th percentiles), while each successively narrower box shows half the remaining data. For (a) and (b), for all methods, only the positions for which EVmutation

and DeepSequence provided predictions are used to compute correlations. (c) Scatter plot comparing the accuracy of DeMaSk to that of Envision. Correlations for Envision

are computed only for the nine proteins in the test set for which precomputed scores were made available by the authors and which were not used to train the Envision model
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linear model that considers only conservation and amino acid
substitutions.

DeMaSk web server and software. DeMaSk predictions can be
obtained for any user-provided protein sequence at https://demask.
princeton.edu. The output file contains fitness impact predictions
for every possible residue substitution, as well as the entropy, vari-
ant frequency, and DMS-fit matrix feature values used to compute
each score. An interactive map of the predictions is shown on the
results page to vizualize patterns across the protein sequence, and
maps for each of the component features can be overlaid to compare
their contributions to the predictions. DeMaSk software is also pro-
vided open source at https://github.com/Singh-Lab/DeMaSk. It com-
putes predictions starting from a query sequence or from an existing
multiple sequence alignment, and also allows the user to train the
model on new data.

4 Discussion

We have developed an interpretable method, DeMaSk, to predict
the impact of amino acid substitutions based on protein alignments
and DMS data, generating a directional substitution matrix in the
process. We have demonstrated that our method DeMaSk performs
as well or better than substantially more complex methods for this
task. Importantly, DeMaSk needs as input only a single protein se-
quence, and can provide predictions for every possible single residue
substitution within it. Because DeMaSk treats alignment positions
independently of each other, it can provide predictions even when
relatively few homologs are found. This also allows for relatively
short runtimes, with DeMaSk generating predictions for query
sequences in the test set in 8 to 11.2 minutes each on a 1.6 GHz
dual-core laptop. Almost all of this runtime is for finding homologs
using blastp. Starting with aligned homologs, DeMaSk makes pre-
dictions on the test proteins in one or two seconds each.

Comparisons of DeMaSk to its component features reveals that
sequence conservation by itself is a surprisingly powerful predictor
of the impact of amino acid substitutions (Fig. 2), and indeed evolu-
tionary conservation information has been found to be among the
most useful features in more complex supervised prediction
approaches (Gray et al., 2018). The strong predictive ability of con-
servation suggests that the impact of different substitutions within a
single protein position are highly correlated with each other. Thus,
supervised machine learning methods, in their cross-validation test-
ing, must not include substitutions from the same protein position in
both training and testing sets, as this will lead to an overestimation
of performance. More generally, we note that cross-validation test-
ing of impact prediction approaches should put all variants for a sin-
gle proteins in a fold together, as often neighboring amino acid
positions are utilized to compute per-position features.

While DeMaSk and related methods clearly have predictive
power in determining the effects of amino acid substitutions, they
have important limitations as well. First, mutations may affect func-
tion via changes to a protein’s stability, interactions or other proper-
ties, and DeMaSk is not able to differentiate amongst these
possibilities. Follow up computational structural studies may be
helpful in shedding light on whether protein stability or interactions
are affected. Second, DeMaSk shows a range of performance across
proteins, and while factors such as alignment quality and the number
of homologs used play a role in performance (Supplementary Fig.
S6), it is not entirely clear when predictions are most accurate. While
DeMaSk is fully automated, we believe that better performance may
be possible in practice by curating alignments so that there is suffi-
cient but not extreme variation across the homologs. Finally, while
DeMaSk has state-of-the-art performance in predicting the impact of
amino acid substitutions, for all proteins there is a clear performance
gap when comparing DeMaSk’s predictions with experimentally
measured impacts; new computational methods based upon DMS-
derived data are likely necessary to achieve better performance.

A fruitful area for future work may be to combine rich probabil-
istic models of protein sequences (e.g. such as those that underlie
EVmutation and DeepSequence) with DMS data. Indeed, these
probabilistic models can be thought of as an elegant extension of

methods that consider each amino acid position independently of
the others, and measures that consider variation in the higher-order
correlations between positions are likely to be beneficial within
DeMaSk’s model. Alternatively, the directional AASM produced by
DeMaSk may be useful as features within supervised machine learn-
ing methods to predict the impact of variants.

In the implementation of DeMaSk described here, a large
amount of information from DMS experiments is condensed into
one substitution matrix. Prior attempts to build such experimentally
derived matrices (Yampolsky and Stoltzfus, 2005) were limited by
the order of magnitude smaller number of measurements on the im-
pact of amino acid substitutions. While our DMS-derived matrix is
useful for gaining general insight into protein alterations and pre-
dicting substitution scores without requiring prior knowledge of the
query proteins, this framework can also be utilized for more specific
tasks. For example, if one wishes to obtain a transmembrane
domain-specific substitution matrix for interpretation and predic-
tion, the directional substitution matrix can be computed in the
same way using DMS data filtered to transmembrane residues, pro-
vided sufficient data exist. Residue frequencies also vary according
to depth within a protein’s core (i.e. distance from a protein’s sur-
face), suggesting benefit from using an array of depth-specific direc-
tional substitution matrices (Farheen et al., 2017; Yampolsky and
Stoltzfus, 2005). Such specialized implementations will become
more feasible as DMS datasets are generated for more proteins.

The directional substitution matrix derived from DMS data has
potential uses beyond variant impact prediction. While purely
alignment-based matrices such as BLOSUM are a logical choice for
evolutionary investigations including detection of homology—as
they reflect the frequency with which amino acids are observed in
alignments—they are also often used to characterize functionally
relevant chemical properties of proteins (Andreatta et al., 2015; Gao
et al., 2010; Martı́nez-Jiménez et al., 2017). We believe that such
applications are better served by directional matrices, derived from
experimental data, such as the one described here.

To conclude, we expect both DeMaSk and its underlying direc-
tional AASM to find wide usage. Toward this end, we have made
DeMaSk available open source at https://github.com/Singh-Lab/
DeMaSk and via a webform at https://demask.princeton.edu.
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