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Abstract

Precise monitoring of respiratory rate in premature newborn infants is essential to initiating 

medical interventions as required. Wired technologies can be invasive and obtrusive to the 

patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn 

infants, where respiratory cessation is predicted using signals that are collected wirelessly 

from a non-invasive wearable Bellypatch put on the infant’s body. We propose a five-stage 

design pipeline involving data collection and labeling, feature scaling, deep learning model 

selection with hyperparameter tuning, model training and validation, and model testing and 

deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture 

with one convolution layer, one pooling layer, and three fully-connected layers, achieving 

97.15% classification accuracy. To address the energy limitations of wearable processing, several 

quantization techniques are explored, and their performance and energy consumption are analyzed 

for the respiratory classification task. Results demonstrate a reduction of energy footprints and 

model storage overhead with a considerable degradation of the classification accuracy, meaning 

that quantization and other model compression techniques are not the best solution for respiratory 

classification problem on wearable devices. To improve accuracy while reducing the energy 

consumption, we propose a novel spiking neural network (SNN)-based respiratory classification 

solution, which can be implemented on event-driven neuromorphic hardware platforms. To this 

end, we propose an approach to convert the analog operations of our baseline trained 1DCNN 

to their spiking equivalent. We perform a design-space exploration using the parameters of the 

converted SNN to generate inference solutions having different accuracy and energy footprints. 

We select a solution that achieves an accuracy of 93.33% with 18× lower energy compared to the 

baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the 

quantized model with a 4× lower energy.
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1. Introduction

A premature newborn infant is one who is born more than three weeks before the estimated 

due date. Common health problems of these infants include Apnea of Prematurity (AOP), 

which is a pause in breathing for 15 to 20 s or more [1], and Neonatal Respiratory Distress 

Syndrome (NRDS), which is shallow breathing and a sharp pulling in of the chest below 

and between the ribs with each breath [2]. Precise respiratory monitoring is often necessary 

to detect AOP and NRDS in premature newborn infants and initiate medical interventions 

as required [3]. Wired monitoring techniques are invasive and can be obtrusive to the 

patient. Therefore, non-invasive respiratory monitoring techniques are recommended by 

pediatricians to increase the comfort of infants and facilitate continuous home monitoring 

[4].

We have studied the use of wearable technologies in the respiratory monitoring of infants. 

To this end, we use the Bellypatch (see Figure 1), a wearable smart garment that utilizes a 

knitted fabric antenna and passively reflects wireless signals without requiring a battery or 

wired connection [5–7]. The Bellypatch fabric stretches and moves as the infant breathes, 

contracts muscles, and moves about in space; the physical properties of the radio frequency 

(RF) energy reflected by the antenna change with these movements. These perturbations in 

RF-reflected properties enable detection and estimation of the infant’s respiration rate [8]. 

There are other possibilities of collecting heart rate [9], movement of the extremities [10], 

and detection of diaper moisture [11] using RF for medical practice.

The Bellypatch operates in the 900 MHz Industrial, Scientific, and Medical (ISM) frequency 

band using Radio Frequency Identification (RFID) interrogation. An RFID interrogator 

emits an interrogation signal multiple times per second (often 30–100 interrogations per 

second). In typical RFID technology deployments, only a single interrogation response is 

needed for inventory purposes; however, many interrogations are sent to overcome collisions 

among the responding RFID tags and other signal interference or loss. We exploit this 

redundant interrogation to sample the state of the antenna each time it is successfully 

interrogated. Specifically, we observe changes in the received signal strength indicator 

(RSSI), phase angle, and successful interrogation rate to estimate respiratory properties of 

the wearer’s state as well as other biosignals. The use of passive RFID enables a wireless 

and unobtrusive wearable device that requires no batteries to operate; the interrogation 

signal itself is sufficient to power the worn RFID tag for each interrogation. However, 

path loss, multipath fading, and collision mitigation among the tags in the field require 

signal denoising and interpolation of the received signal as well as intelligent algorithms for 

signal processing and estimation. Because these biomedical estimates require real-time or 

near-real-time processing and may take place on low-power embedded or portable systems, 

it is desirable to utilize techniques that place minimal constraints on power consumption, 

online training, and processing latency.
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To this end, we propose a deep-learning-enabled respiratory classification approach. At 

the core of this approach is a five stage pipeline involving data collection and labeling, 

feature selection, deep learning model selection with hyperparameter optimization, model 

training and validation, and model testing and deployment. We use a Laerdal SimBaby 

programmable infant mannequin (see Figure 1) to collect respiratory data using the sensors 

attached on the Bellypatch. We use a 1-D convolutional neural network (1DCNN) for 

classification of the features extracted from the SimBaby sensor data. The 1DCNN model 

consists of one convolution layer, one polling layer, and three fully connected layers, 

achieving 97.15% classification accuracy (see Section 6.1). This is higher than state-of-the-

art accuracy obtained using machine learning techniques such as Support Vector Machine 

(SVM), Logistic Regression (LR), and Random Forest (RF), all of which are proposed for 

the respiratory classification of infants. Hyperparameters of this 1DCNN model are selected 

using a Grid Search method, which is discussed in Section 3.4, and the model parameters 

are trained using the Backpropagation Algorithm [12]. Our model is trained using the 

respiratory data on an external work station. We also test the model in the workstation. 

Since we intend to deploy the trained network on a wearable device, we conduct energy 

efficiency explorations to find which approach provides the least power consumption and 

maximum accuracy. We show that the energy consumption of our baseline 1DCNN model 

is considerably higher, which makes it difficult to implement the same on the Bellypatch 

due to its limited power availability. Our goal is to minimize the energy consumption, 

thus allowing more processing within a given power budget. Therefore, we propose several 

quantization approaches involving limiting the bit-precision of the model parameters. We 

show that in order to achieve a significant reduction in energy, the model accuracy can 

be considerably lower. Therefore, model quantization may not be the best solution to 

implement respiratory classification on the Bellypatch.

Finally, we propose a novel respiratory classification solution enabled by spiking neural 

network (SNN) [13], which can be implemented on event-driven neuromorphic hardware 

such as TrueNorth [14], Loihi [15], and DYNAPs [16]. We perform design-space exploration 

using SNN parameters, obtaining SNN solutions with different accuracy and energy. We 

select a solution that leads to 93.33% accuracy with 18× lower energy than the baseline 

1DCNN model. This SNN-based solution has similar accuracy as the best performing 

quantized CNN model with 4× lower energy. This is particularly useful for wearable devices 

that are used for bio signals monitoring using less energy such as the Human++ [17].

Overall, the SNN-based approach introduces two additional stages in our design pipeline: 

model conversion and SNN parameter tuning, making the overall approach a seven-stage 

pipeline. Using this seven stage design pipeline, we show that the accuracy is significantly 

higher than all prior solutions, with considerably lower energy, making this solution 

extremely relevant for the battery-less Bellypatch.

The remainder of this paper is organized as follows. Related works on respiratory 

classification are discussed in Section 2. The five-stage design pipeline is described in 

Section 3. Model quantization techniques are introduced in Section 4. The SNN approach to 

respiratory classification is formulated in Section 5. The proposed approach is evaluated in 

Section 6 and the paper is concluded in Section 7.
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2. Related Work

Recently, machine learning-based respiratory classification techniques have shown 

significant promise as enablers for continuous respiratory monitoring of newborn infants. 

To this end, a Support Vector Machine (SVM)-based classifier is proposed in [18], achieving 

82% classification accuracy. A Logistic Regression-based classifier is proposed in [19], 

achieving classification accuracy of 87.4%. An Ensemble Learning with Kalman filtering is 

proposed in [19] achieving 91.8% classification accuracy. All these techniques are proposed 

for respiratory classification using pulseoximeter data collected from infants, making these 

approaches the relevant state-of-the-art for our work. In Section 6, we compare our approach 

to these state-of-the-art approaches and show that the proposed approach is considerably 

better in terms of both classification accuracy and energy. Thermal imaging has also been 

proposed recently for the respiratory classification of infants [20]. The authors reported a 

precision and recall score of 0.92. We achieved a score of 0.98. Respiratory classification 

using acoustic sensors is proposed in [21]. An accuracy of 95.7% is reported. We achieved 

an accuracy of 97.15%.

Beyond respiratory classification, deep-learning-enabled techniques have been used 

extensively for health informatics [22]. For instance, sleep apnea classification is proposed 

using deep convolutional neural networks (CNNs) and long short-term memory (LSTM) 

in [23], achieving an accuracy of 77.2%. A deep learning approach using InceptionV3 

CNN model is proposed in [24] to detect Alzheimer’s disease using brain images. The 

authors reported an area-under-curve (AUC) score of 0.98. CNN models are used in [25] to 

detect metastatic breast cancer in women. The authors reported an AUC score of 0.994. A 

CNN-based Arrhythmia classification is also proposed in [26], where the authors reported 

significant improvement in classification accuracy over state-of-the-art.

Finally, many recent SNN-based techniques have shown comparable and in some cases 

higher accuracy than their deep learning counterparts with significantly lower energy. An 

unsupervised SNN-based heartrate estimation is proposed in [27]. The authors reported a 

1.2% mean average percent error (MAPE) with 35× reduction in energy. A spiking CNN 

architecture is proposed in [28] to classify heart-beats in human. The authors reported 90% 

reduction in energy with only 1% lower accuracy than a conventional CNN. SNN-based 

epileptic seizure detection is proposed in [29], where the authors reported an accuracy of 

97.6% with a considerable reduction in energy.

To the best of our knowledge, this is the first work that uses SNN for respiratory 

classification in infants and shows that SNNs can achieve high accuracy (93.33% in our 

evaluation) with a considerable reduction in energy (18× lower energy compared to a 

baseline 1DCNN model).

3. Design Pipeline

Figure 2 shows a high-level overview of the proposed respiratory classification approach 

using deep learning techniques. The design pipeline comprises five stages—(1) data 

collection, (2) feature selection, (3) deep learning model selection, (4) model training and 
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validation, and (5) model testing and deployment. These stages are clearly indicated in the 

figure. Once a trained model is obtained using this approach, the model is used for the 

respiratory classification of streaming pulseoximeter data collected from the sensors on the 

Bellypatch. This is shown at the bottom-left corner of Figure 2.

In the following section, we describe the design pipeline stages.

3.1. Data Collection and Labeling

3.1.1. Data Collection and Feature Selection—In this work, we use a Laerdal 

SimBaby programmable infant mannequin. The mannequin was programmed to breathe 

at a rate of 31 breaths per minute for variable time intervals, then to stop breathing for 

30 s, 45 s, and 60 s, alternating between these states for a period of one hour. An RFID 

investigator (Impinj Speedway R420) was used to poll the Bellypatch wearable RFID tag 

and the antenna with a 900 MHz band RFID signal coming from the SimBaby. The RFID 

interrogator was also used to measure properties of the backscattered signal reflected from 

the RFID tag. The interrogator was positioned 1 foot from the mannequin, oriented above, 

astride, and at the feet. Interrogations were performed with a frequency of 90 Hz. RFID 

properties considered for model features include the Received Signal Strength Indicator 

(RSSI), interrogation frequency, and timestamp.

Each of these properties is affected in-band by the frequency of the original signal emitted 

by the interrogator. Under United States Federal Communications Commission (FCC) 

regulations, RFID interrogations must iterate (or channel hop) over 50 frequency channels 

in the 900 MHz band. In addition to perturbing the raw measurement observations at the 

interrogator, channel hopping poses challenges in computing higher order features from 

changes in the observed phase, because these features depend on observing changes in 

successive values of the phase under the assumption that they were observed from the same 

interrogation frequency. As a result, the observed Doppler shift is used to identify fine 

movements of the RFID tag, either in space or because of a strain force applied to the 

surrounding knit antenna.

The received signal strength from an interrogation is influenced by several factors as defined 

by the Radar Cross Section (RCS) formula in Equation (1) [30]. Specifically, the RCS 

relates changes in received signal power (PRx) to the interrogation power (PTx), the reader 

and tag gains (Greader and Gtag, respectively), the return loss (R), and the interrogation 

wavelength λ [19].

PRx = PTx ⋅ Greader
2 ⋅ Gtag

2 ⋅ R ⋅ λ
4 ⋅ π ⋅ r

4
(1)

Some of these terms can be controlled by the interrogator configuration: for example, the 

interrogation transmitter power and antenna reader gain at the interrogator; however, the 

interrogation frequency changes due to channel hopping, and the receiving antenna gain 

(Gtag) changes as the wearer stretches the antenna or moves about in space. Thus, the 

observed RSSI alone confounds several artifacts about the state of the transmission along 
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with the state of the wearer. As a result, a higher order feature ζ is computed from the RSSI 

measure by accounting for the interrogation frequency.

We manipulate the RCS equation to arrange those terms related to wearer state on one side 

and set them as equal to those terms related to the interrogator configuration, as shown 

in Equation (2). Thus, we observe that the changes in the gain of the tag Gtag (resulting 

from movement or a strain force on the antenna), the distance r between the interrogator 

and the tag (resulting from movement), and return loss R (resulting from movement, strain 

force, fading, or multipath interference) are proportional to the interrogation wavelength 

lambda and observed RSSI measure PRx, along with the interrogation power PTx and the 

reader gain Greader, which are held constant at the interrogator and interrogating antenna [5]. 

Specifically, ζ is defined as the ratio of the interrogation radius to the product of the antenna 

effective aperture and return loss, as shown in Equation (2), which represents the observed 

terms after fixing the transmit power, interrogator antenna gain, and interrogation frequency, 

given the observed RSSI of the reflected signal:

ζ = Gtag
−2 ⋅ r4 ⋅ R−1 = PTx ⋅ Greader

2 ⋅ PRx
−1 ⋅ λ

4π
4
, (2)

We remove a residual term δ = − 10log10
f4

f − 0.5 * 106MHz 4 ≈ − 0.00941 to compensate for 

a sawtooth artifact resulting from quantization of the observed RSSI as the interrogation 

frequency changes among 50 discrete channels per FCC regulations in the United States.

In summary, we chose the following features for consideration during wireless respiratory 

state classification.

• Feature 1: Reflected signal strength as measured at the interrogator, ζ 
(PRx–deoscillated)

• Feature 2: The difference between the current observed RSSI from the minimum 

RSSI value observed in the recent time window (RSSI_from_min)

We normalized RFID signal strength (PRx–deoscillated) data by frequency to utilize the signal 

for respiratory analysis. The resulting time-series data were filtered and signal-processed to 

determine the mean power spectral density, derived from the amplitude of the oscillatory 

behavior observed in the signal during short time windows.

Figure 3 illustrates the two features (PRx–deoscillated and RSSI_from_min) over a time 

window of 1.2 s.

3.1.2. Data Labeling—In case of supervised learning of human-activity recognition 

from sensor data, it is necessary to appropriately label the output. The dataset contained 

approximately 1685 samples per minute, obtained for 60 min, resulting in approximately 

one sample generated every 0.03 s. This indicated that the RFID interrogation frequency was 

approximately 28 Hz per RFID tag. For each sample, we have two features—PRx–deoscillated 

and RSSI_from_min.

Paul et al. Page 6

Electronics (Basel). Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The observations were broken into time windows of 1 s with no overlap. Hence, each 

time window contained approximately 28 samples, with two sets of observations from the 

2 features. We manually labeled the data collected from the two features as ‘1’ when the 

SimBaby is in breathing state and ‘0’ when it is in a non-breathing state. Over a period of 

one hour, we collect and label the dataset to form train and test samples representing binary 

respiratory state (1: Breathing, 0: Non-Breathing state). Figure 4 shows the respiratory state 

corresponding to the features of Figure 3 for 1.2 s.

Since there are only two features and two output classes, the problem we aim to solve is a 

bivariate time series binary classification one.

3.2. Feature Scaling

From the time series features extracted from each time window, we apply feature 

engineering to make the input vectors suitable for the classifier. For multivariate data, it 

is necessary to transform features with different scales to have uniform distribution, to 

ensure optimal performance of the classifiers. We first cleaned our feature set by filtering 

the missing values (NaN). The data with the features and the labels were loaded from two 

csv files and then we split the dataset 3:1 to form the training set and the testing set. After 

splitting the dataset, we scale the features before we fit it into our classifier, which is a 

one-dimensional convolutional neural network (1DCNN).

The two features in our dataset were scaled to a standard range and the distribution of the 

values was rescaled, so the mean was 0 and the standard deviation was 1. The method 

involved determining the distribution of each feature and subtracting the mean from each 

feature. Then we divide the values (after the mean has already been subtracted) of each 

feature by its standard deviation.

The standard score (Z) of a sample is given by Equation (3).

Z = x − μ
σ , (3)

where x is the sample value and μ and σ are the mean and standard deviation of all the 

samples, respectively. Feature standardization transforms the raw values into the standard 

scale that helps the model to extract salient signal information from the observations. 

After rescaling the variables, we reshape the data according to dimension expected by the 

convolution layer of the 1DCNN model.

3.3. Deep Learning Model Selection

A convolutional neural network (CNN) is a class of deep learning that uses a linear 

operation called convolution in at least one of its layers. Equation (4) represents a 

convolution operation, where x is the input and w represents the kernel, which stores 

parameters for the model. The output s is called the feature map of the convolution layer.
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s(t) = ∫ x(a)w(t − a)da (4)

In a CNN, the first layer is a convolution layer that accepts a tensor as an input with 

dimensions based on the size of the data [31]. The second layer, or the first hidden layer, 

is formed by applying a kernel or filter that is a smaller matrix of weights over a receptive 

field, which is a small subspace of the inputs. Kernels apply an inner product on the 

receptive field, effectively compressing the size of the input space [12]. As the kernel strides 

across the input space, the first hidden layer is computed based on the weights of the filter. 

As a result, the first hidden layer is a feature map formed from the kernel applied on the 

input space. While the dimension of the kernel may be much smaller in size compared 

to the initial inputs of the convolution layer, the kernel must have the same depth of the 

input space. The inputs and convolution layers are often followed by rounds of activation, 

normalization, and pooling layers [12]. The precise number and combination of these layers 

are specific to the problem at hand.

For the proposed respiratory classification problem, our CNN model consists of one 

convolution layer, which is activated by a rectified linear unit (ReLU). The ReLU activation 

is a suitable choice for non-linear transformation without the problem of vanishing gradient. 

The filter size is set to 64 and the kernel size to 1. This layer is followed by a one 

dimensional Max Pooling layer with a pool size and stride length of 1, each. The next layer 

is a Flattening layer followed by a Dropout layer. The Dropout layer randomly sets input 

neurons to 0 with a rate of 0.01 at each step during training time. This is done to prevent 

overfitting. The dropout layer is followed by two fully connected hidden layers. The first 

hidden layer consists of 200 neurons with ReLU activation, and the second hidden layer 

contains 100 neurons with a ReLU activation function and a Softmax function for the output 

layer. Softmax is a choice for the output layer, for output to be interpreted as normalized 

probabilities. Overall, the proposed CNN model uses one-dimensional convolutions and 

therefore, this model is referred to as 1DCNN. Figure 5 shows the proposed 1DCNN 

architecture along with the dimension of each layer.

3.4. Hyperparameter Optimization

In a CNN, the parameters in each layer whose values control the learning procedure are 

called hyperparameters. Grid search is a hyperparameter tuning technique that can build a 

model for every new combination of hyperparameters that is specified in the search space 

and evaluates each model for that combination. A machine learning algorithm Aθ can 

estimate a model Mθ ∈ M that minimizes a loss function ℒ with its model regularization 

term ℛ given by

Aθ Xtrain = argmin
Mθ ∈ M

ℒ Mθ, Xtrain + ℛ Mθ, θ ,
(5)

where Xtrain is the training dataset, M is the set of all models, θ ∈ Θ is the 

chosen hyperparameter configuration, and Θ = {Θ1, Θ2, ⋯, Θp} is the p-dimensional 
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hyperparameter space of the algorithm. The optimal hyperparameter configuration θ* is 

calculated using the validation set as

θ* = argmin
θ ∈ Θ

ℒ Aθ Xtrain, Xvalidation = fD(θ), (6)

where Xvalidation is the validation set and fD is the misclassification rate. The Grid search 

exhaustively searches through a grid of manually specified set of parameter values provided 

in a search space to find the accuracy obtained with each combination. We tuned the model 

based on the number of epochs (ranging from 10 to 100) and the learning rate for the 

Adam optimizer (0.001, 0.01, 0.1, 0.002, 0.02, 0.2, 0.003, 0.03, 0.3). We evaluated the 

accuracy as a performance metric for the different combinations. We also performed a 

Bayesian optimization that uses Bayes Theorem to tune the hyperparameters with a five-fold 

crossvalidation. We found the same parameters that are best fit to obtain best score. Figure 

6 shows the selection of hyperparameters, where the accuracy is reported for different 

combinations of epochs and learning rates [32].

Table 1 summarizes the hyperparameters of the 1DCNN.

3.5. Model Training and Validation

We trained our 1DCNN model with 75,834 samples and used repeated k-fold cross-

validation with 10 splits to validate our model performance. To improve the estimated 

performance, we repeated the cross-validation procedure multiple times and reported the 

mean result across all folds from all runs. This reported mean accuracy is expected to be a 

more accurate estimate of the true unknown underlying mean performance of the model on 

the dataset instead of a single run of k-fold cross-validation, ensuring less statistical noise. 

We also compute the standard error that provides an estimate of a given sample size of 

the amount of error that is expected from the sample mean to the underlying and unknown 

population mean. The standard error is calculated as

σerror = σ
n , (7)

where σ is the sample’s standard deviation and n is the number of repeats. We obtained 

a validation classification accuracy of 87.78% with a standard error of 0.002 (see Section 

6 for detailed evaluation). We defined Early Stopping as a regularization technique at the 

very beginning of declaring the model architecture. At end of every epoch, the training loop 

monitors whether the validation loss is no longer decreasing and once it is found no longer 

decreasing, the training is terminated. We enabled the patience parameter equal to 5 to 

terminate the training after epochs of no validation loss decrease. This is another measure to 

prevent the model from overfitting during training, alongside the addition of a Dropout layer. 

Without Early Stopping, the training would terminate only after reaching the maximum 

number of epochs.

3.6. Model Testing and Deployment

We deployed the trained model to test the performance on an unseen test set generated from 

the SimBaby to classify the respiratory states. The model was tested on 25,279 samples and 
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achieved an accuracy of 97.15%, F1 Score of 0.98, AUC score of 0.98, sensitivity score of 

0.96, and specificity score of 0.99. These performance metrics are defined in Section 6.1.

4. Model Quantization

CNN models consume a considerable amount of energy due to their high computational 

complexity. The high energy consumption is due to the large model size involving several 

thousand parameters. It is therefore challenging to deploy the inference, i.e., a trained CNN 

model on battery-powered mobile devices, such as smartphones and wearable gadgets due to 

their limited energy budget. To address this high energy overhead, energy-efficient solutions 

have been proposed to reduce the model size and computational complexity. Some common 

approaches include the pruning of network weights [33] and low bit precision networks [34]. 

We focus on the latter techniques. Specifically, we implement both bit precision weights 

and activations to reduce model sizes and computational power requirements. To perform 

the training of a CNN with low-precision weights and activations, we use the following 

quantization function to achieve a k-bit quantization [35].

Zq = Q Zr = 1
2k − 1

round 2k − 1 Zr , (8)

where Zr ∈ [0, 1] is the full precision value and Zq ∈ [0, 1] is the quantized value obtained 

using the k-bit quantization.

The quantization of weights is given by

wq = Q tanh wr
2 ⋅ max tanh wr

+ 1
2 , (9)

where wr is the original weight using full precision and wq is the quantized value using k-bit 

quatization.

The quantization of activations is given by

xq = Q(f(x)), (10)

where f(x) = clip(xr, 0, 1) is the clip function bounding the activation function between 0 and 

1.

In this paper, we apply both bit precision techniques for both weights and activations using 

quantization with the QKeras library, which is a quantization extension to the Keras [36]. 

It enables a drop-in replacement of layers that are responsible for creating parameters and 

activation layers like the Conv 1D, Dense layers. It facilitates arithmetic calculations by 

creating a deeply quantized version of a Keras model. We tag the variables, weights, and 

biases created by the Keras implementation of the model and the output of arithmetic layers 

by quantized functions. Quantized functions are specified as layer parameters and then 

passed as a cumulative quantization and activation function, QActivation. The quantized bits 

quantizer used above performs mantissa quantization using the following equation.
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mantissa quantization = 2b − k + 1 ⋅ clip round xr ⋅ 2k − b − 1 , − 2k − 1, 2k − 1 − 1 (11)

where x is the input given to the model, k is the number of bits for quantization, and b 
specifies how many bits of the bits are to the left of the decimal point.

We conduct our experiment to perform quantization of our Conv1D model using 2 bits, 4 

bits, 8 bits, 16 bits, 32 bits, and 64 bits. We observe the performance accuracy increase with 

the increase in the quantization bits, with 2 bits achieving an 88.93% compared to using all 

the 64 bits achieving 97.15% (see the detailed results in Section 6.2).

The QTools functionality is used to estimate the model energy consumption for the different 

bit-wise quantization implementations. It estimates a layer-wise energy consumption for 

memory access and MAC operations in a quantized model derived from QKeras. This is 

helpful when comparing the power consumption of more than one model running on the 

same device. The model size is calculated as the number of model parameters multiplied 

by the number of bits used in each scenario. We observe that when we increase the number 

of bits, the model size increases as well as the accuracy, but so does the consumption of 

energy (pJ). This homogeneous replacement technique of Keras layers, with heterogeneous 

per-layer, per-parameter type precision, chosen from a wide range of quantizers, enabled 

quantization-aware training and energy-aware implementation to maximize the model 

performance given a situation of resource constraints, like detection of respiratory cessation 

on premature infants in critical care conditions, which is crucial for high-performance 

inference on wearables.

5. SNN-Based Respiratory Classification

Spiking neural networks (SNNs), also known as the third generation of neural networks, 

are an interconnection of integrate-and-fire neurons that emulate the working principle 

of a mammalian brain [13]. SNNs enable powerful computations due to their spatio-

temporal information-encoding capabilities. In an SNN, spikes (i.e., current) injected 

from pre-synaptic neurons raise the membrane voltage of a post-synaptic neuron. When 

the membrane voltage crosses a threshold, the post-synaptic neuron emits a spike that 

propagates to other neurons. Figure 7 shows the integration of spike train from four pre-

synaptic neurons connected to a post-synaptic neuron via synapses.

SNNs can implement many machine learning approaches such as supervised, unsupervised, 

reinforcement, few-shot, and lifelong learning. Due to their event-driven activation, SNNs 

are particularly useful in energy-constrained platforms such as wearable and embedded 

systems. Recent works demonstrate a significant reduction in memory footprint and energy 

consumption in SNN-based heart-rate estimation [27], heartbeat classification [28,37], 

speech recognition [38], and image processing [39].

To integrate SNN-based respiratory classification into our design pipeline, we introduce two 

additional stages—model conversion and SNN parameter tuning—before the SNN model 

is deployed to perform classification from live data collected from the SimBaby. Figure 8 

shows the new design pipeline.
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5.1. Model Conversion

In this work, the 1DCNN architecture is converted to SNN in order to execute it on a 

neuromorphic hardware such as Loihi [15]. The conversion steps are briefly discussed 

below.

1. ReLU Activation Functions: This is implemented as the approximate firing rate 

of a leaky integrate and fire (LIF) neuron.

2. Bias: A bias is represented as a constant input current to a neuron, the value 

of which is proportional to the bias of the neuron in the corresponding analog 

model.

3. Weight Normalization: This is achieved by setting a factor λ to control the firing 

rate of spiking neurons.

4. Softmax: To implement softmax, an external Poisson spike generator is used to 

generate spikes proportional to the weighted sum accumulated at each neuron.

5. Max and Average Pooling: To implement max pooling, the neuron which fires 

first is considered to be the winning neuron, and therefore, its responses are 

forwarded to the next layer, suppressing the responses from other neurons in the 

pooling function. To implement average pooling, the average firing rate (obtained 

from total spike count) of the pooling neurons are forwarded to the next layer of 

the SNN.

6. 1-D Convolution: The 1-D convolution is implemented to extract patterns from 

inputs in a single spacial dimension. A 1xn filter, called a kernel, slides over the 

input while computing the element-wise dot-product between the input and the 

kernel at each step.

7. Residual Connections: Residual connections are implemented to convert the 

residual block used in CNN models such as ResNet. Typically, the residual 

connection connects the input of the residual block directly to the output neurons 

of the block, with a synaptic weight of ‘1’. This allows for the input to be 

directly propagated to the output of the residual block while skipping the 

operations performed within the block.

8. Flattening: The flatten operation converts the 2-D output of the final pooling 

operation into a 1-D array. This allows for the output of the pooling operation to 

be fed as individual features into the decision-making fully connected layers of 

the CNN model.

9. Concatenation: The concatenation operation, also known as a merging operation, 

is used as a channel-wise integration of the features extracted from two or more 

layers into a single output.

We now briefly elaborate how an analog operation such as Rectified Linear Unit (ReLU) is 

implemented using SNN. The output Υ of a ReLU activation function is given by
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Y = max 0, ∑
i

wi * xi, (12)

where wi is the weight and xi is the activation on the ith synapse of the neuron. To map the 

ReLU activation function, we consider a particular type of spiking neuron model known as 

an integrate and fire (IF) neuron model. The IF spiking neuron’s transfer function can be 

represented as

vm(t + 1) = vm(t) + ∑
i

wi * xi(t), (13)

where vm(t) is the membrane potential of the IF neuron at time t, wi is the weight, and xi(t) 
is the activation on the ith synapse of the neuron at time t. The IF spiking neuron integrates 

incoming spikes (Xi) and generates an output spike (Υspike) when the membrane potential 

(vm) exceeds the threshold voltage (vth) of the IF neuron. Therefore, by ensuring that the 

output spiking rate Υspike is proportional to the ReLU activation Υ, i.e., Υspike ∝ Υ, we 

accurately convert the ReLU activation to the spike-based model. To further illustrate this, 

we consider the multi-layer perceptron (MLP) of Figure 9a and its SNN conversion using 

rate-based encoding (Figure 9b) and inter-spike interval (ISI) encoding (Figure 9c).

In Figure 9a, neurons 1, 2, and 3 are the input neurons and neurons 4 and 5 are the output 

neurons. To keep the model simple, let us consider the case where the activations of the 

input neurons 1, 2, and 3 are equal to 1. Using Equation (12), we know that the output of 

neurons 4 and 5 are 0.6 and 0.3, respectively. Figure 9b,c shows the mapped SNN model, 

using rate-based and inter-spike interval encoding schemes, respectively. In the rate-based 

model in Figure 9b, the rate of spikes generated is expected to be proportional to the output 

of neurons 4 and 5 in the MLP. In the case of the ISI-based SNN model, the inter-spike 

interval of the spikes generated by neurons 4 and 5 is expected to be proportional to the 

output generated in the MLP, as shown in Figure 9c.

5.2. SNN Mapping to Neuromorphic Hardware

The SNN model generated using the conversion approach is analyzed in CARLsim [40] to 

generate the following information.

• Spike Data: the exact spike times of all neurons in the SNN model.

• Weight Data: the synaptic strength of all synapses in the SNN model.

The spike and weight data of a trained SNN form the SNN workload, which is used in 

the NeuroXplorer framework [41] to estimate the energy consumption. Figure 10 shows the 

NeuroXplorer framework.

The framework inputs the 1DCNN model and estimates the accuracy and energy 

consumption of the model on a neuromorphic hardware. Internally, NeuroXplorer first 

converts the 1DCNN to SNN using the steps outlined before. It then simulates the SNN 

using CARLsim. The extracted workload is first decomposed using the decomposition 
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approach presented in [42]. This is to ensure that the workload can fit on to the resource-

constraint hardware.

Typically, neuromorphic hardware is designed with tile-based architecture [43], where 

each tile can accommodate only a limited number of neurons and synapses. The tiles 

are interconnected using a shared interconnect such as Network-On-Chip (NoC) [44] or 

Segmented Bus [45]. Therefore, to map an SNN into a tile-based neuromorphic hardware, 

the model is first partitioned into clusters, where each cluster consists of a proportion of the 

neurons and synapses of the original machine learning model [46]. Each cluster can then fit 

onto a tile of the hardware. Then, the clusters are mapped to the tiles to optimize one or 

more hardware metrics such as energy [47,48], latency [49–53], circuit aging [54–59], and 

endurance [60–62]. We use the energy-aware mapping technique of [48].

Once the clusters of the converted 1DCNN model are placed with the resources of 

the neuromorphic hardware, we perform cycle-accurate simulations using NeuroXplorer, 

configured to simulate the Loihi neuromorphic system. Table 2 shows the hardware 

parameters that are configured in NeuroXplorer.

5.3. SNN Parameter Tuning

Unlike the baseline 1DCNN architecture, where model hyperparameters are explored only 

during model training, SNNs allow parameter tuning on the trained (and converted) model, 

such that the energy and accuracy space could be explored to generate a solution that 

satisfies the given energy and accuracy constraints of the target wearable platform. To 

explore such exploration capabilities, we analyze the dynamics of SNNs.

The membrane potential of a neuron at time t can be expressed as [13]

u(t) = u0 + a∫
0

t
D(s) ⋅ w ⋅ σ(t − s)ds, (14)

where u0 is the initial membrane potential, a is a positive constant, D(s) is a linear filter, w is 

the synaptic weight and σ represents a sequence of N input spikes, which can be expressed 

using the Dirac delta function as

σ(t) = ∑
i = 1

N
δ t − ti (15)

The membrane potential of a neuron increases upon the arrival of an input spike. 

Subsequently, the membrane potential starts to decay during the inter-spike interval (ISI). 

When the neuron is subjected to an input spike train, the membrane voltage keeps rising, 

building on the undissipated component. When the membrane potential crosses a threshold 

(Vth), the neuron emits a spike, which then propagates to other neurons of the SNN. The 

spike rate of a neuron can be controlled using this threshold. If the threshold is set too high, 

fewer spikes will be generated, meaning that not only will the energy be lower but also the 
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accuracy, because spikes encode information in SNNs. Therefore, by adjusting the threshold, 

the design space of accuracy and energy can be explored (see Section 6.3).

6. Results and Discussions

All simulations are performed on a workstation, which has AMD Threadripper 3960X with 

24 cores, 128 MB cache, 128 GB RAM, and 2 RTX3090 GPUs. Keras [36] is used to 

implement the baseline 1DCNN, which uses TensorFlow backend [64]. QKeras [65] is used 

for training and testing the quantized neural network. Finally, CARLsim [40] is used for 

SNN function simulations.

We present our respiratory classification results organized into (1) results for the baseline 

1DCNN model (Section 6.1), (2) results using quantization (Section 6.2), and (3) SNN-

specific results (Section 6.3).

6.1. Baseline 1DCNN Performance

In this section, we evaluate the performance of the proposed 1DCNN specified using the 

following metrics.

• Top-1 Accuracy: This is the conventional accuracy and it measures the 

proportion of test examples for which the predicted label (i.e., respiratory state) 

matches the expected label. To formulate top-1 accuracy, we introduce the 

following definitions.

– True Positives (TP): For binary classification problems, i.e., ones with 

a yes/no outcome (such as the case of respiratory classification), this is 

the total number of test examples for which the value of the actual class 

is yes and the value of predicted class is also yes.

– True Negatives (TN): This is the total number of test examples for 

which the value of the actual class is no and the value of the predicted 

class is also no.

– False Positives (FP): This is the total number of test examples for which 

the value of the actual class is no but the value of the predicted class is 

yes.

– False Negatives (FN): This is the total number of test examples for 

which the value of the actual class is yes but the value of the predicted 

class is no.

Top‐1 Accuracy = TP + TN
TP + FP + FN + TN (16)

• F1 Score: To formulate the F1 score, we introduce the following definitions.

– Precision: This is the ratio of correctly predicted positive observations 

to the total predicted positive observations, i.e.,
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Precision = TP
TP + FP (17)

– Recall: This is the ratio of correctly predicted positive observations to 

the all observations in actual class, i.e.,

Recall = TP
TP + FN (18)

The F1 score conveys the balance between the precision and the recall. It is 

calculated as the weighted average of precision and recall, i.e.,

F1 Score = 2 * (Recall * Precision)
(Recall + Precision) (19)

• AUC: In machine learning, a receiver operating characteristic (ROC) curve is 

a graphical plot that illustrates the diagnostic ability of a binary classifier as 

its discrimination threshold is varied. The area under curve (AUC) measures 

the two-dimensional area underneath the ROC curve. AUC tells how much the 

model is capable of distinguishing between classes. The higher the AUC, the 

better the model is at predicting yes classes as yes and no classes as no.

• Sensitivity: This is the true positive rate, i.e., how often the model correctly 

generates a yes out of all the examples for which the value of actual class is yes. 

Sensitivity is formulated as

Sensitivity = TP
TP + FN (20)

• Specificity: This is the true negative rate, i.e., how often the model correctly 

generates a no out of all the examples for which the value of actual class is no. 

Specificity is formulated as

Specificity = TN
TN + FP (21)

Table 3 compares the classification performance using the proposed 1DCNN against three 

state-of-the-art approaches: (1) Support Vector Machine (SVM) classifier of [18], (2) 

Logistic Regression (LR) classifier of [19], and (3) Random Forest classifier of [19]. We 

make the following four key observations.

First, the proposed 1DCNN has the highest top-1 accuracy of all the evaluated techniques 

(higher top-1 accuracy is better). The top-1 accuracy of 1DCNN is better than SVM by 

5.2%, LR by 6.0%, and RF by 4.0%.
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Second, the proposed 1DCNN has the highest F1 score of all the evaluated techniques 

(higher F1 score is better). The F1 score of 1DCNN is higher than SVM by 7.7%, LR by 

7.7%, and RF by 6.5%.

Third, the proposed 1DCNN has the highest AUC of all the evaluated techniques (higher 

AUC score is better). The AUC score of 1DCNN is higher than SVM by 6.2%, LR by 8.5%, 

and RF by 8.5%.

Fourth, the proposed 1DCNN has the highest sensitivity of all the evaluated techniques 

(higher sensitivity score is better). The sensitivity score of 1DCNN is higher than SVM by 

3.2%, LR by 6.7%, and RF by 4.3%.

Finally, the proposed 1DCNN has the highest specificity of all the evaluated techniques 

(higher specificity score is better). The specificity score of 1DCNN is higher than SVM by 

7.6%, LR by 7.6%, and RF by 6.4%.

The reason for high performance using the proposed 1DCNN model is two-fold. First, we 

perform intelligent feature selection from the data collected using sensors on the SimBaby 

programmable infant mannequin. Second, we perform hyperparameter optimization with 

neural architecture search to generate a model that gives the highest classification accuracy 

using the selected hyperparameters.

To give further insight to the improvement, Figure 11 shows the confusion matrix obtained 

for the training and test sets. We observe that the proposed 1DCNN model has very low false 

positives and false negatives, which are critical for respiratory classification in premature 

newborn infants.

6.2. Quantization Results

Table 4 and Figure 12 reports the top-1 accuracy (%), energy (in pJ), and model size (in 

bits) with 2-bit, 4-bit, 8-bit, 16-bit, and 32-bit precision for the model parameters. For 

comparison, we have included results using the baseline 1DCNN, which uses full 64-bit 

precision for the model parameters. We make the following three key observations.

First, the top-1 accuracy reduces with a reduction in the bit precision (higher accuracy is 

better for respiratory classification in premature newborn infants). With 2-bit, 4-bit, 8-bit, 

16-bit, and 32-bit precision, the top-1 accuracy is lower than the baseline 64-bit precision by 

8.5%, 8.4%, 4.3%, 0.6%, and 0.1%, respectively. The top-1 accuracy with 32-bit precision is 

comparable to 64-bit precision.

Second, energy reduces with a reduction of the bit precision (lower energy is better for 

respiratory classification in wearables due to limited battery, as we mentioned in Section 

1). With 2-bit, 4-bit, 8-bit, 16-bit, and 32-bit precision, energy is lower than the baseline 

64-bit precision by 94.7%, 88.1%, 77.8%, 57.2%, and 15.8%, respectively. These results 

show the significant reduction in energy achieved using quantization. Lower energy leads to 

longer battery life in wearables. Finally, model size also reduces with a reduction in the bit 

precision (lower model size is better for wearables due to their limited storage availability). 
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With 2-bit, 4-bit, 8-bit, 16-bit, and 32-bit precision, energy is lower than the baseline 64-bit 

precision by 96.8%, 93.7%, 87.5%, 75.0%, and 50.0%, respectively.

We conclude that to reduce energy and model size for respiratory classification in wearables, 

quantization techniques can lead to a significant reduction in accuracy.

6.3. SNN-Related Results

Table 5 reports the top-1 accuracy and energy results using the proposed SNN-based 

approach compared to the baseline 1DCNN, 2-bit, and 8-bit quantized model. We make 

the following three key observations.

First, the top-1 accuracy of the proposed SNN is only 4% lower than the baseline 1DCNN 

model with 18× lower energy. Second, compared to the 2-bit quantized model, the top-1 

accuracy is 5% higher, while the energy is only 2% higher. Finally, compared to the 8-bit 

quantized model, the top-1 accuracy is comparable while the energy is 4× lower. We 

conclude that SNN-based respiratory classification achieves the best tradeoff in terms of 

top-1 accuracy and energy. To achieve similar accuracy, SNN can lead to a 4× reduction 

in energy, which is a critical consideration for respiratory classification on wearables. The 

following results are reported to give further insight into these improvements.

6.3.1. SNN Accuracy Compared to 1DCNN—Figure 13 shows the Bland–Altman 

plot comparing the accuracy of SNN solution against the baseline 1DCNN model. Bland–

Altman plots are extensively used to evaluate the agreement among two models, each 

of which produced some error in their predictions. As can be seen from the plot, the 

average accuracy difference between the 1DCNN and the converted SNN is 7.3%, while the 

minimum and maximum accuracy difference are 2.1% and 12.5%, respectively.

6.3.2. Design Space Exploration with SNN Parameters—We perform design-

space explorations to identify SNN model parameters that give the best tradeoff in terms 

of energy and accuracy.

In spiking neural networks, a spike is not fired by a neuron unless the specified activation 

threshold voltage is attained. This implies that the larger the firing threshold voltage, the 

more selectively a neuron is fired while communicating between each layer. To demonstrate 

this, Figure 14 shows the variation in accuracy as a function of the activation threshold (Vth) 

(see Section 5.3).

In the figure, we vary the activation threshold across different number of test samples. We 

observe that for a smaller number of test samples, as we increase the threshold voltage for 

firing spikes, the performance accuracy varies highly. However, test samples with a larger 

size, the performance accuracy does not vary as much when we increase the threshold 

voltage.

For larger test sample sizes (500, 1000, 2000, etc.), the performance accuracy varies between 

92% and 94%. When we use small sample sizes (e.g., 100 and 200), the prediction accuracy 
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varies between 86% and 92%. We observe that the firing threshold is most ideal when set 

within 1–3 mV for smaller test samples and within 1–5 mV for larger test samples.

7. Conclusions

We propose a deep-learning-enabled wearable monitoring system for premature newborn 

infants, where respiratory cessation is predicted using signals that are collected wirelessly 

from a non-invasive wearable Bellypatch put on the infant’s body. To this end, we developed 

an end-to-end design pipeline involving five stages data collection, feature scaling, model 

selection, training, and deployment. The deep learning model is a 1D convolutional neural 

network (1DCNN), the parameters of which are tuned using a grid search methodology. 

Our design achieved 97.15% accuracy compared to state-of-the-art statistical approaches. To 

address the limited energy in wearable settings, we evaluate model compression techniques 

such as quantization. We show that such techniques can lead to a significant reduction in 

respiratory classification accuracy in order to minimize energy. To address this important 

problem, we propose a novel spiking neural network (SNN)-based respiratory classification 

technique, which can be implemented efficiently on an event-driven neuromorphic hardware. 

SNN-based respiratory classification involves two additional pipeline stages: model 

conversion and parameter tuning. Using respiration data collected from a Laerdal SimBaby 

programmable infant mannequin, we demonstrate 93.33% respiratory classification accuracy 

with 18× lower energy compared to the conventional 1DCNN model. We conclude that 

SNNs have the potential to implement respiratory classification and other machine learning 

tasks on energy-constrained environments such as wearable systems.
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Figure 1. 
(left) A smart-fabric Bellyband and (right) Bellypatch can be integrated into wearable 

garments to enable wireless and passive biomedical monitoring in infants. (a) top and (b) 

bottom view of the Bellypatch.
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Figure 2. 
Design pipeline for respiratory classification using deep learning.
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Figure 3. 
Variation of the two features PRx_deoscillated and RSSI_from_min for 1.2 s.
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Figure 4. 
Respiratory state corresponding to features shown in Figure 3.

Paul et al. Page 27

Electronics (Basel). Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Our proposed 1DCNN architecture.
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Figure 6. 
Hyperparameter selection.
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Figure 7. 
Integration of spike trains at the post-synaptic neuron from four pre-synaptic neurons in a 

spiking neural network (SNN). Each spike is a voltage waveform of ms time duration.
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Figure 8. 
Seven-stage pipeline, including the two new stages to process and optimize the SNN model.
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Figure 9. 
Example of converting an analog MLP to its spiking equivalent.
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Figure 10. 
The NeuroXplorer framework [41].
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Figure 11. 
Confusion matrix for the 1DCNN model.
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Figure 12. 
Relationship between quantization bits, accuracy, and energy consumption.

Paul et al. Page 35

Electronics (Basel). Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. 
Bland–Altman plot comparing the accuracy of different SNN solutions against the baseline 

1DCNN model.
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Figure 14. 
Accuracy impact with varying the activation.
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Table 1.

Summary of hyperparameters for the proposed 1DCNN model.

Learning rate 0.001

Batch size 5

Optimizer Adam

Data shuffle per epoch

Maximum epochs 100
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Table 2.

Major simulation parameters extracted from Loihi [15].

Neuron technology 16 nm CMOS (original design is at 14 nm FinFET)

Synapse technology HfO2-based OxRRAM [63]

Supply voltage 1.0 V

Energy per spike 23.6 pJ at 30 Hz spike frequency

Energy per routing 3 pJ

Switch bandwidth 3.44 G. Events/s
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Table 3.

Comparison with state-of-the-art approaches.

Classification Technique Top-1 Accuracy F1 Score AUC Sensitivity Specificity

SVM 92.34% 0.91 0.92 0.93 0.92

LR 91.60% 0.91 0.90 0.90 0.92

RF 93.40% 0.92 0.90 0.92 0.93

1DCNN (proposed) 97.15% 0.98 0.98 0.96 0.99
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Table 4.

Model quantization results.

Quantization Top-1 Accuracy Energy (pJ) Model Size (bits)

2-bit/parameter 88.93% 7089 92,258

4-bit/parameter 88.98% 15,994 184,516

8-bit/parameter 93.00% 29,871 369,032

16-bit/parameter 96.55% 57,640 738,064

32-bit/parameter 97.03% 113,386 1,476,128

Baseline 1DCNN 97.15% 134,613 2,952,256
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Table 5.

SNN Accuracy and Energy Results.

Model Top-1 Accuracy Energy (pJ)

Baseline 1DCNN 97.15% 134,613

2-bit quantized 1DCNN 88.93% 7089

8-bit quantized 1DCNN 93.00% 29,871

SNN 93.33% 7282
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