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Jasmonate-Elicited Stress Induces Metabolic Change
in the Leaves of Leucaena leucocephala
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Abstract: The plant Leucaena leucocephala was exposed to four jasmonate elicitors, i.e., jasmonic
acid (JA), methyl jasmonic acid (MeJA), jasmonoyl-L-isoleucine (JA-Ile) and 6-ethyl indanoyl
glycine conjugate (2-[(6-ethyl-1-oxo-indane-4-carbonyl)-amino]-acetic acid methyl ester) (CGM).
The treatment was to mimic the herbivores and wounding stresses. By using NMR spectroscopy
along with chemometric analysis, including principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA), the changes of metabolites in the leaves of L. leucocephala
were determined under the stress as induced by the four elicitors. The challenge of JA-Ile
caused an accumulation of lactic acid (6), β-glucose (10), alanine (12), threonine (13), steroids (18),
3,4-dihydroxypyridine (19) and an unidentified compound 20. The chemometric analysis of the PCA
and PLS-DA models indicated that the alternation of metabolites triggered by JA, MeJA, and CGM
treatments were very minimum. In contrast, the treatment by JA-Ile could induce the most significant
metabolic changes in the leaves. Moreover, there was very minimal new metabolite being detected in
responding to the jasmonate-induced stresses. The results showed some metabolite concentrations
changed after application of the elicitors, which may be related to a high level of tolerance to stress
conditions as well as the strong ecological suitability of L. leucocephala.

Keywords: Leucaena leucocephala; NMR; principal component analysis; partial least squares
discriminant analysis; elicitors; environmental stress

1. Introduction

Leucaena leucocephala belongs to the family Fabaceae: the leaves and pods of this plant are a favorite
forage crop for cattle and sheep. L. leucocephala plant was widely distributed throughout tropic and
subtropic areas. Due to its extraordinary ecological suitability and ability to grow quickly, this plant
has been widely cultivated for ecological restoration construction and expressway slope improvement
in China. The outstanding ecological suitability of L. leucocephala indicated strong resistance against
the environmental stresses, including drought, herbivores, and wounding. Six stress-related genes and
22 hypothetical proteins in L. leucocephala were identified and expressed at high levels under drought
conditions [1].
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This has been well-established that endogenous jasmonic aicd (JA), methyl jasmonate (MeJA) and
jasmonoyl-L-isoleucine (JA-Ile), play a prominent role in promoting plant defense in responding to
environmental stresses, e.g., herbivores and wounding [2–4]. Coronalon, a synthetic 6-ethyl indanoyl
isoleucine conjugate, was reported to be a highly active stress inducer mimicking jasmonate being
involved in insect and disease resistance [5,6]. 2-[(6-Ethyl-1-oxoindane-4-carbonyl) amino] acetic
acid methyl ester (CGM), a new analogue of coronalon, was designed and synthesized by Tan [7].
The isoleucine residue in coronalon was replaced by glycine in CGM for a better water solubility.
The plant hormone jasmonates are a class of oxylipin compounds [8]. Exogenous application of these
jasmonates on plant was able to simulate herbivory and wounding stresses [9]. For example, the total
phenolic content, including rosmarinic acid, caffeic acid, eugenol and linalool, was markedly increased
after the treatment of MeJA on sweet basil (Ocimum basilicum) plant [10]. The treatment of MeJA
increased the accumulation of terpenoid indole alkaloids in Catharanthus and Cinchona plants [11,12],
and enhanced the production of secondary metabolites in tomato tissue [13]. Coronalon and MeJA
promoted the biosynthesis of lignans in suspension cultures of Linum nodiflorum [6]. On the other hand,
CGM triggered volatile biosynthesis in the lima bean and ginkgo leaves [7].

In the scenario of L. leucocephala, the amount of mimosine was increased locally by application
of mechanical damage (simulating herbivory) in shoots [14]. Salicylic acid (simulating pathogen
attack) applied in culture media of L. leucocephala induced mimosine accumulation in roots [14].
The L. leucocephala plant was well-known for its high level of tolerance to various stress conditions [1].
However, the study using jasmonate-elicited stress in L. leucocephala was very limited. To reveal the
possible metabolic alternation under stress condition, four exogenous jasmonates, including JA, MeJA,
JA-Ile and CGM (Figure 1) were being used as elicitors, and were sprayed on L. leucocephala to induce
a condition of herbivores and wounding stresses. After the exposure, the change of metabolites in
L. leucocephala leaves were examined by NMR spectroscopy along with chemometric analysis, including
principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA).
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Figure 1. The structures of four jasmonate elicitors used in this research and coronalon (not used here).

2. Results and Discussion

Nine MeJA-treated plant samples, nine JA-treated samples, eleven JA-Ile-treated samples, twelve
CGM-treated samples and eleven control (labeled as CK) samples were collected for analyses.
The aqueous CD3OD extract of total 52 L. leucocephala samples were subjected to NMR analyses. Seven
organic acids, malic acid (1), citric acid (2), formic acid (3), succinic acid (4), RC(OH)CH3-COOH (5),
lactic acid (6) and fumaric acid (7), four carbohydrates, sucrose (8), α-glucose (9), β-glucose (10),
and fructose (11), three amino acids, alanine (12), threonine (13), and mimosine (14), two flavonoids,
quercetin (15) and quercetin-3-O-α-rhamnoside (16), and three miscellaneous compounds, choline (17),
steroids (18), and 3,4-dihydroxypyridine (19) were identified by 1D and 2D NMR spectra and
comparison with the Biological Magnetic Resonance Data Bank (BMRB) database [15]. The structures of
those 19 identified metabolites were shown in Figure S2 (Supplementary Material). Moreover, the areas
of two obvious single peaks (δH 2.09 and 2.72) referred to two unidentified compounds (20 and 21)
were integrated and included in the chemometric analysis. Diagnostic peaks of compounds 1–21 were
shown in Table 1.
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Table 1. Assignment of proton and carbon signals in the representative 1H-NMR spectra (CD3OD:
D2O = 1:1).

No. Metabolites δH δC

1 malic acid 2.67 (dd, J = 15.3, 3.0 Hz), 2.37 (dd, J = 15.3, 10.0 Hz),
4.28 (dd, J = 10.0, 3.0 Hz)

2 citric acid 2.50 (d, J = 15.6 Hz), 2.69 (d, J = 15.6 Hz) 45.7, 75.1,
179.0, 182.0

3 formic acid 8.46 (s)

4 succinic acid 2.41 (s)

5 RC(OH)CH3-COOH 1.36 (s) 77.0, 180.9

6 lactic acid 1.34 (d, J = 6.8 Hz)

7 fumaric acid 6.50 (s)

8 sucrose 5.40 (d, J = 3.8 Hz), 4.17 (d, J = 8.7 Hz)

9 α-glucose 5.21 (d, J = 3.8 Hz) 92.6

10 β-glucose 4.60 (d, J = 7.9 Hz) 96.3

11 fructose 4.09 (1H, d, J = 3.5 Hz) 77.6

12 alanine 1.49 (d, J = 7.3 Hz) 175.5, 50.5

13 threonine 1.32 (d, J = 6.6 Hz)

14 mimosine 7.65 (overlapped, 2H), 6.54 (d, J = 6.7 Hz),
4.34 (dd, J = 14.2, 5.0 Hz), 4.23 (dd, J = 14.2, 6.7 Hz)

15 quercetin
7.51 (d, J = 2.1 Hz), 7.47 (dd, J = 8.6, 2.1 Hz),

6.89 (d, J = 8.5 Hz), 6.31 (d, J = 1.8 Hz),
6.13 (d, J = 1.8 Hz)

16 quercetin-3-O-α-rhamnoside
7.36 (d, J = 2.1 Hz), 7.32 (dd, J = 8.4, 2.1 Hz),
6.91 (1H, d, J = 8.4 Hz), 6.29 (d, J = 1.9 Hz),

6.13 (d, J = 1.9 Hz), 0.94 (d, J = 6.2)

17 choline 3.22 (s)

18 steroids 0.95 (d, J = 6.6 Hz), 0.92 (d, J = 6.7 Hz), 0.91 (d,
J = 6.1 Hz), 0.95 (t, J = 7.5 Hz), 0.90 (t, J = 7.4 Hz) 134.2

19 3,4-dihydroxypyridine 7.69 (overlapped, 2H), 6.60 (d, J = 7.2 Hz)

20 unidentified 2.09 (s)

21 unidentified 2.72 (s)

Representative 1H-NMR spectrum of L. leucocephala leaf extract was shown in Figure 2A.
The 1H-NMR spectrum exhibited signals at δH 2.67 (dd, J = 15.3, 3.0 Hz, 1H), 2.37 (dd, J = 15.3,
10.0 Hz, 1H), and 4.28 (dd, J = 10.0, 3.0 Hz, 1H), which were diagnostic for malic acid (1). The 1H-NMR
spectrum showed two double peaks at δH 2.50 (d, J = 15.6 Hz) and 2.69 (d, J = 15.6 Hz), combined with
HMBC correlation between these proton doublet with carbons at δc 45.7, 75.1, 179.0, 182.0, and citric
acid (2) was consequently determined. Formic acid, succinic acid and fumaric acid were identified on
the basis of proton resonance at δH 8.46 (1H, s), 2.41 (s) and 6.50 (1H, s), respectively. A tertiary methyl
at δH 1.36 showed HMBC correlations with an oxygenated carbon (δc 77.0) and a carboxyl (δc 180.9),
which implied the partial structure of 5. Lactic acid was determined by the observation of a double
peak at δH 1.34 (d, J = 6.8 Hz).

The proton resonances at δH 5.40 (d, J = 3.8 Hz, 1H) and 4.17 (d, J = 8.7 Hz, 1H) were diagnostic for
anomeric proton of α-glucose and CH-3 of fructose in sucrose, respectively. α-Glucose was confirmed
on the basis of anomeric proton doublet at δH 5.21 with a small 3JH-1,H-2 coupling constant (3.8 Hz)
and Heteronuclear Single Quantum Coherence (HSQC) correlation between δH 5.21 and δc 92.6.
In the same way, β-glucose was identified based on the observation of anomeric proton doublet at
δH 4.60 with a large 3JH-1,H-2 coupling constant (7.9 Hz), combined with HSQC correlation between
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δH 4.60 and δc 96.2. Fructose was detected on the basis of CH-3 at δH 4.09 (d, J = 3.5 Hz, 1H) and
corresponding HSQC correlation with δC 77.6. The proton signal at 1.49 ppm (d, J = 7.3 Hz) showed
HMBC correlation with δc 175.5 and 50.5; alanine was therefore elucidated. Threonine was identified
on the basis of methyl proton signals at δH 1.32 (d, J = 6.6 Hz, 1H). Choline was elucidated on the basis
of three exactly identical methyl signals at δH 3.22 (9H, s). 1H-NMR signals at 7.69 (overlapped), and
6.60 (d, J = 7.2 Hz, 1H), were owed to 3,4-dihydroxypyridine (19), which was a degradative derivative
of mimosine (14). A set of methyl signals of double peaks (0.95, J = 6.6 Hz; 0.92, J = 6.7 Hz; 0.91,
J = 6.1 Hz) and triple peaks (0.95, J = 7.5 Hz; 0.90, J = 7.4 Hz) were shown in JA-Ile-treated plants, and
of which J (coupling constant) values were clearly determined in the 2-dimensional J-resolved NMR
spectroscopy (Figure 2B). One of above methyl groups showed HMBC correlation with olefinic carbon
at δc 134.2 (Figure 2C), which was appeared in JA-Ile-treated plant and absent in the HMBC spectra of
JA-, MeJA-, CGM-treated and control plants. Figure 2D showed that the methyl at 0.95 (t, J = 7.5 Hz),
0.90 (t, J = 7.4 Hz), 0.92 (d, J = 6.7 Hz) were newly appeared signals in JA-Ile-treated plant. These
methyl signals might be contributed to steroids (18), and carbon at δc 134.2 should be ascribed to the
C-22 of steroids.

Mimosine (14), quercetin (15) and quercetin-3-O-α-rhamnoside (16), were the main organic
component with small molecular weight in L. leucocephala leaf, which were obtained by our extraction
and isolation experiments. The 1H and 13C-NMR spectra of mimosine (14), quercetin (15) and
quercetin-3-O-α-rhamnoside (16) were shown in Figure S3 (Supplementary Material). Since the
1H-NMR spectra of leaf extracts were carefully compared with the authentic spectra at hand in
Figure S3, and thereby mimosine (14) [16], quercetin (15) [17] and quercetin-3-O-α-rhamnoside (16) [18]
could be unambiguously determined in the elicited L. leucocephala leaves. In detail, the signals at δH

7.65 (overlapped), 6.54 (d, J = 6.7 Hz, 1H), 4.34 (dd, J = 14.2, 5.0 Hz, 1H), 4.23 (dd, J = 14.2, 6.7 Hz,
1H) were ascribed to mimosine (14). 1H-NMR signals at δH 7.51 (d, J = 2.1 Hz, 1H), 7.47 (dd, J = 8.6,
2.1 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 6.31 (d, J = 1.8 Hz, 1H), and 6.13 (d, J = 1.8 Hz, 1H) were referred
to quercetin (15). 1H-NMR signals at δH 7.36 (d, J = 2.1 Hz, 1H), 7.32 (dd, J = 8.4, 2.1 Hz, 1H), 6.91(d,
J = 8.4 Hz, 1H), 6.29 (d, J = 1.9 Hz, 1H), 6.13 (d, J = 1.9 Hz, 1H), and 0.94 (d, J = 6.2 Hz, 3H) were
contributed to quercetin-3-O-α-rhamnoside (16).

The metabolic profiles of elicited L. leucocephala leaves, i.e., the treatments of CGM, JA-Ile, MeJA
and JA, were not drastically altered but certain metabolites have differential abundances. Metabolites
in the 1H-NMR spectra comparison of L. leucocephala leaf extracts under the four stress elicitors were
shown to be at different intensity (Figure 3). The relative contents of nineteen determined and two
unidentified compounds in each treatment were shown in Table S1 (Supplementary Material), and
which was imported into SIMCA-P software for chemometric analyses. Principle component analysis
(PCA) was the most basic and efficient method to analyze complex data in metabolomics, which could
extract and display systematic variations from the data, as well as to detect the grouping, trend and
outlier [19]. Each point in a PCA score plot represented a single sample, and the sample clustered
together was considered to have similar characteristic, i.e., similar metabolic profiling. For assessing
the potential variables correlating to metabolite contents, PCA was applied aiming to observe cluster
of L. leucocephala leaf extracts under different elicitation.

1H-NMR spectra comparison of leaves extracts of L. leucocephala, which were treated by MeJA
(0.5 mM), JA (0.5 mM), JA-Ile (0.5 mM), CGM (0.5 mM) and control (labeled as CK), respectively.
The metabolite profile of elicited L. leucocephala leaves were not drastically altered but certain
metabolites have differential abundances.
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acid; 5, RC(OH)CH3-COOH; 6, lactic acid; 7, fumaric acid; 8, sucrose; 9, α-glucose; 10, β-glucose; 11, 
fructose; 12, alanine; 13, threonine; 14, mimosine; 15, quercetin; 16, quercetin-3-O-α-rhamnoside; 17, 
choline; 18, steroids; 19, 3,4-dihydroxypyridine; 20, unidentified; 21, unidentified; (B) J values were 
determined in the 2-dimensional J-resolved NMR spectroscopy of JA-Ile treated plants; (C) HMBC 
correlation between methyl signals and olefinic carbon at δc 134.2; (D) A set of methyl signals at 0.85-
1.05 ppm in JA-Ile elicited L. leucocephala leaf extracts was compared to control (CK). 

Figure 2. 1D and 2D NMR spectra of L. leucocephala leaf extracts. (A) Representative 1H-NMR spectrum
of L. leucocephala leaf extracts. Peaks: 1, malic acid; 2, citric acid; 3, formic acid; 4, succinic acid;
5, RC(OH)CH3-COOH; 6, lactic acid; 7, fumaric acid; 8, sucrose; 9, α-glucose; 10, β-glucose; 11, fructose;
12, alanine; 13, threonine; 14, mimosine; 15, quercetin; 16, quercetin-3-O-α-rhamnoside; 17, choline;
18, steroids; 19, 3,4-dihydroxypyridine; 20, unidentified; 21, unidentified; (B) J values were determined
in the 2-dimensional J-resolved NMR spectroscopy of JA-Ile treated plants; (C) HMBC correlation
between methyl signals and olefinic carbon at δc 134.2; (D) A set of methyl signals at 0.85-1.05 ppm in
JA-Ile elicited L. leucocephala leaf extracts was compared to control (CK).
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Figure 3. 1H-NMR spectra comparison of L. leucocephala leaf extracts under different elicitors.

The cumulative R2X for the first and the second components were 0.297 and 0.434, respectively
(Figure 4A), which indicated that the first and the second components of PCA score plot accounted for
43.4 % (29.7 and 13.7 %, respectively) of the overall variance. Figure 4B showed three outliers, and
exhibited an unclear cluster between the plant treatments of JA, between MeJA, between CGM and
control samples, respectively. In contrast, a clear cluster between JA-Ile and control treatments was
identified. To further determine the metabolite variable playing an important role in discriminating
L. leucocephala leaf extracts from each elicited and control samples, PLS-DA was therefore performed.
The cumulative R2Y and Q2 were 0.897 and 0.776, respectively, in the PLS-DA model of JA-Ile and
control (CK) (Figure 5A). In parallel, the cumulative R2Y and Q2 were 0.824 and 0.587, respectively
for JA, 0.757 and 0.242 for MeJA, and 0.619 and 0.385 for CGM (Figure S4, Supplementary Material).
Having 200 permutations and two components, the permutations plot was performed in order to
validate PLS-DA model. Figure S5 (Supplementary Material) revealed positive slopes and minus
Q2 values of y-intercept for four elicitors. However, it was not found that all R2 and Q2 values to the
left were lower than the original points to the right for JA, MeJA and CGM treatments, which indicated
that the PLS-DA model was not a stably valid model, respectively. Nevertheless, it was clear that all
R2 and Q2 values to the left are lower than the original points to the right for JA-Ile treatment, which
indicated that the PLS-DA model was a valid model. The aforementioned information suggested that
the JA-Ile treatment showed the most significant metabolic changes among the four elicitors. It was
reported that MeJA and JA might be activated by having a conjugation to isoleucine, and thus JA-Ile
was the potential active form in triggering the function [20,21]. It was also reported that the amplitude
and duration of JA responses were regulated largely by the intracellular level of JA-Ile [22]. Therefore,
our finding was consistent with previous reports [20–22]. The insensitive of JA, MeJA, and CGM
treatments in inducing metabolic changes could be by several possible reasons: (i) L. leucocephala plant
was different from other plants such that they are not able to have a conjugation with isoleucine; and
(ii) the treatment time was too short and not enough time for the isoleucine conjugation.
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Figure 5. Partial least squares discriminant analysis (PLS-DA) of metabolites in L. leucocephala leaf
extracts under JA-Ile elicitation. (A) The summary of fit of PLS-DA model of JA-Ile and control.
The cumulative R2Y and Q2 were 0.897 and 0.776 respectively, when two components were calculated;
(B) PLS-DA score plot discriminated L. leucocephala extracts from JA-Ile (triangle) and control treatment
(CK, box) more clearly than PCA score plot; (C) PLS-DA loading plot. The notations of 1-21 were
corresponding to different metabolites as listed in Table 1. JA-Ile caused an accumulation of lactic
acid (6), β-glucose (10), alanine (12), threonine (13), steroids (18), 3,4-dihydroxypyridine (19) and
an unidentified compound 20.

As shown by the PLS-DA score plot (Figure 5B), the JA-Ile-treated samples were clearly
separated from the control sample. From the loading plot (Figure 5C), it was found that JA-Ile
could cause an increase of lactic acid (6), β-glucose (10), alanine (12), threonine (13), steroids (18),
3,4-dihydroxypyridine (19) and an unidentified compound 20. Lactic acid (6) is the product under
anaerobic respiration in plants, which may be related with extra energy consumed under environmental
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stress, as induced by JA-Ile. Amongst these metabolites, steroids (18) are important components of cell
membranes, which could alter membrane fluidity and protein environment [23]. Steroids could have
a high production rate under JA-Ile treatment, therefore steroids might affect membrane functions of
the plant in order to cope with environmental stresses.

It was reported previously that the amount of mimosine was increased locally by mechanical
damage (simulating herbivory) applied to shoots of L. leucocephala [14]. Salicylic acid (simulating
pathogen attack) applied in culture media of L. leucocephala stimulated mimosine accumulation in
roots [14]. 3,4-Dihydroxypyridine (19) was accumulated under JA-Ile elicitation. Contrasting to
accumulation of mimosine under salicylic acid elicitation, JA-Ile and salicylic acid might activate
different defense pathways in L. leucocephala, as to resist outside stress. 3,4-Dihydroxypyridine
is the degradative product of mimosine [24], which is the major components in L. leucocephala.
Mimosine was considered as an allelochemical and a potent bio-herbicide [25], which was supposed
to be induced under elicitation. 3,4-Dihydroxypyridine is also a toxic molecule of L. leucocephala
forage toxicosis, which is a potent goitrogen in ruminants [26,27]. Plant secondary metabolites
were produced constitutively or were inducible [28]. Mimosine belongs to constitutive metabolite,
while 3,4-dihydroxypyridine belongs to inducible metabolite, which therefore could be induced and
accumulated under JA-Ile treatment. Moreover, JA-Ile elicitation might activate the degradative
pathway of mimosine into 3,4-dihydroxypyridine.

The rest of increased metabolites, including β-glucose, alanine and threonine are common primary
metabolites in plants; however, the causes of such increase under JA-Ile treatments have not been
resolved. In summary, the profiles of metabolites of the elicited L. leucocephala leaves had not been
drastically altered. There was very minimal new metabolite being detected in responding to the
jasmonate-induced stresses, as simulated by the four jasmonates elicitors. It was just found that the
contents of some metabolites appeared to have differential abundances, which might be related to high
level of tolerance to stress condition and strong ecological suitability of L. leucocephala.

3. Materials and Methods

3.1. Chemicals and Reagents

D2O containing TSP (0.05% wt), and CD3OD, MeJA and (±) JA were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Na2HPO4, NaH2PO4·H2O were purchased from Zhiyuan
Biological Technology (Tianjin, China). JA-Ile was prepared from (±) JA and isoleucine according to
a previously established method [29]. CGM was provided by Prof. J.W. Tan [7].

3.2. Plant Growth, Treatment and Harvest

The L. leucocephala seeds were bought from Tian Ye Feng Landscaping Co., Ltd. (Guangzhou,
China). The seeds were immersed into boiling water, and broke dormancy. Disposed seeds were
sprouted at plate medium with wet filter paper. Sprouted L. leucocephala were transferred into pots
with nutrient soil and grown for about 4 weeks (16 h light/8 h dark cycle). The growing L. leucocephala
plants were shown in Figure S1 (Supplementary Material). The L. leucocephala plants having the fifth
to sixth true leaves were sprayed with the four stress elicitors (JA, MeJA, JA-Ile and CGM), each at
0.5 mM concentration in water containing 0.1% CH3OH for better solubility. Spraying was applied
at two continuous days, three times a day. The seedlings for MeJA treatment were taken out from
the growth room, sprayed in an open area, covered with a transparent plastic lid before moving back
to the growth room. Control plants were treated with water containing 0.1% CH3OH. Leaves were
harvested at one day after elicitor’ treatment (n = 9 for JA and MeJA treatments, respectively; n = 11 for
JA-Ile and control treatments, respectively; n = 12 for CGM treatment). The harvested aerial parts
of plants were immediately frozen in liquid nitrogen, of which the leaves were homogenized under
liquid nitrogen and lyophilized to dry powders.
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3.3. Sample Preparation

D2O (pH = 7.4) buffer was prepared according to literature [30] with minor adjustment, which in
brief was that D2O was fully used instead of adding some H2O, containing 28.85 mg/mL Na2HPO4,
6.825 mg/mL NaH2PO4·H2O, and 1 mM TSP. Thirty mg powder of L. leucocephala leaves was exactly
weighted, in which 0.5 mL CD3OD and 0.5 mL D2O (pH = 7.4) containing TSP (0.05% wt) as internal
chemical shift and content standard, were added. After that, the samples were sonicated for 30 min
and centrifuged at 14,000 rpm for 5 min. The supernatant was transferred to a standard 5-mm NMR
tube for NMR experiments.

3.4. NMR Experiments

The 1H-NMR spectra were recorded on a BRUKER AVANCE III 500 spectrometer (Bruker,
Karlsruhe, Germany) at 500.13 MHz proton frequency, equipped with Z-gradient system at 25 ◦C.
All the NMR data was obtained under an automatic procedure, which was performed by collecting
128 scans of 32,768 data points for each spectrum. The spectral width was 7500 Hz, and the relaxation
delay was set to 1.0 sec with a 4.4 sec acquisition time. Consequently, each sample required about
11 min. The chemical shifts of all the spectra were calibrated using the signals from TSP-d4 in D2O at
δ 0.00, respectively.

For the purpose of signal assignment, standard 2 dimensional NMR spectra were acquired at
25 ◦C, including 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC), heteronuclear
multiple bond correlation (HMBC) and J-resolved spectroscopy (JRES). 1H-13C HSQC and HMBC
experiments were recorded by using the gradient selected sequences with 512 transients and 2048 data
points for each of the 128 increments. The spectral widths were set at 6,000 Hz for 1H, 20,625 Hz for
13C in HSQC experiments and 27,500 Hz for 13C HMBC experiments, respectively. For JRES spectra,
128 transients were collected into 4096 data points for each of the 80 increments with a spectral width
of 6000 Hz in the acquisition and 60 Hz in the evolution dimensions. The data were zero-filled to
a 2000 × 2000 matrix with appropriate window functions prior to Fourier transformation.

3.5. NMR Data Processing and Multivariate Data Analysis

The 1H-NMR spectra of L. leucocephala leaf extracts were manually corrected for phase and
baseline distortions by using software package TOPSPIN (v3.2, Bruker, Billerica, Massachusetts, USA).
Nineteen metabolites were identified by 1D and 2D NMR spectra. The area of characteristic peak
for each metabolite was integrated. The relative contents of these nineteen determined and two
unidentified compounds were defined by comparing the characteristic resonance integral of each
molecule with the TSP signal normalized for nine protons generating the resonance. A linear baseline
scaling normalization approach was used. The baseline was constructed by calculating the median of
each feature over all spectra. The scaling factor was computed for each spectrum as the ratio of mean
intensity of baseline to mean intensity of spectrum. The intensities of all spectra were multiplied by their
particular scaling factors [31]. Multivariate statistical analyses, including principal component (PCA)
and orthogonal partial least squares discriminant analysis (PLS-DA), were performed using SIMCA-P
version 13.0 software (Umetrics, Umeå, Sweden) having mean centering and unit variance scaling.
The relative contents of nineteen determined and two unidentified compounds in each treatment were
shown in Table S1, which was imported into SIMCA-P software for chemometric analyses.

4. Conclusions

The plant Leucaena leucocephala was exposed to four jasmonate elicitors, i.e., jasmonic acid (JA),
methyl jasmonic acid (MeJA), jasmonoyl-L-isoleucine (JA-Ile) and 6-ethyl indanoyl glycine conjugate
(2-[(6-ethyl-1-oxo-indane-4-carbonyl)-amino]-acetic acid methyl ester) (CGM). The treatment was
to mimic the herbivores and wounding stresses. The challenge of JA-Ile caused an accumulation
of lactic acid (6), β-glucose (10), alanine (12), threonine (13), steroids (18), 3,4-dihydroxypyridine
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(19) and an unidentified compound 20. The chemometric analysis of the PCA and PLS-DA models
indicated that the alternation of metabolites triggered by JA, MeJA, and CGM treatments were at
minimum. In contrast, the treatment by JA-Ile could induce the most significant metabolic changes
in the leaves. Moreover, there was very minimal new metabolite being detected in responding to
the jasmonate-induced stresses. The results showed the contents of some metabolites appeared to
be change, which may be related to high level of tolerance to stress conditions as well as the strong
ecological suitability of L. leucocephala.

Supplementary Materials: The following are available online, Figure S1: the growing L. leucocephala plants used
in our research. Figure S2: the chemical structures of nineteen identified metabolites. Figure S3: the 1H- and
13C-NMR spectra of mimosine (14), quercetin (15), and quercetin-3-O-α-rhamnoside (16). The summary of fits
(Figure S4) and the permutation plots (Figure S5) of PLS-DA model of JA, MeJA, JA-Ile, and CGM treatment.
The relative contents of nineteen determined and two unidentified compounds in each treatment were shown in
Table S1.
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PCA principal component analysis
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