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Plasma total homocysteine (tHCY) is a known risk factor of a wide range of complex
diseases. No genome scans for tHCY have been conducted in East Asian populations.
Here, we conducted an exome-wide association study (ExWAS) for tHCY in 5,175
individuals of Chinese Han origin, followed by a replication study in 668 Chinese
individuals. The ExWAS identified two loci, 1p36.22 (lead single-nucleotide
polymorphism (SNP) rs1801133, MTHFR C677T) and 16q24.3 (rs1126464, DPEP1),
showing exome-wide significant association with tHCY (p < 5E−7); and both loci have been
previously associated with tHCY in non-East Asian populations. Both SNPs were
replicated in the replication study (p < 0.05). Conditioning on the genotype of C677T
and rs1126464, we identified a novel East Asian-specific missense variant rs138189536
(C136T) of MTHFR (p � 6.53E−10), which was also significant in the replication study
(p � 9.8E−3). The C136T and C677T variants affect tHCY in a compound heterozygote
manner, where compound heterozygote and homozygote genotype carriers had on
average 43.4% increased tHCY than had other genotypes. The frequency of the
homozygote C677T genotype showed an inverse-U-shaped geospatial pattern globally
with a pronounced frequency in northern China, which coincided with the high prevalence
of hyperhomocysteinemia (HHCY) in northern China. A logistic regression model of HHCY
status considering sex, age, and the genotypes of the three identified variants reached an
area under the receiver operating characteristic curve (AUC) value of 0.74 in an
independent validation cohort. These genetic observations provide new insights into
the presence of multiple causal mutations at the MTHFR locus, highlight the role of
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genetics in HHCY epidemiology among different populations, and provide candidate loci
for future functional studies.

Keywords: homocysteine, hyperhomocysteinemia, MTHFR C677T, MTHFR C136T, coding variants, population
heterogeneity

INTRODUCTION

Plasma total homocysteine (tHCY) is a known risk factor of a
wide range of complex diseases, including cardiovascular and
cerebrovascular diseases (Nygard et al., 1995; Refsum et al., 1998;
Ganguly and Alam, 2015), type 2 diabetes (Wijekoon et al., 2007),
age-related macular degeneration (Pinna et al., 2018), chronic
kidney disease (Ji et al., 2019), Alzheimer’s disease (Mansoori
et al., 2012), and cancers (Hasan et al., 2019).

Plasma tHCY variation has a known genetic component with a
heritability estimated ranging from 47 to 70% in different
populations (Jee et al., 2002; Kullo et al., 2006; Bathum et al.,
2007; Siva et al., 2007; Nilsson et al., 2009). To date, 12
independent genome-wide association studies (GWASs) for
tHCY have been conducted, among which nine were carried
out in populations of European decent (Souto et al., 2005; Hazra
et al., 2009; Malarstig et al., 2009; Pare et al., 2009; Tanaka et al.,
2009; Wernimont et al., 2011; van Meurs et al., 2013; Williams
et al., 2014; Shane et al., 2018), two in Africans (AFRs) (Kim et al.,
2016; Raffield et al., 2018) and one in Filipinos (Lange et al.,
2010). These studies collectively identified several genomic loci
showing genome-wide significant association with tHCY levels.
The one on chromosome 1p36.22 has been most extensively
reported, where a single missense variant of the
Methylenetetrahydrofolate Reductase gene (MTHFR C677T,
rs1801133) showed an extraordinarily large effect on tHCY
levels (Liew and Gupta, 2015; Moll and Varga, 2015);
i.e., compared with wild-type carriers, individuals with
homozygote T alleles had on average 31.08% increased tHCY
levels (Shane et al., 2018). MTHFR is the rate-limiting enzyme in
methionine metabolism, while the 677T variant results in a
thermolabile enzyme that is ∼70% less effective during the
conversion of 5,10-methyltetrahydrofolate (5,10-MTHF) to 5-
methyltetrahydrofolate (5-MTHF) (Liew and Gupta, 2015). Since
5-MTHF acts as a cofactor in tHCY methylation to methionine,
deficiency of MTHFR eventually leads to increased tHCY levels
and a higher risk of multiple diseases (Goyette et al., 1994).
Besides 1p36.22, DNA variants in or close to CBS on 21q22.3
(Pare et al., 2009; Lange et al., 2010; van Meurs et al., 2013;
Williams et al., 2014), NOX4 on 11q14.3 (Pare et al., 2009; Lange
et al., 2010), CPS1 on 2q34 (Lange et al., 2010; van Meurs et al.,
2013; Williams et al., 2014), DPEP1 on 16q24.3 (Pare et al., 2009;
Lange et al., 2010; van Meurs et al., 2013), and CUBN on 10p13
(Tanaka et al., 2009; van Meurs et al., 2013) were identified for
association with tHCY by at least two independent GWASs, thus
representing the most robust genetic findings.

China has a pronounced prevalence of hyperhomocysteinemia
(HHCY), particularly in regions with low dietary folate intake
(Hao et al., 2003; Yang et al., 2013; Yang et al., 2014), which also
accounted for an increased risk of ischemic stroke in patients with

hypertension in these regions (Clarke et al., 2002; Li et al., 2015).
Surprisingly, no genome scans for tHCY have been conducted in
Chinese populations nor in any East Asian populations.
Therefore, the questions regarding the possibility of the
presence of multiple causal mutations and East Asian (EAS)-
specific alleles of tHCY, the genetic explanation for the geospatial
pattern of HHCY prevalence in China, and the predictability of
HHCY risk in Chinese population remained to be answered. To
answer these questions, we conducted an exome-wide association
study (ExWAS) of plasma tHCY level in a Chinese cohort
including 5,175 individuals, followed by a replication study in
668 individuals of Chinese Han origin.

RESULTS

Discovery Exome-wide Association Study
of Total Homocysteine in a Chinese Cohort
The discovery stage ExWAS included a total of 5,175 living
residents of Beijing of Chinese Han origin. This cohort is
characterized with a mid-aged distribution (mean age 57.14 ±
8.93 years), a pronounced proportion of females (62.17%),
considerable proportions of current smokers (19.74%) and
alcohol users (23.59%), and a relatively small proportion of
vitamin B supplementation users (8.75%). The population
structure analysis using northern (CHB) and southern (CHS)
Chinese from the 1000 Genomes Project (McVean et al., 2012) as
reference indicated that most of our discovery individuals are
more likely to be northern Chinese (Supplementary Figure S1).
The tHCY level (median 11.95 μmol/L, mean 14.09 μmol/L, sd
8.64 μmol/L) was on average higher than that reported by Schurks
et al. in 44,147 Europeans (detailed sample characteristics was
provided in Supplementary Table S1). In this study, age, sex,
smoking, drinking, creatinine, vitamin B usage, and the first two
principal components were adjusted for their potential
confounding effects in association analyses.

A total of 89,131 quality-controlled, mostly coding autosomal
DNA variants were tested for association with tHCY. These
included those with minor allele count (MAC) >3 to detect
rare coding variants with large effects. The distribution of
genomic principal components (Supplementary Figure S2),
the genomic inflation factor (λ � 1.03), and the distribution of
the observed test statistics (Figure 1) did not reveal any evidence
for the presence of population substructure. The ExWAS
identified a total of 18 variants at two distinct loci showing
exome-wide significant association with tHCY (p < 5.0E−7,
Figure 1A; Table 1).

The first locus was on chromosome 1p36.22, consisting of 17
significant variants (Figure 2A; Table 1), and harbored eight
known genes: C1orf167,MTHFR, CLCN6, NPPA, NPPB, PLOD1,
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MFN2, and MIIP. This locus included the well-known missense
variant of MTHFR (rs1801133, C677T, β � 0.45, p � 1.3E−120,
Table 1), which was also the lead single-nucleotide
polymorphism (SNP) of this locus. In our sample, 18.5% had
the CC genotype ofMTHFR C677T, 46.7% had the CT genotype,
and 34.8% had the TT genotype. Individuals with the TT
genotype had an on average 46.22% higher tHCY level than
those with CC genotypes (17.4 vs. 11.9 μmol/L, p � 6.8E−60,
Supplementary Table S2), explaining 6.66% of the total
phenotype variance and 9.95% of the covariate-adjusted
phenotype variance. In the 1000 Genomes Project data (Li
et al., 2019), the geospatial distribution of the frequency of the
tHCY-increasing T allele showed a latitudinal inverse-U-shaped
gradient in Europe and EAS continents (Supplementary Figure
S3), with the highest frequency observed around latitude of 40°

north (44–46%), i.e., southern Europe (Spain and Italy) and
northern China. The frequency of homozygote TT genotype
showed a similar geospatial distribution with a pronounced
frequency (17–24%) around latitude 40° north (Figure 3). In
China, the frequency of the TT genotype showed a remarkable
difference between northern China around latitude 40° (22% in
CHB from the 1000 Genomes Project) and southern China
around latitude 20° (9% in CHS from the 1000 Genomes
Project, Figure 3A), which largely coincides with the higher
HHCY prevalence in northern China.

The second locus was detected on chromosome 16q24.3
consisting of only one exome-wide significant signal, which
was an exon variant of DPEP1 (rs1126464, β � −0.12, p �
2.2E−8, Figure 2B; Table 1). rs1126464 has been previously
associated with tHCY in Europeans and Filipinos (Pare et al.,

FIGURE1 |Results of ExWAS analysis and conditional analysis of tHCY in discovery cohort. (A)Manhattan plot andQ-Q plot of the ExWAS. (B)Manhattan plot and
Q-Q plot of the conditional analysis. For Manhattan plots, the horizontal axes are genomic location (GRCh37.p13) of all the tested SNPs. The vertical axes are the
negative log of p-values. Red lines indicate the threshold for exome-wide significance at 5E−7. ExWAS, exome-wide association study; tHCY, total homocysteine; SNP,
single-nucleotide polymorphism.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7176213

Liu et al. ExWAS of tHCY in a Chinese Population

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2009; Lange et al., 2010; van Meurs et al., 2013) with similar allele
effects as observed in our sample. This SNP was also associated
with waist circumference, hypertension, and osteoarthritis in
previous studies. Individuals homozygous for the major allele
G (mean tHCY � 14.1 μmol/L, Supplementary Table S2) had an
on average 11.02% higher tHCY level than those with CC
genotypes (mean tHCY � 12.7 μmol/L, p � 1.5E−6,
Supplementary Table S2). The frequency of the tHCY
decreasing C allele also showed large differences between
major populations (36% in EASs, 25% in Europeans and 8%
in AFRs, Table 1; Supplementary Figure S4). Besides, according
to the GTEx database (GTEx Consortium, 2013), rs1126464 is a
cis-regulated expression quantitative trait locus (eQTL) of
CDK10, CHMP1A, FANCA, and VPS9D1 in multiple tissues,
such as whole blood, tibial artery, skin, and thyroid
(Supplementary Table S3; Supplementary Figure S5).

Conditional Analysis of the Genotypes of
Top-Associated Single-Nucleotide
Polymorphisms
Next, we repeated the exome scan conditioning on the
genotypes of MTHFR C677T and DPEP1 rs1126464, and we
identified one novel rare missense variant showing exome-wide
significant association with tHCY (rs138189536, MTHFR
C136T, p � 2.18E−3 before conditional analysis, and p �
6.53E−10 after conditional analysis, Figures 1B, 2C, 2D;
Table 1). This C136T variant was in weak linkage
disequilibrium (LD) with the C677T variant (r2 � 0.014). A
previous enzyme kinetics experiment has shown that the

arginine to tryptophan substitution at C136T led to a
reduced enzymatic activity of MTHFR, which provided direct
evidence for a functional role of this variant, consistent with our
observation of the presence of multiple causal mutations at this
locus (Tan et al., 2021; Weile et al., 2021). A haplotype analysis
further showed that these two alleles (677T and 136T) together
affect tHCY in a compound heterozygote manner (Figure 4).
The compound heterozygote of 677T and 136T and the
homozygote 677T carriers had on average 43.4% increased
tHCY than had the wild-type and any-heterozygote carriers
(17.5 vs. 12.2 μmol/L, Figure 4), and carriers of compound
heterozygote of C136T and C677T had a slightly (1.5%)
increased tHCY compared with homozygote 677T and 136C
carriers (17.7 vs. 17.5 μmol/L, Figure 4). Note that the
homozygote 136T genotype was not observed by previous
studies due to its low frequency in EASs and its absence in
non-Asian populations, which also explained the less significant
association observed for C136T relative to C677T. The 136T
allele was rare in our sample (1% in both discovery and replication
samples, Table 1) as well as in the EAS sample from the 1000
Genomes Project (0.2%,Table 1). This allele is absent in non-Asian
populations, which may explain the failure of previous GWASs in
detecting its effect (frequency of C136T was 0 in both EUR and
AFR from the 1000 Genomes Project, Table 1).

Replication in an Independent Chinese
Cohort
A replication study was conducted in a total of 668 individuals of
Chinese Han origin (Supplementary Table S4). As expected,

TABLE 1 | Exome-wide significant variants associated with tHCY levels from ExWAS.

Discovery (N = 5,175) Replication (N = 668) fEA in 1000 Genomes
Project

SNP Gene Chr MBp EA OA fEA BETA p fEA BETA p EAS EUR AFR

ExWAS
rs4845881 C1orf167 1 11.83 G A 0.19 −0.21 3.20E−17 0.27 0.31 0.52
rs4846049 MTHFR 1 11.85 T G 0.15 −0.28 2.83E−24 0.23 0.32 0.53
rs2274976 MTHFR 1 11.85 T C 0.06 −0.32 8.15E−14 0.12 0.03 0.02
rs1801133 MTHFR 1 11.86 T C 0.58 0.45 1.26E−120 0.55 0.41 1.66E−13 0.3 0.36 0.09
rs17367504 MTHFR 1 11.86 G A 0.06 −0.31 1.57E−13 0.12 0.14 0.11
rs13306561 MTHFR 1 11.87 G A 0.06 −0.31 1.47E−13 0.13 0.14 0.24
rs17037425 CLCN6 1 11.87 A G 0.06 −0.31 1.11E−13 0.13 0.12 0.21
rs1023252 CLCN6 1 11.9 T G 0.14 −0.28 4.93E−23 0.22 0.28 0.17
rs5063 NPPA 1 11.91 T C 0.06 −0.29 5.12E−12 0.12 0.03 0.06
rs198388 NPPB 1 11.92 T C 0.13 −0.19 1.69E−11 0.2 0.43 0.64
rs12406089 NPPB 1 11.92 G C 0.12 −0.22 1.71E−13 0.19 0.34 0.39
rs6676300 NPPB 1 11.93 G A 0.14 −0.18 1.85E−10 0.21 0.37 0.63
rs11804222 NPPB 1 11.94 A G 0.04 −0.29 5.01E−08 0.05 0.1 0.23
rs17037526 NPPB 1 11.96 T C 0.37 −0.2 1.60E−23 0.48 0.34 0.26
rs7551175 PLOD1 1 12.01 A G 0.17 −0.15 1.45E−08 0.27 0.15 0.57
rs2336384 MFN2 1 12.05 G T 0.48 0.2 2.00E−24 0.37 0.34 0.31
rs2295283 MIIP 1 12.08 G A 0.49 −0.14 1.68E−12 0.45 0.27 0.2
rs1126464 DPEP1 16 89.7 C G 0.32 −0.12 2.22E−08 0.29 −0.11 0.048 0.36 0.25 0.08

aConditional analysis
rs138189536 MTHFR 1 11.86 T C 0.01 0.57 6.53E−10 0.01 0.75 9.80E−03 2.00E−03 0 0

Note. All variants with p < 5E−7 in discovery ExWAS and conditional analysis, and replication results of the three lead SNPs (rs1801133, rs1126464 and rs138189536) are shown.
Allele frequencies in East Asians (EAS), Europeans (EUR), and Africans (AFR) were obtained from the 1000 Genomes Project.
EA, effect allele; OA, other allele; fEA, frequency of effect allele; ExWAS, exome-wide association study; tHCY, total homocysteine; SNP, single-nucleotide polymorphism.
aAssociation result after conditioning on the genotypes of rs1801133 and rs1126464.
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MTHFR C677T was again highly significantly associated with
tHCY with a similar effect size as observed in the discovery
ExWAS (β � 0.41, p � 1.7E−13, Table 1). The frequency of

homozygote 677TT genotype in replication sample (32%) was
similar as observed in the discovery sample. The 16q24.3
rs1126464 in DPEP1 showed a nominally significant

FIGURE 2 | Association of two loci significantly associate with tHCY. Regional association plots were generated by Locuszoom of 1p36.22 and 16q24.3 of the
results of ExWAS (A and B) and conditional analysis (C and D) using linkage disequilibrium information from the November 2014 release of the 1000 Genomes Project
ASN samples. The index SNP in each region is shown as a purple diamond. Genes in the region and LD heatmap (r2) patterns according to the 1000 Genomes Project
EAS dataset are aligned on the bottom. tHCY, total homocysteine; ExWAS, exome-wide association study; SNP, single-nucleotide polymorphism; LD, linkage
disequilibrium.

FIGURE 3 |Worldwide prevalence patterns for genotypes ofMTHFR C677T (rs1801133). (A)Map displaying the geospatial distribution of the prevalence patterns
for genotypes ofMTHFRC677T across the world. Themapwas drawn based on the genotypes of 2,504 subjects obtained from the 1000 Genomes Project datasets for
this SNP. The pie denotes the sampling locations. (B) The frequency of TT genotype ofMTHFR C677T based on the genotypes of East Asians and Europeans obtained
from the 1000 Genomes Project datasets and the corresponding latitude of each population. SNP, single-nucleotide polymorphism.
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association with tHCY, and its allele effect was similar to that
observed in the discovery ExWAS (β � −0.11, p � 0.048, Table 1).
Conditioning on the genotype of MTHFR C677T and DPEP1
rs1126464, we successfully replicated the C136T with a similar
effect size as observed in the discovery ExWAS (β � 0.75, p �
9.8E−3, Table 1).

Multivariable and Prediction Analyses
A multiple regression analysis including sex, age, and the three
abovementioned variants (MTHFR C677T, MTHFR C136T,
and DPEP1 rs1126464) revealed that these variables together
explained 18.6% of tHCY variance in the discovery individuals
(Table 2). We then constructed linear and logistic models in
the discovery sample by including sex and age as predictors
with or without the three identified variants and used these
models to predict the tHCY levels and the HHCY status
(defined as tHCY >15 μmol/L) in the replication sample.
The linear model consisting of sex, age, and the three

variants provided a higher accuracy in explaining tHCY
levels (R2 � 0.14) than did the model without the three
variants (R2 � 0.05). The logistic model consisting of sex,
age, and the three variants also provided a higher prediction
accuracy (area under the receiver operating characteristic
(ROC) curve (AUC) � 0.74, Figure 5A) in predicting
HHCY status (defined with tHCY ≥15 μmol/L) than did the
model without the three variants (AUC � 0.68, Figure 5A).
Although the AUC values were lower than a clinically desired
level (AUC � 0.85) for diagnosis, our prediction model
consisting of sex, age, and the three variants provided fairly
accurate prediction results for a good proportion of
individuals, that is, individuals with predicted probabilities
of HHCY <0.2 or >0.8 (34.9% < 0.2 and 5.8% > 0.8, Figure 5B;
also see Supplementary Table S5). In practice, our model may
provide an informative test for a total of 40.7% of these
individuals with predicted probabilities of HHCY <0.2 or
>0.8 but less informative for the rest.

DISCUSSION

This study represents the first genome scan of tHCY in a well-
sized population of Chinese Han origin. The extraordinary
large effect of MTHFR C677T on tHCY was confirmed in
Chinese populations. The geospatial distribution of the
frequency of the 677T homozygous genotype is consistent
with the HHCY incidence in China, serving as a
supplementary explanation for the hypothesis that folate
inadequate intake accounts for the high prevalence of
HHCY in northern China (Hao et al., 2003; Yang et al.,
2013; Yang et al., 2014). Importantly, we detected the
presence of multiple causal mutations at MTHFR by
identifying a rare EAS-specific missense mutation (MTHFR
C136T), which together with C677T affects tHCY in a
compound heterozygote manner. This emphasized the need
of sequence of the entire gene in genetic testing for HHCY. We
also verified the effect of a known tHCY-associated exon
variant of DPEP1 in Chinese populations. Using these three
variants, we proposed a risk assessment model of HHCY,
which may be informative for approximately 40% of
Chinese individuals.

We observed the strongest evidences for association between
MTHFR C677T and tHCY in both of the discovery and
replication samples. This variant alone explained
approximately 10.0% of the total covariate-adjusted variance of

FIGURE 4 | Frequency of diplotypes and the mean tHCY level in the
discovery sample. MTHFR C677T is indicated in the green background, and
MTHFR C136T is indicated in the orange background. Missense alleles 677T
and 136T are indicated in red color. tHCY, total homocysteine.

TABLE 2 | Explained variance of tHCY by three identified SNPs.

Marker Gene Function Chr MBp EA OA Beta SE p R2

Sex (female) −5.79 0.22 1.66E−143 0.114
Age (years) 0.04 0.01 6.70E−04 0.115
rs1801133 MTHFR CNS (C677T) 1 11.86 C T −3.16 0.15 3.65E−94 0.181
rs138189536 MTHFR CNS (C136T) 1 11.86 T C 3.52 0.74 2.10E−06 0.185
rs1126464 DPEP1 CNS (E351Q) 16 89.70 C G −0.51 0.16 1.41E−03 0.186

Note. R2, accumulative R2 while the current marker is included in a multiple regression model; CNS, coding nonsynonymous SNP; EA and OA, the effect allele and the other allele,
respectively; tHCY, total homocysteine; SNP, single-nucleotide polymorphism.
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tHCY in the discovery sample. In our study, the tHCY level of the
homozygous 677T carriers was on average 50% higher than the
wild-type carriers, consistent with the findings from non-East
Asian populations. Besides its effect on tHCY, the 677T allele has
also been reported to affect vitamin B9 (folate) and B12
concentrations. MTHFR irreversibly reduces 5,10-MTHF to 5-
MTHF, and 5-MTHF was converted to the tetrahydrofolate
(THF) form of folate during the conversion of HCY to
methionine. Further, function studies have revealed that
MTHFR C677T results in ∼70% decrease of enzyme activity
and thereby accompanied by decreased plasma folate level and
increased tHCY level (Scott and Weir, 1981; Liew and Gupta,
2015).

C136T has been reported as a missense mutation of MTHFR,
which may increase the occurrence and recurrence of pulmonary
embolism (Tan et al., 2021). To our knowledge, this is the first
genome scan revealing the influence ofMTHFR C136T on tHCY.
It is noticeable that C136T is only present in EASs, highlighting
the importance of well-sized association study on tHCY in
Chinese. C136T and C677T together influence tHCY in a
compound heterozygote manner, consistent with the role as
missense variants of both C136T and C677T in reducing the
activity of MTHFR enzyme, supporting the previous findings of
the existence of multiple causal alleles on MTHFR (Burda et al.,
2015). Clearly, sequencing the entire gene is preferred for genetic
testing involving MTHFR.

HHCY is a strong risk factor of cardiovascular and
cerebrovascular diseases, type 2 diabetes, and cancers (Nygard
et al., 1995; Refsum et al., 1998; Schurks et al., 2008; Mansoori
et al., 2012; Ganguly and Alam, 2015; Pinna et al., 2018; Hasan
et al., 2019; Ji et al., 2019). The prevalence of HHCY is very high in
China, particularly in northern China (Yang et al., 2014), which

has been hypothesized to account for an increased risk of multiple
diseases in northern China. Previous epidemiological studies have
revealed that the high prevalence of HHCY was likely due to the
inadequate intake of folate. In this study, we observed that the
frequency of homozygous MTHFR 677TT genotype is as high as
0.32 to 0.35 in northern China, compared with 0.09 in southern
China. This observation may serve as an alternative or
supplementary explanation of the large difference of HHCY
prevalence between northern and southern China. The
observation that 677T being a “bad” allele and at the same
time a major allele in northern China suggested the presence
of selective pressures. Previous population genetic studies have
suggested a role of natural selection in shaping the latitudinal
inverse U-shaped gradient of C677T, which may involve factors
such as regional climate, UV radiation, and folate intake (Pepe
et al., 1998; Bauduer and Lacombe, 2005; Wang et al., 2012; Li
et al., 2015). Compared with low-latitudes people living under
strong UV, people living in mid-latitudes are less likely to
undergo photolysis of in vivo folate. Compared with people
living at high latitudes with sunlight deficiency and less
vegetable foods, people living in mid-latitudes can improve
their body folate status through dietary intake. Under these
favorable conditions, the 677TT genotype can be preserved to
the maximum extent. However, the exact mechanism underlying
the adaption of an increased level of tHCY remains elusive.

The current study has several strengths. First, our study is the
first ExWAS of tHCY in a well-sized Chinese population, based
on which we could confirm the effects of known alleles identified
in other populations and identify novel EAS-specific variants
explaining additional tHCY variance. Second, we performed a
replication study in an independent sample and fully adjusted
potential confounders to ensure true positive findings. Third, we

FIGURE 5 | Prediction results of HHCY prediction in replication samples (N � 668). (A) Receiver operating characteristic curves for predicting HHCY status of
prediction models considering sex and age as predictors with three identified SNPs (green line) or without three identified SNPs (blue line). (B) Histogram of predicted
probability overplayed with percentage of HHCY in each probability bin (prediction model based on sex, age, and three identified variants as predictors). HHCY,
hyperhomocysteinemia; SNP, single-nucleotide polymorphism.
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used an exome-wide conditional analysis method, and our results
emphasized its efficiency in detecting the presence of multiple
causal mutations. This study also has several limitations. The
coverage of our exome-genotyping data is much lower than that
whole genome sequencing data, so we could not examine the
effects of some previously reported tHCY-associated SNPs in our
study. The participants in our study were mostly from northern
China (Beijing); without southern Chinese samples, we could not
directly examine the relationship between the geographic
distribution of 677T and HHCY incidence in China. Future
studies with a higher geographical coverage together with the
folate intake information would help to refine the hypothesis of
geographic distribution of HHCY incidence in China.

In conclusion, the ExWAS of tHCY in a Chinese population
detected the presence of multiple causal mutations at theMTHFR
locus by identifying an EAS-specific missense variant C163T,
which together with the well-known 677T allele affects tHCY in a
compound heterozygote manner. The geospatial distribution of
homozygote 677T genotype coincides with that of HHCY
incidence in China, supplementing the current hypothesis
about the high HHCY risk in northern China due to
insufficient folate intake. A logistic model consisting of sex,
age, and three DNA variants constructed in the discovery
sample could fairly accurately predict the HHCY risk in the
testing sample.

MATERIAL AND METHODS

Discovery Cohort
The establishment of the discovery cohort has been described in
details previously (Fan et al., 2016). In brief, 9,540 participants
aged ≥40 years were recruited from the Gucheng and
Pingguoyuan communities of Shijingshan District in Beijing of
China. Baseline survey was investigated from December 2011 to
April 2012 as described previously (Fan et al., 2016). Among
them, a total of 6,480 subjects were genotyped by ExomeChip.
To obtain high-quality genotypes, strict criteria were applied to
filter out low-quality genotypes. We undertook plate-,
individual-, and variant-level checks to exclude poor-quality
genotype calls from the dataset. A total of 5,959 samples passed
the above quality control. We excluded 702 participants based
on the identity by descent (IBD) analysis conducted in our
samples. We used pi-hat ≥0.35 as cutoff to remove higher than
the first degree (based on the pi-hat distribution, the unbiased
estimate is 0.5) of close relatives by keeping the sample with the
highest call rate for each family group. We then excluded 82
participants who did not have tHCY data. Finally, 5,175 eligible
participants of Chinese Han ancestry were included in this
analysis.

Replication Sample
Two cohorts, myocardial infarction (MI) cohort and Chinese
Academy of Sciences (CAS) cohort, were included in the
replication stage. Both cohorts were from Beijing, China.
Participants of MI cohort were hospitalized with MI in
Department of Cardiology, Peking University First Hospital,

from February 2005 to May 2013. Initially, a total of 593
participants had their genotypes tested using customized
ExomeChip. The details of this cohort, methods, and primary
results have been reported elsewhere. After data quality controls
and exclusion of those without tHCY and other missing
covariates, a total of 410 eligible Chinese Han ancestry MI
patients were included in this analysis. The CAS participants
consisted of 273 employees of CAS who were invited to join in a
personalized health management during their annually physical
examination. tHCY measurements and epidemiological
information were collected before the health management
period. After data quality controls, a total of 258 eligible
Chinese Han ancestry participants were included in this
analysis.

Data Collection
Information, including demographic status, health behavior,
disease history, and medical use, was collected using a
standardized questionnaire in the discovery cohort and CAS
cohort and extracted from in-hospital electronic medical
records in the MI cohort.

Venous blood samples were obtained by venipuncture for all
participants after overnight fasting. Plasma samples separated
within 30 min and extracted DNA samples were stored at −80°C
until measurement. For discovery sample, plasma tHCY was
measured using an autobiochemical analyzer (AU480;
Beckman Coulter, Brea, CA, United States) with the
circulating enzymatic method in the core laboratory of the
National Clinical Research Center for Kidney Disease of
Nanfang Hospital in Guangzhou, China. The details of this
method were subscribed in previous study (Momin et al.,
2017). Serum creatinine (Scr) at baseline was measured on the
Roche C8000 Automatic Analyzer (Roche Diagnostics, Basel,
Switzerland) in the laboratory of the Chinese PLA General
Hospital.

Genotype and Quality Controls
All subjects were genotyped using the Asian ExomeChip, a
specially designed exome array with a custom content of
58,317 variants on top of the standard Infinium HumanExome
BeadChip (Illumina, San Diego, CA, United States), which
integrated a total of 302,218 variants. Details of the Asian
ExomeChip design has been described in previous studies
(Zhang et al., 2014; Tang et al., 2015). In brief, the original
design of the exome array includes 242,901 markers, with the
majority of over 200K coding variants identified from ∼12,000
sequenced genomes and exomes of primarily European ancestry.
The underrepresentation of non-European genomes in the
original design limited the coverage of low-frequency variants
in Asian populations. To allow the comprehensive genotyping
across the full allele frequency spectrum, a custom panel of ∼30K
nonsense/missense variants were added based on three
independent Asian sequencing datasets of ∼1,000 Chinese
samples.

A total of 5,959 individuals passed the individual-based QC
criteria for filtering, which included a call rate of <99%, sex
mismatch, and excess heterozygosity. We also performed
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variant-level quality control by excluding variants that have
<99% genotype call rate or deviation from the Hardy–Weinberg
equilibrium (p < 1E−4). In total, 282,456 variants passed the
quality control. Among them, 119,020 variants were
polymorphic variants in our data. Finally, after exclusion of
related samples using a greedy algorithm (Sun et al., 2021) and
variants with MAC ≤3, a total of 5,175 unrelated individuals
with tHCY data and 89,131 autosomal variants were retained in
further analysis.

Statistical Analysis
The population structure analysis inferred by ADMIXTURE
software (Alexander et al., 2009) of the discovery samples were
conducted with CHB and CHS from the 1000 Genomes Project as
reference. We ran ADMIXTURE using an LD pruned marker set
of 25,121 variants, assuming 2 (K � 2) genetic clusters. To
normalize the plasma tHCY, residuals were obtained using
linear regression after adjusting for age, sex, smoking,
drinking, creatinine, vitamin usage, and the first two
principal components. Then inverse normal transformation
residuals were created for analysis. The ExWAS of residuals
of tHCY was carried out in PLINK v1.9 (Purcell et al., 2007)
using linear regression model, assuming an additive allele effect.
The genomic control inflation factor was close to 1.0 (λ � 1.03)
in ExWAS and was not further considered. The p-values equal
to or smaller than 5E−7 based on Bonferroni correction of
89,131 autosomal variants were considered as exome-wide
significant. Conditional analysis of discovery ExWAS result
was performed using PLINK v1.9 (Purcell et al., 2007).
Results of discovery ExWAS and conditional analysis were
visualized by Manhattan and Q–Q plots generated by an R
package qqman (Turner, 2018). Regional LD analysis was
conducted using a self-written R script LDplot using EAS
data from the 1000 Genomes Project. Regional Manhattan
plots were created by LocusZoom (Pruim et al., 2010) with
LD population according to the 1000 Genomes Project ASN
dataset. We conducted linear regression analysis using each
identified variant as the explanatory variable, and the fitness R2
from this model was considered as the phenotype variance
explained by the variants.

Identified variants were annotated using ANNOVAR (Version
2017-07–17) (Wang et al., 2010) with respect to the hg19 genome
build. The allele frequencies of candidate variants in different
populations were examined in the 2,504 subjects of the 1000
Genomes Project and visualized using R. The significant
expression eQTL effects of identified SNP in all available
tissues were annotated using the data from The Genotype-
Tissue Expression project (GTEx, http://www.gtexportal.org/
home/, data source: GTEx Analysis Release V8 (dbGaP
Accession phs000424.v8.p2) (GTEx Consortium, 2013). The
nominal p-value of each variant–gene pair was calculated from
the genome-wide empirical p-value and the beta distribution
model of each gene. The variant–gene pairs with a p-value lower
than the gene-level threshold (0.05 false discovery rate) were
considered significant enough to be included in the list of
variant–gene pairs. All the variants with exome-wide
significant association in the discovery analysis and

conditional analysis were selected for replication with a focus
on the top-associated SNP per region. The replication was
carried out separately in a total of 668 samples, using linear
regression adjusted for age, sex, smoking, and drinking,
assuming an additive allele effect. For replication study, the
significance level was set to 0.017 based on Bonferroni
correction of three significant variants. Explained phenotypic
variance was derived for identified independent associated
variants using backward stepwise linear regression analyses.
In order to check if the compound heterozygote, rather than
double heterozygotes, may indeed explain the identified
association, we inferred haplotypes using the expectation
maximization algorithm implemented in R library haplo.stat
(Schaid et al., 2002).

Fine-tuned individual-level data analyses were conducted in
5,175 unrelated Chinese individuals from discovery stage. HHCY
status was defined with tHCY >15 μmol/L in both discovery
samples and replication samples. A multiple linear regression
analysis was conducted to access the independent effect of three
variants. The model considers three identified variants in
discovery analysis and conditional analysis (MTHFR C677T,
MTHFR C136T and DPEP1 rs1126464), together with sex and
age as explanatory factors. We then applied multiple linear
regression models including sex and age as predictors with or
without the three variants developed in the discovery samples to
the replication samples (N � 668) for tHCY level prediction.
Prediction accuracy was estimated using R-squared correlation
(R2) with tHCY phenotype. For HHCY risk prediction, multiple
logistic regression models including sex and age as predictors
with or without the three variants developed in the discovery
samples were applied to the replication samples. Prediction
accuracy was estimated using the AUC. AUC is the integral of
ROC curves and ranges from 0.5 representing total lack of
prediction (no better than flipping a coin) to 1.0 representing
perfect prediction. Sensitivities and specificities were calculated
using confusion matrices considering the predicted probability >
t as the predicted shape type, where t optimized the sum of
sensitivity and specificity.
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