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Abstract

During the stationary part of neuronal spiking response, the stimulus can be encoded in the firing rate, but also in the
statistical structure of the interspike intervals. We propose and discuss two information-based measures of statistical
dispersion of the interspike interval distribution, the entropy-based dispersion and Fisher information-based dispersion. The
measures are compared with the frequently used concept of standard deviation. It is shown, that standard deviation is not
well suited to quantify some aspects of dispersion that are often expected intuitively, such as the degree of randomness.
The proposed dispersion measures are not entirely independent, although each describes the interspike intervals from a
different point of view. The new methods are applied to common models of neuronal firing and to both simulated and
experimental data.
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Introduction

One of the most fundamental problems in computational

biology is the problem of neuronal coding, the question of how

information is represented in neuronal signals [1,2]. The discharge

activity of neurons is composed of series of events called action

potentials (or spikes). It is widely accepted, that information in

neuronal systems is transferred by employing these spikes. The

shapes and durations of individual spikes are very similar,

therefore it is generally assumed that the form of the action

potential is not important in information transmission. When a

stimulus is presented, the responding neuron usually produces a

transient response followed by a sustained one, which is often

treated as stationary in time [3] . The firing rate of the sustained

part of the response depends on the stimulus, however, the

stimulus can be also ‘‘encoded’’ in the statistical structure of the

interspike intervals (ISI) by the temporal coding [1,4–6].

While the description of neuronal activity from the rate coding

point of view is relatively straightforward [7] , the temporal code

allows infinite number of alternatives. Spike trains with equal firing

rates may turn out to be different under various measures of their

statistical structure beyond the firing rate. For example, even more

than a half century ago, coefficient of variation (cv) of ISIs was

reported to encode information about light intensity in adapted

cells of the horseshoe crab [1,8]. Similarly, changes in the level of

bursting activity, also characterized by cv, are reported to be the

proper code for edge detection in certain units of visual cortex [9].

In general, the bursting nature of neuronal firing is commonly

described by cv [10].

In order to describe and analyze the way information is

represented in spike trains, methods for their mutual comparison

are needed. Although the ISI probability density function (or

histogram of data) usually provides a complete information, one

needs quantitative methods [11–13], especially since a visual

inspection of the density shape can be misleading. Here we restrict

our attention to the measures of the neuronal firing precision, e.g.,

of the the ISI distribution dispersion. We investigate the properties

of the standard deviation, the entropy-based dispersion and the

Fisher information-based dispersion. Although standard deviation

is used ubiquitously and is almost synonymous to the ‘‘measure of

statistical dispersion’’, we show, that it is not well suited to quantify

some aspects of spiking activity that are often expected intuitively

[4,14]. We will show, that the diversity or randomness of ISIs is

better described by entropy-based or Fisher information-based

dispersions. The difference between entropy and Fisher informa-

tion descriptions lies in the fact that the Fisher information

describes how ‘‘smooth’’ is the distribution, while the entropy

describes how ‘‘even’’ it is. The ‘‘smoothness’’ and ‘‘evenness’’

might be at first thought interchangeable, but we show that it is

not the case.

The illustration of the proposed methods is provided on simple

and frequently employed models of stationary neuronal activity,

given by lognormal, gamma and inverse Gaussian distributions of

ISIs. Finally, we apply the theory on experimental data obtained

by recording the spontaneous activity of rat olfactory neurons [15].

Methods

Statistical methods and methods of probability theory and

stochastic point processes are widely applied to describe and to

analyze neuronal firing [16–18]. The probabilistic description of

spiking times results from the fact, that the positions of spikes

cannot be predicted exactly, only the probability that the spike

occurs is given [18]. Thus, under suitable conditions, the ISI or

time-to-first spike after the stimulus onset can be described by a

continuous positive random variable. We denote this random

variable as T . Complete description of T is given by its probability

density function f (t), defined on ½0,?).

The (statistical) dispersion is a characteristics of ‘‘variability’’ or

‘‘spread’’ of the distribution of the random variable T . There are
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different dispersion measures described in the literature and

employed in different contexts, e.g., standard deviation, inter-

quartile range [19], mean difference [20] or the coefficient of local

variance [13]. The measures have the same physical units as T .

Standard deviation
By far, the most common measure of dispersion is the standard

deviation, s, defined as the square root of the second central

moment of the distribution. The corresponding relative dispersion

measure is known as the coefficient of variation, cv,

cv~
s

E Tð Þ , ð1Þ

where E Tð Þ is the mean value of T . Exponential distribution

implies cv~1, however, this values of cv may occur for other

distributions as well.

Entropy based dispersion
The randomness of a probability distribution can be defined as

the measure of ‘‘choice’’ of possible outcomes. Bigger choice

results, intuitively, in greater randomness. For discrete probability

distributions such measure of randomness is provided by the

Shannon entropy, which is known to be a unique, consistent with

certain natural requirements [21]. The Shannon entropy is

generally infinite for continuous variables, and therefore it cannot

be used for our purposes. Formally, the notion of differential entropy,

h(f ), of probability density function f (t), is introduced as

h(f )~{

ð
T

f (t) ln f (t)dt, ð2Þ

however, the value h(f ) can be positive or negative and cannot be

by itself used as a measure of randomness [22].

In order to obtain a properly behaving quantity, the entropy-

based dispersion, sh, was proposed in [23],

sh~exp½h(f ){1�: ð3Þ

The interpretation of sh relies on the asymptotic equipartition

property theorem and the entropy power concept [22]. Namely,

since for the exponential probability density function

fexp(t)~1=E Tð Þ exp½{t=E Tð Þ� holds h(fexp)~1zE Tð Þ we see,

that sh is the standard deviation of such exponential distribution,

which satisfies h(fexp)~h(f ). Informally, the value of sh is bigger

for those random variables, which generate more diverse (or

unpredictable) realizations.

Analogously to Eq. (1), we define the relative entropy-based

dispersion coefficient, ch, as

ch~
sh

E Tð Þ : ð4Þ

Note, that Eq. (4) can be equivalently written as

ch~exp {DKL½f (t)Efexp(t)�
� �

, ð5Þ

where E Tð Þ is the mean value of T and

DKL½f (t)Efexp(t)�~
ð

T

f (t) ln
f (t)

fexp(t)
dt ð6Þ

is the Kullback-Leibler distance of the probability density f (t)
from the exponential density with the same mean as f (t). From

Eq. (5) follows that ch is essentially (up to the scale) equivalent to

the measure of spiking randomness, g, proposed in [4], since

ch~eg{1.

From the properties of the Kullback-Leibler distance in Eq. (5)

follows, that the maximum value of ch is ch~1, which occurs if

and only if f (t) is exponential [22].

Fisher information based dispersion
The Fisher information is a measure of the minimum error in

estimating a parameter of a distribution. In a special case of the

location parameter, the Fisher information J(f ) does not depend

on the parameter itself, and can be expressed directly as a

functional of the density f (t) ([22], p.671),

J(f )~

ð?
0

L ln f (t)

Lt

� �2

f (t)dt: ð7Þ

We illustrate that the value of J(f ) is small for smoothly-shaped

probability densities. Any locally steep slope or the presence of

modes in the shape of f (t) increases J(f ) [24]. Due to the

derivative in Eq. (7), certain regularity conditions are required on

f (t). In this paper we consider only the densities for which J(f )
takes finite values. Further theoretical considerations are however

beyond the scope of this paper.

The units of J(f ) correspond to the inverse of the squared units

of T , therefore we propose the Fisher information-based

dispersion measure, sJ , as

sJ~
1ffiffiffiffiffiffiffiffiffi
J(f )

p : ð8Þ

In analogy with Eqns. (1) and (4) we define the relative dispersion

coefficient cJ as

cJ~
sJ

E Tð Þ : ð9Þ

For exponential distribution holds cJ~1, however, this value is

not specific only for the case f (t)~fexp(t).

Just as ch is related to the Kullback-Leibler distance by Eq. (5),

we note that J(f ) can be written as [25]

J(f )~
L2DKL½f (t{D)Ef (t)�

LD2

����
D~0

: ð10Þ

Although Eq. (10) is not suitable for evaluation of J(f ), it shows,

that both ch and cJ are connected on the fundamental level by the

concept of the Kullback-Leibler distance.

Basic properties of the proposed measures
Standard deviation (or cv) measures essentially how off-

centered, with respect to E Tð Þ, is the probability density of T
and it is sensitive to outlying values. On the other hand, cv does

not quantify how random, or unpredictable, are the outcomes of

T . Namely, high value of cv (high variability) does not indicate that

the possible values of T are distributed evenly [4]. On the other

hand, the value of sh (and ch) quantifies how evenly is the

probability distributed over ½0,?). The third measure, cJ , is

sensitive to the modes and steepness of slopes of the density (due to
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the dependence on the derivative of the probability density in Eq.

(7)). Since multimodal densities can be more evenly spread than

unimodal ones, the behavior of ch cannot be generally deduced

from cJ (and vice versa). The key features of the three considered

dispersion measures are illustrated in Fig. 1.

A cartoon with typical density shapes resulting from a

combination of cv, ch and cJ values range is shown in Fig. 2.

Very small value of cv inevitably results in a density shapes

concentrated around E Tð Þ, and correspondingly small values of ch

and cJ . The intermediate, cv^1, and upper range of cv offer more

variable density shapes, where cv and ch are not sufficient for their

classification and cJ can be employed for further description.

Note, that the number of possible scenarios is large and therefore

Fig. 2 is not exhaustive.

Results

Common distributions of interspike intervals
We choose three widely employed statistical models of ISIs:

gamma, inverse Gaussian and lognormal distributions, and

analyze them by means of the three described dispersion

coefficients cv, ch and cJ .

Gamma distribution is one of the most frequent statistical

descriptors of ISIs employed in analysis of experimental data

Figure 1. Illustration of the main features of the studied measures. Schematic example of a probability density function f (t) is shown.
Although the evenness of the density (described by ch) and its smoothness (described by cJ ) are related, the sensitivity of cJ to modes and slopes
enables it to differentiate shapes with otherwise equal cv and ch .
doi:10.1371/journal.pone.0021998.g001

Figure 2. Illustration of a classification tree of probability densities based on typical values of the dispersion measures. Note, that
not all combinations of values of cv,ch,cJ can appear. Selected identification signs or examples of corresponding distributions, which are typical but
not necessarily comprehensive, are written bellow the corresponding illustrative plots of densities.
doi:10.1371/journal.pone.0021998.g002
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[15,26,27]. Its probability density function parametrized by shape

parameter k and scale parameter h is

f (t)~
tk{1 expf{t=hg

C(k) hk
, ð11Þ

where C(z) is the gamma function [28]. The mean value of the

distribution is E Tð Þ~kh and the coefficient of variation is equal to

cv~1=
ffiffiffi
k
p

: ð12Þ

For cv~1, i.e. k~1, the gamma distribution becomes exponential

distribution. By parametrizing the density (11) by cv and

substituting it into Eqns. (4) and (9) we obtain the entropy-based

and Fisher information-based dispersion coefficients as functions

of cv,

ch~c2
v C(c{2

v ) exp
1z(c2

v{1)Y(c{2
v )

c2
v

{1

� 	
, ð13Þ

cJ~cv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{2c2

v

q
for 0vcvv

1ffiffiffi
2
p , ð14Þ

where Y(z)~ d
dz

lnC(z) is the digamma function [28]. For details

of the calculation of ch and cJ see Supporting Information S1.

Note, that the gamma density is not differentiable at t~0 for

cv§1=
ffiffiffi
2
p

, thus cJ is evaluated only for 0vcvv1=
ffiffiffi
2
p

.

The inverse Gaussian distribution is often used to describe

neural activity and fitted to experimentally observed ISIs

[26,29,30]. This distribution describes the spiking activity of a

stochastic variant of the perfect integrate-and-fire neuronal model

[18,31]. The probability density function of the inverse Gaussian

distribution parametrized by its mean, m~E Tð Þ, and scale

parameter s is

f (t)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2t3
p exp {

(t{m)2

2s2m2t

( )
: ð15Þ

The coefficient of variation is equal to

cv~
ffiffiffiffiffiffiffiffi
ms2

p
ð16Þ

and the other dispersion coefficients can be expressed as (see

Supporting Information S1)

ch~

ffiffiffiffiffiffi
2p

e

r
cv exp {

3 exp(c{2
v )K (1,0) { 1

2
,c{2

v


 �ffiffiffiffiffiffi
2p
p

cv

� 	
, ð17Þ

cJ~

ffiffiffi
2
p

cvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z9c2

vz21c4
vz21c6

v

p , ð18Þ

where K (1,0)(n,z) is the derivative of the modified Bessel function of

the second kind, K (1,0)(n,z)~ L
Ln K(n,z) [28].

The lognormal distribution of ISIs, with some exceptions [32], is

rarely presented as a result of a neuronal model. However, it

represents a common descriptor in experimental data analysis

[26,30]. The lognormal probability density function parametrized

by the mean, m, and standard deviation, s, of variable ln T is

f (t)~
1ffiffiffiffiffiffiffiffiffiffi

2ps2
p

t
exp {

(ln t{m)2

2s2

( )
: ð19Þ

In this parametrization, the mean of the lognormal distribution is

E Tð Þ~exp mzs2=2

 �

and the coefficient of variation is equal to

cv~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp s2ð Þ{1

q
: ð20Þ

The two other dispersion coefficients, expressed as functions of cv,

are (see Supporting Information S1)

ch~

ffiffiffiffiffiffi
2p

e

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(1zc2

v)

1zc2
v

s
, ð21Þ

cJ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(1zc2

v )

½1zc2
v �

3½1zln(1zc2
v)�

s
: ð22Þ

The dependence of ch on cv is shown in Fig. 3, the dependence

of cJ on cv is shown in Fig. 4, for all the three mentioned

distributions. Obviously, the dependencies are not linear (even not

monotonous) and thus neither ch nor cJ is equivalent to cv.

Maxima of ch and cJ occur for different cv values, confirming that

each of the proposed dispersion coefficients provides a different

point of view. We see, that both ch and cJ as functions of cv show a

‘‘\’’ shape with maxima around cv ¼: 1 (for ch) and around

cv ¼: 0:5 (for cJ ). There is a reason why the maxima of ch and cJ

tend to occur at these values of cv. It can be shown by the methods

of variational calculus, that there exists a unique distribution

maximizing ch: the exponential distribution for which cv~1. Since

some densities tend to resemble the exponential density if their cv

is close to 1, their maxima of ch occur near this cv value. Similarly,

there exists a unique density maximizing cJ ; it is given in terms of

the Airy functions with cv~0:44. Analogously, densities with

cv&0:5 may resemble this distribution and thus attain the

maximum of cJ there. However, there exist distributions which

does not attain the maximum of ch around cv~1 or the maximum

of cJ around cv~0:5. Detailed mathematical treatment of the ch-

and cJ -maximizing distributions is beyond the scope of the

manuscript and will be published elsewhere.

Note, that the plots of cJ against cv appear like a scaled version

of the plots of ch against cv, with the relative positions of the curves

for each distribution preserved (to certain extent). In particular,

while ch of the lognormal is always greater than ch of the inverse

Gaussian, the ordering is reversed for the cJ for cvw2:2.

The dependence of cJ on ch is plotted in Fig. 5. We observe,

that ch and cJ indeed do not describe the same qualities of the

distribution, since a unique ch value does not correspond to a

unique cJ value (and vice versa). Except for the gamma

distribution, the dependence between ch and cJ forms a closed

loop, where ch~cJ~0 for both cv?0 and cv??.

Additionally, just as ch and cJ are related to cv in Eqns. (13),

(14), (17), (18), (21) and (22), ch and cJ can also be related to higher

statistical moments. For example, the skewness c of the distribution

is defined as the ratio of the third central moment and the third

power of standard deviation. For gamma distribution holds

c~2cv, for inverse Gaussian c~3cv and for the lognormal

Variability Measures of Positive Random Variables
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c~c3
vz3cv. Thus the curves depicted in Fig. 3 and Fig. 4 would

retain their unimodal shapes if plotted in dependence on c.

Different distributions with equal cv and different ch (or cJ ) can

be found, and vice versa; see Fig. 3 (or Fig. 4) for examples.

Therefore, it cannot be said in general that ch, cJ are more

informative than cv. To provide an example in which cJ provides a

different view over cv and ch, we consider the folded normal

probability density with parameters a,bw0

f (t)~

ffiffiffiffiffiffiffiffi
2

b2p

s
1zerf

affiffiffi
2
p

b

� 
� �{1

exp {
(t{a)2

2b2

" #
: ð23Þ

The shapes of the folded normal probability density function, Eq.

(23), and gamma probability density function, Eq. (11), are

compared in Fig. 6 for cv~0:69. Although their values of ch are

very similar, the values of cJ are very different. The reason lies

mainly in the initial steep rise of the gamma density from zero.

Simulated data
To illustrate the accuracy of the estimators bchch and bcJcJ of

dispersion coefficients ch and cJ , we simulated spike trains with

gamma, inverse Gaussian and lognormal distributions of ISIs by

employing the R and STAR software packages [26,33]. In all the

simulations the mean ISI was fixed to 1, while the coefficient of

variation, cv, varied from 0:05 to 4:00 in steps of 0:05. In other

words, we generated random samples from the mentioned

distributions with given parameters. The spike trains represented

by sample point processes were constructed by using the generated

values as the time intervals (ISIs) between successive events

(spikes). Five thousand spike trains, each consisting of 100 ISIs,

were simulated for each of the values of cv and for each of the

three distributions.

In the first study, the parameters of the distributions were

estimated by the maximum likelihood method. For the gamma

distribution (11) the maximum likelihood estimators bkk and bhh
were found numerically (by minimizing the loglikelihood function).

For the inverse Gaussian distribution (15) the maximum likelihood

estimators were computed as

bmm~
1

n

Xn

i~1

ti, ð24Þ

Figure 3. Entropy-based dispersion coefficient, ch, in depen-
dence on the coefficient of variation, cv. Three interspike interval
models: gamma, inverse Gaussian and lognormal distribution, are
employed. Both cv and ch describe ‘‘spread’’ of the interspike intervals,
but from different points of view. Coefficient of variation, cv , quantifies
how off-centered is the mass of the probability density function,
whereas ch indicates how evenly is the mass distributed over all
possible values. For all the shown distributions holds ch~0 as cv?0 or
cv??.
doi:10.1371/journal.pone.0021998.g003

Figure 4. Fisher information-based dispersion coefficient, cJ , as
a function of the coefficient of variation, cv, for the same
distributions as in Fig. 3. The coefficient cJ grows as the average of
squared derivative of the probability density function (see Eq. (7))
becomes smaller, that means as the distribution of the interspike
intervals becomes more smooth. This confirms that ‘‘smoothness’’ and
‘‘evenness’’ of the distribution (compare with Fig. 3) are different
notions, although there are qualitative similarities: cJ~0 for cv?0 for all
shown distributions, and cJ~0 as cv?? for both lognormal and
inverse Gaussian distributions. Note, that dispersion coefficient cJ for
the gamma distribution can be calculated only for cvv1=

ffiffiffi
2
p
¼: 0:707.

doi:10.1371/journal.pone.0021998.g004

Figure 5. The dispersion coefficients ch and cJ for the same
distributions as in Figs. 3 and 4. The plot of dependencies between
the two dispersion coefficients form closed curve for both inverse
Gaussian and lognormal distribution. Starting from the origin and
moving clockwise, the points on the loop correspond to the values of cv

growing from 0 to infinity. For gamma distribution, cJ is a common
unimodal function of ch .
doi:10.1371/journal.pone.0021998.g005
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bs2s2~
1

n

Xn

i~1

1

ti

{
1bmm : ð25Þ

Similarly, for the lognormal distribution (19) of ISIs, maximum

likelihood estimators of the parameters are

bmm~
1

n

Xn

i~1

ln ti, ð26Þ

bs2s2~
1

n

Xn

i~1

ln ti{bmmð Þ2: ð27Þ

The values of coefficient of variation, cv, were calculated by

substitution of the maximum likelihood estimates into Eqns. (12),

(16) or (20). Consequently, the other two dispersion coefficients, bchch

and bcJcJ , were computed by substitution of the estimated cv into

Eqns. (13) and (14) for the gamma distribution, into Eqns. (17) and

(18) for the inverse Gaussian and into Eqns. (21) and (22) for the

lognormal distribution.

In the second study, the coefficient of variation was estimated by

commonly used moment method as the ratio of the sample

standard deviation, bss, and the sample mean, T ,

bcvcv~
bss
T

, ð28Þ

for all the mentioned distributions. Both the entropy-based and

Fisher information-based dispersion coefficients were then calcu-

lated by substitution of estimate (28) into the same equations for bchch

and bcJcJ as with maximum likelihood estimates, in accordance to the

respective ISI distribution.

The accuracy of the estimates bchch and bcJcJ was studied for both the

types of estimators. The results are depicted in Fig. 7 for the

maximum likelihood estimates, and in Fig. 8 for the moment

estimates. In both figures two measures of the accuracy of the

estimators bchch and bcJcJ are plotted against the true values of cv (those

used for simulation). The first is the bias of the estimate, b(ch),
defined as

b(ch)~
1

n

Xn

i~1

(cch,ich,i{ch), ð29Þ

where n~5000 is the number of simulated spike trains and cch,ich,i is

the value estimated from the i-th spike train. Analogous equation

is used for evaluation of b(cJ ). The latter measure is the relative

standard error, e(ch), expressed as the ratio of the standard

deviation and the mean value of the estimate,

e(ch)~
1

b(ch)zch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

i~1

cch,ich,i{½b(ch)zch�f g2

s
, ð30Þ

and analogously for e(cJ ). This characteristics says how accurate

the values of the estimator are when calculated from random

sample of given cv. The relative standard deviation with respect to

the mean value is dimensionless and therefore it is suitable for

comparisons of the quality of different estimators of ch and cJ .

We observe qualitative similarities in the dependencies of both

the bias and the relative standard error of the estimators bchch and bcJcJ .

In general, we see that the estimators are biased (see panels a, b in

Figs. 7 and 8), but the values of bias of the moment estimators are

approximately 10 times greater than the bias of the maximum

likelihood estimators. For small values of cv the dispersion

coefficients are underestimated and the bias becomes positive as

cv grows. For gamma distribution, the bias of bchch starts to decrease

to zero after it attains its maxima for cv ¼: 2, thus bchch seems to be

asymptotically unbiased estimator. On contrary, bias of bchch for

inverse Gaussian and lognormal distribution grows as cv grows.

There is also a difference between the maximum likelihood and

moment estimator bchch: in the maximum likelihood case the bias ofbchch for inverse Gaussian distribution is greater than for the

lognormal, the difference seems to be negligible in the case of the

moment estimator.

The bias of bcJcJ looks similar to the bias of bchch for small cv. But, in

contrary to bchch, the bias of bchch starts to decrease slowly for large

values of the coefficient of variation (cvw2). This fact can bee seen

for both the inverse Gaussian and lognormal distribution. In the

maximum likelihood case the bias of bcJcJ is almost the same for both

these distributions. The bias of bcJcJ is greater for the lognormal than

for inverse Gaussian distribution.

Focusing on the accuracy of the estimators (see panels c, d in

Figs. 7 and 8), the shapes of the relative standard deviations of bchch

and bcJcJ are very similar, regardless of the ISI distribution and the

method used for estimation. The relative standard deviations of bcJcJ

look like scaled versions of analogous characteristics of bchch. For

cv?0 they starts at a value less than 0:1.

As cv grows from zero, the relative standard deviation of the

estimators decrease and attains its minima at around cv ¼: 1:2 (forbchch) and cv ¼: 0:5 (for bcJcJ ), respectively. It should be noted that these

minima of relative standard deviations of bchch and bcJcJ coincide with

the maxima of ch and cJ (compare with Figs. 3 and 4). In other

words, the estimates bchch and bcJcJ are most accurate for cv values

where ch and cJ attain their theoretical maxima; but they are

slightly negatively biased. For larger values of cv the relative

standard deviations of bchch and bcJcJ are increasing functions of cv. In

addition, the values of relative standard deviations of the

Figure 6. Comparison of probability density functions with
E Tð Þ~1, identical cv and ch but different cJ . For the gamma
distribution holds cv~0:69, ch ¼: 0:88 and cJ ¼: 0:15. For the folded
normal distribution holds cv~0:69, ch ¼: 0:91 and cJ ¼: 1:15. The
difference between these two distributions (from the cJ point of view)
lies in the initial slope of the gamma probability density. For
comparison, the exponential density (cv~ch~cJ~1) is shown.
doi:10.1371/journal.pone.0021998.g006
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estimators for large cv values are ordered according to the ISI

distribution. The order of the estimator accuracy (from high to

low) is lognormal, inverse Gaussian and gamma distribution in the

case of bchch, and inverse Gaussian, lognormal and gamma

distribution in the case of bcJcJ .

Experimental data
In order to examine variability or irregularity of the ISIs in real

neurons using the proposed dispersion coefficients, we apply the

measures on experimental data. The data come from extracellular

recordings of olfactory receptor neurons of freely breathing and

tracheotomized rats. Spontaneous, single-unit action potentials were

recorded. The single unit nature of the recorded spikes was

controlled. The experimental procedures and data analysis were

published in [15], where complete details are given. The groups

are not distinguishable on the basis of firing frequency only. For

our purpose only samples with sufficient number of observations

were chosen. Analyzed dataset consists of 6 records of ISIs from

Figure 7. Dispersion coefficients estimation by using the maximum likelihood method from simulated data. Bias (panels a, b) and
relative standard deviations (panels c, d) of the dispersion coefficients estimates bchch (panels a, c) and bcJcJ (panels b, d), in dependence on the true value
of the coefficient of variation, cv , are shown. The depicted characteristics were estimated from simulated random samples drawn from inverse
Gaussian (circles), lognormal (crosses) and gamma distribution (triangles). Coefficient bcJcJ for gamma distribution (panels b, d) can be computed for
cvv0:707 only.
doi:10.1371/journal.pone.0021998.g007

Variability Measures of Positive Random Variables

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21998



freely breathing rats and 11 records from tracheotomized rats. The

sample sizes range from 150 to 1500 and all records were tested

against nonstationarity.

All samples were fitted with inverse Gaussian distribution (15) as

a commonly used distribution of ISI. The histogram of ISIs of

typical record and fitted probability density function are depicted

in Fig. 9. The mean, m, and the scale parameter s were estimated

by maximum likelihood method. The fit of the data to the inverse

Gaussian distribution was checked by Kolmogorov-Smirnov test.

The null hypothesis was not rejected on the 5% level in any

sample. The dispersion coefficients cv, ch and cJ were calculated

by substitution of the estimated parameters into Eqns. (16), (17)

and (18).

The values of estimated dispersion coefficients are summarized

and shown as box-and-whisker plots in Fig. 10. Generally, the two

categories, tracheotomized and freely breathing, do not differ signifi-

cantly in the medians of cv, ch or cJ . Although the ranges of the

values overlap in both categories, the values of the criteria seem to

be relatively specific with respect to the freely breathing category. The

difference between mean values are greater than between

medians. However, we can observe that the tracheotomized category

achieves higher values of cv and lower values of both ch and cv

Figure 8. Dispersion coefficients estimation by using the moment method. The structure of the panels and the notation are equivalent to
those in Fig. 7, except that the estimates bcvcv , and consequently bchch and bcJcJ were estimated by the moment method.
doi:10.1371/journal.pone.0021998.g008
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than the freely breathing category. Taking into account the

interquartile-range and the range between the whiskers, the Fisher

information-based dispersion coefficient, cJ , seems to be the best

of the three examined coefficients to distinguish the two categories

for this data. Both groups of rats were compared by employing

one-sided variant of the Mann-Whitney test to the three respective

dispersion coefficients. However, due to the small sample sizes, no

differences between the two groups were confirmed at 95%

confidence level.

Moreover, obtained scatterplots of pairs of the dispersion

coefficients ch and cJ are shown in Fig. 11. The two categories of

rats are best distinguishable in panel c), for the tracheotomized

category having lower values of ch together with lower values of cJ

than the latter one. Note also the positions of the points in panel c),

which confirm that there can be two different cJ values

corresponding to unique ch value.

Discussion

In recent years, information-based measures of signal regularity

or randomness have gained significant popularity in various

branches of science [24,34–37]. In this paper, we constructed

dispersion-like quantities based on these information measures and

applied them to the description of neuronal ISI distributions. In

particular, we continued the effort initiated in [4,23] by taking into

account a variant of Fisher information, which has been employed

also in different contexts [24,38–41].

We are motivated by the difference between frequently mixed

up notions of ISI variability and randomness, which, however,

represent two different concepts. Consider, for example, a spike

train consisting of ‘‘long’’ and ‘‘short’’ ISIs with no serial

correlations. By adding ‘‘medium’’ length ISIs we do not increase

the spiking variability, contrary to what expected intuitively, but

decrease it. On the other hand, since the count of ISI of different

lengths increases, the spiking randomness is increased. Further-

more, even if conventional analysis of two spike trains reveals no

difference, the spike trains may still differ in their randomness and

the difference is tractable with relatively limited amount of data

[4].

Additionally, by considering the Fisher information-based

dispersion coefficient, cJ , we show that ISI randomness (increasing

with diversity of the ISI lengths) and probability density

‘‘smoothness’’ are related, but still different notions. For example,

all of the tested distributions are ‘‘maximally smooth’’ for cv ¼: 0:5
and ‘‘maximally even’’ (maximum ISI randomness) for cv ¼: 1.

The statistical properties of the parametric estimations of cv and

of ch and cJ consequently, are illustrated on simulated data. The

results show that the accuracy of the dispersion coefficients

depends on the distribution. However, similar property can be

found: estimated values of ch as well as of cJ become accurate at

the point of maxima of these dispersion coefficients, regardless on

the used ISI distribution. It is shown that the ISI distribution as

well as the method used for estimation of the parameters from the

sample highly influence the bias of the estimators bchch and bcJcJ .

In this paper, we used the parametrical estimates of cv,ch,cJ for

both simulated and experimental data analyses. Specific paramet-

ric family of distributions was assumed and only the parametres

were estimated. On the other hand, it is natural to ask for the non-

parametric versions of the estimators. The non-parametric

estimate of cv is simply calculated by using the first two sample

moments. Recently [42], discussed disadvantages of this estimator,

Figure 9. Histogram of interspike intervals from a typical
record of the data. The thick curve shows the shape of probability
density function fitted by the maximum likelihood method. Estimated
dispersion coefficients are cv ¼: 1:59, ch ¼: 0:85 and cJ ¼: 0:10.
doi:10.1371/journal.pone.0021998.g009

Figure 10. Box-and-whisker plots of estimated dispersion coefficients. The coefficients cv (panel a), ch (panel b), and cJ (panel c) estimated
from the experimental data (spontaneously active rat olfactory neurons) are shown for two categories: freely breathing and tracheotomized rats. The
lower and upper sides of the boxes denotes the first (Q1) and third (Q3) quartile, thick lines inside the boxes are medians, triangles denote mean
values. The whiskers show the lowest and greatest data value between Q1{1:5|IQR and Q3z1:5|IQR (where IQR~Q3{Q1 is interquartile
range).
doi:10.1371/journal.pone.0021998.g010
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stressing out its bias. Non-parametric estimates of the entropy are

known [43,44], and we found ch can be estimated reliably. As

regards the non-parametric estimate of cJ , approaches based

either on spline interpolation of the empirical cumulative

distribution function [45] or on specialized kernel-based method

for the estimation of the probability density function [46] can be

used. Nevertheless, the estimation of the Fisher information-based

dispersion coefficient cJ is a complex task. Preliminary results of

our work in progress are promising.

The coefficients were also evaluated from the experimental

data, spontaneous action potentials of olfactory receptor neurons

in tracheotomized and freely breathing rats. Assuming the inverse

Gaussian model, the three estimated dispersion coefficients

quantify small differences in the two categories. Taking into

account their variability, cJ seems to be the best measure for

distinguishing the categories. Other approach use the pairs of

coefficients cv, ch and cJ to discriminate between the groups. For

the analyzed data, the pair of values ch and cJ seems to be the

most effective choice.
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