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Abstract: Both physiological and neurological mechanisms are reflected in pupillary rhythms via
neural pathways between the brain and pupil nerves. This study aims to interpret the phenomenon
of motion sickness such as fatigue, anxiety, nausea and disorientation using these mechanisms
and to develop an advanced non-contact measurement method from an infrared webcam. Twenty-
four volunteers (12 females) experienced virtual reality content through both two-dimensional and
head-mounted device interpretations. An irregular pattern of the pupillary rhythms, demonstrated
by an increasing mean and standard deviation of pupil diameter and decreasing pupillary rhythm
coherence ratio, was revealed after the participants experienced motion sickness. The motion sickness
was induced while watching the head-mounted device as compared to the two-dimensional virtual
reality, with the motion sickness strongly related to the visual information processing load. In
addition, the proposed method was verified using a new experimental dataset for 23 participants
(11 females), with a classification performance of 89.6% (n = 48) and 80.4% (n = 46) for training
and test sets using a support vector machine with a radial basis function kernel, respectively. The
proposed method was proven to be capable of quantitatively measuring and monitoring motion
sickness in real-time in a simple, economical and contactless manner using an infrared camera.

Keywords: motion sickness; pupillary rhythms; cognitive load; non-contact measurement

1. Introduction

The development and generalization of head-mounted devices (HMDs) has made
virtual reality (VR) a real-life experience. VR technology has been extended to various ap-
plications, such as architecture, education, training, mobile devices, medical visualization,
interactions, entertainment and manufacturing [1–3]. Positive effects have been reported re-
garding the increase in efficiency of work tasks and the ability to experience a real presence
and coexistence [4–7]. However, the side effects of motion sickness have been widely re-
ported by some users who have used flight and driving simulators and many other virtual
environments [8–12], with common symptoms including visual fatigue, anxiety, nausea and
disorientation apart from abdominal and oculomotor symptoms [13–16]. Visually induced
motion sickness is caused by incongruities in the spatiotemporal relationships between
actions (such as hand movements) and perceptions such as corresponding visual feedback,
which leads to distortions and delays in the visual information system [17]. As these issues
are a major obstacle for the further development of the VR industry, research to understand
and resolve these issues is required to improve the VR experience for viewers [18–20].

The symptoms of motion sickness in VR are known to be caused by a variety of factors,
such as gaze angle, fixation, retinal slip and the field of view of the HMD [21–24]. The
relationship between these causal factors and motion sickness need to be verified, and
there is a need to provide guidelines for content/device developers and users to minimize
the symptoms so that users may be comfortable and enjoy the VR contents. Many previous
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studies have tried to measure motion sickness using various human responses with the
following measurement tools: (1) subjective ratings such as a simulator sickness question-
naire (SSQ) [13,25–27], a motion sickness susceptibility questionnaire (MSSQ) [21,28–32], a
Coriolis test [33,34] and a questionnaire developed by Graybiel and Hamilton [35]; (2) be-
havioral responses such as head motions [25], body movement [21,36] and eye blinking [28];
(3) autonomic nervous system (ANS) responses such as heart rate (HR) [28,30,33,34,37],
autonomic balance [21,26,32–35], skin temperature (SKT) [28], galvanic skin response
(GSR) [28], respiration (RR) [26,28] and blood pressure (BP) [26]; (4) central nervous system
(CNS) responses such as an electroencephalogram (EEG) spectrum [31] and functional
magnetic resonance imaging (fMRI) [32].

However, each of these measurements had limitations. The subjective measurement of
experiences using questionnaires can be impacted by individual differences, depending on
personal interpretations and experiences [38,39] meaning that other measures were required
to solve these individual differences. Measurement using behavioral responses is tasked
with determining a physiological mechanism for motion sickness that does not trigger a
more general response. Physiological and neurological responses such as electrocardiogram
(ECG), photoplethysmography (PPG), GSR, SKT and EEG have significant disadvantages
both in the measurement burden of sensor contact with the skin and the need for an
additional device for data acquisition. In our study, the non-contact measurement of motion
sickness was developed by processing data from the pupillary responses obtained using an
infrared (IR) camera. The camera-based pupillary measurement has practical applicability
in HMDs to measure motion sickness, without requiring other additional devices. Our
previous study confirmed that the motion sickness from HMDs causes significant changes
in pupil rhythms. After experiencing the motion sickness, the pupillary rhythms revealed
the irregular patterns with the increasing values in the mean and standard deviation of
the pupil diameter. This phenomenon can be interpreted as the cognitive load caused by
the increasing volume of visual information and the sensory conflict [40]. The purpose of
this work is to develop a real-time system that can monitor the motion sickness based on
new features.

The cause of the motion sickness can be interpreted by the “sensory conflict theory”.
Following this theory, motion sickness is caused by a conflict, or inconsistency, between
different sensory modalities, such as vestibular and visual information [41]. For example,
the users experienced motion sickness when there was conflict or inconsistency between
the visual information of VR content and the corresponding bodily feedback. This mo-
tion sickness has been strongly correlated with the decay of information processing in
the brain, such as cognitive load or mental workload. Previous studies have reported
that three-dimensional 3D visual fatigue is related to cognitive load rather than visual
discomfort or eye strain. As 3D VR imaging involves more visual information, such as
depth, than 2D images, it requires greater brain capacity, or resources, to process visual
information [19,20,42,43]. In the case of motion sickness, the experience of VR content
using an HMD may be required for neural resources because the VR content involves
more visual information than 2D. In addition, owing to the motion sickness being related
to the inconsistency between visual and vestibular information, this phenomenon can
accelerate the load of visual information processing. Thus, the motion sickness is attributed
to an increase in the amount of visual information to be processed and to the loss of neu-
ral resources caused by the inconsistency among different sensory information, which is
interpreted as a high-level cognitive load.

Both physiological (i.e., the sympathetic and parasympathetic nervous systems) and
neurological (i.e., brain functions such as memory, attention, cognition, perception and af-
fective processing) are reflected in the pupillary rhythm via neural pathways (both afferent
and efferent pathways) between the brain and the pupil nerves [44–48]. In particular, the
pupillary rhythm has been observed to be involved in cognitive function among neuro-
logical mechanisms such as cognitive load or mental workload [49–52], attention [53,54]
and working memory [49,50]. Thus, this study aimed to interpret the phenomenon of
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motion sickness using the cognitive load mechanisms reflected by the pupillary rhythm
and to develop an advanced non-contact measurement method, via an infrared camera, for
measuring motion sickness.

2. Materials and Methods
2.1. Experimental Design

Thirty-two volunteers applied for this experiment, participating in the pretask to
measure their sensitivity to motion sickness. The participants were completely focused
on the VR contents of “Ultimate Booster Experience” (GexagonVR, 2016) through HTC
VIVE (HTC Inc., Taoyuan City, Taiwan) for 10 min, and then asked to report their motion
sickness. Eight volunteers who did not experience motion sickness were excluded from the
main experiment. Twenty-four healthy subjects participated in the experiments (12 females,
all right-handed, average age of 24.34 ± 2.06 years). We recruited the volunteers with the
specific conditions as follows: (1) normal vision or corrected-to-normal acuity (i.e., over 0.8)
and (2) no medical and family history associated with their visual function or autonomic
or central nervous system. They were required to get enough sleep the day before the
experiment and to abstain from alcohol, cigarettes and caffeine for 12 h to minimize
the negative effects of fatigue, autonomic and central nervous function. The study was
approved by the Institutional Review Board of Sangmyung University, Seoul (BE2017-21).
All participants signed informed consent forms before their participation.

This study was designed by a “within-subjects design” to compare the viewer’s
experience for the VR contents from 2D (non-motion sickness) and HMD (motion sickness)
devices. Participants experienced the VR content using either the 2D or the HMD version
of the VR content from “NoLimits 2 Roller Coaster Simulation” (Ole Lange, Mad Data
GmbH & Co. KG, Erkrath, NRW, Germany, 2014) for 15 min on the first day, and on the next
day, they watched the VR content in the other version (i.e., first day HMD and the second
day, 2D with the order randomized across subjects). For watching the VR contents for both
the versions (2D and HMD), each participant used a 27-inch LED monitor (27MP68HM,
LG) and HTC VIVE (HTC Inc., New Taipei City, Taiwan, and Valve Inc., Bellevue, WA,
USA), respectively. Before and after viewing the VR content, subjective ratings based on
an SSQ were evaluated, and the participants’ pupil images were recorded for 5 min. The
subjective ratings and pupillary responses before and after the simulation were compared.
The setup of the experimental procedure and environment is shown in Figure 1.
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Figure 1. The experimental procedure and environment.
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The SSQ was selected for 16-items for the motion sickness from the motion sickness
questionnaire (MSQ), and categorized into three non-mutually exclusive factors using
the factor analysis based on the relationship between SSQ items, namely: nausea (N),
oculomotor responses (O) and disorientation (D). All three factors were each further
divided into seven general items. Nausea consisted of general discomfort, increased
salivation, sweating, nausea, difficulty concentrating, stomach awareness and burping.
Oculomotor responses items consisted of general discomfort, fatigue, headache, eyestrain,
difficulty focusing, difficulty concentrating and blurred vision, and disorientation consisted
of difficulty focusing, nausea, fullness of head, blurred vision, dizziness (eyes open),
dizziness (eyes closed) and vertigo [17]. The examples of SSQ are shown in Appendix B.
Participants reported their experience with motion sickness using a 4-point scale (0–3) for
16 questionnaires, and the total SSQ score was calculated using Equation (1) [17], where
the values of N, O and D were defined by summing the rating values of each questionnaire
for nausea, oculomotor responses and disorientation, respectively. Example of SSQ are
shown in Appendix B.

Total SSQ score = {(N × 9.54) + (O× 7.58) + (D× 13.92)} × 3.74 (1)

2.2. Data Acquisition and Signal Processing

The pupil images were recorded at 30 fps with a resolution of 960 × 400 (pixels) using
a GS3-U3-23S6M-C IR camera from Point Grey Research Inc., Richmond, BC, Canada.
In addition, an infrared lamp (Genie Compact IR LED Illuminator, 30-degree, 850 nM
wavelength and 20 m IR range) was used to detect the pupil area. Since changes in
ambient light can affect the pupillary response, the ambient light of experimental room
was controlled from 150 to 170 lx (163.42 ± 7.14 lx) measured by the Visible Light SD
Card Logger (Sper Scientific Meters Ltd., Scottsdale, AZ, USA) at a 2 Hz sampling rate.
The signal processing to extract the pupillary response was conducted based on methods
from previous studies [55–58] as follows. First, the input eye images (gray scale) from the
IR camera were processed by binarization based on a threshold value that was reported
in previous studies established using a linear regression model between the mean and
maximum brightness values from the entire image [56–58], as shown in Equation (2).

Threshold value = (−0.418× Bmean) + (1.051× Bmax) + 7.973 (2)

where Bmean and Bmax denote the brightness value of the mean and maximum of the entire
image on a gray scale, respectively. Second, the pupil area was detected using a circular
edge detection (CDE) algorithm [55], as shown in Equation (3). If the multiple pupil
position was selected, the position closest to the reflected light caused by the infrared lamp
was selected to accurately detect the pupil position.

Max(r, x0, y0)

∣∣∣∣Gσ(r) ∗ ∂

∂r

∮
r, x0, y0

I(x, y)
2πr

ds
∣∣∣∣ (3)

where I(x,y) indicates the gray level at the (x, y) position, (x0, y0) and r represents the
center position and radius of the pupil, respectively. Finally, the pupil diameter (pixel) was
extracted by detecting the pupil area, as shown in Figure 2.

The procedure of signal processing and indicator definitions for the pupillary rhythm
for detecting motion sickness are shown in Figure 2. (1) After detecting the pupil area, the
pupil diameter was calculated using the number of pixels, see Figure 2A,B. (2) The pupil
diameter was used to process the sliding movement average (i.e., a 1 s window size and a
1 s resolution) from 30 to 1 fps to minimize the effect of eye closure, and this signal defined
the pupillary rhythm in this study, see Figure 2C. The pupil diameter was not calculated
if the pupil area was not detected when the eyes were closed. This method was used to
acquire the pupil diameter, based on this procedure for the sliding movement average, if
a participant took less than a second to blink. (3) To determine whether the patterns of
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pupil rhythm were regular or irregular, the mean (mean of PD signals, mPD) and standard
deviation (SD of PD signals, sPD) were calculated from the pupillary rhythm and were
defined as indicators of motion sickness, see Figure 2D. (4) The pupillary rhythm was then
processed by a fast Fourier transform (FFT) based on the Hanning window technique to
extract the spectral information, see Figure 2E. (5) The ratio of the power of dominant peaks
in the entire band was calculated and defined as the pupillary rhythm coherence (PRC)
ratio based on metrics used in previous research [59], as shown in Equation (4). Increasing
the PRC value was interpreted by the fact that the pupillary rhythm generally is stable at a
certain frequency (dominant peak frequency) band, and vice versa. The dominant peak
was identified in the range of 0–0.5 Hz, and its power was extracted. The total power was
the sum of all power values in the range of 0–0.5 Hz, see Figure 2F.

PRC ratio =
Power of Domonant Peak Band

(Power of Total Band − Power of Domonant Peak Band)
(4)
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Figure 2. Signal processing for detecting motion sickness from the pupillary rhythm. (A) Procedure to detect the pupil
area: (a) a raw image (gray scale) from the IR camera; (b) the binarization image based on the auto threshold; (c) detection
of the reflected light caused by the infrared lamp; (d) detection of the pupil area using the CDE algorithm. (B) Pupil
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(window size: 30 fps and resolution: 30 fps). (D) Definition for mean and standard deviation (SD) of pupil diameter. (E)
Spectral signals of pupillary rhythm using the fast Fourier transform (FFT) analysis. (F) Definition for pupillary rhythm
coherence (PRC).

2.3. Statistical Analysis

This study was designed using a “within subject design” and the motion sickness
responses of individual subjects to 2D and HMD content were compared. Thus, in the
statistical analysis, a paired t-test was selected based on the normality test to compare the
pupillary response before and after viewing each condition. In addition, an analysis of
covariance (ANCOVA) was also applied to compare the pupillary responses to the 2D and
HMD conditions, because the independent t-test could not confirm the viewer’s state before
watching the VR content. The ANCOVA compared dependent variables (post-viewing
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content) between groups, with the pre-viewing content baseline as a covariate [19,43,60]. A
partial correlation was used to analyze the correlation between SSQ scores and pupillary
responses (post-viewing contents) in all conditions (2D and HMD), considering the pre-
viewing contents as covariates [61]. A Bonferroni correction was then applied to resolve the
problem of type I errors caused by multiple comparisons, and the statistical significance was
controlled based on the numbers from each individual hypothesis (i.e., α = 0.05/n) [62,63].
The statistical significance level of indicators for pupillary response was set to 0.0167 (mPD,
sPD and PRC ratio, α = 0.05/3). In addition, this study applied the effect size to verify
the practical significance based on Cohen’s d with a t-test and the partial eta-squared
value (ηp2) with an F-test. The standard values for practical significance of 0.10/0.01,
0.25/0.06 and 0.40/0.14 (Cohen’s d/partial eta-squared) were generally regarded as small,
medium and large, respectively [64]. All statistical analyses (i.e., paired-samples t-test,
ANCOVA and partial correlation) were conducted using IBM SPSS Statistics 21.0, for
Windows (SPSS Inc., Chicago, IL, USA).

2.4. Classification

Four basic machine learning algorithms were used to classify motion sickness (HMD)
and normal state (2D)—linear discriminant analysis (LDA) (data standardization), decision
tree (DT) (split criteria: maximum deviance reduction; number of splits: 4), linear kernel
support vector machine (linear SVM) (data standardization, box constraint: 7.7) and
radial basis function kernel support vector machine (RBF-SVM) (data standardization,
box constraint: 0.09) [65–68]. Three pupillary features, namely the mPD, the sPD and the
PRC ratio, were extracted from the experimental data, and the three statistical features
showing statistically significant results were trained by the four classification algorithms
on a 24-subject dataset with ten-fold cross validation. The classification performances of
the four algorithms were evaluated based on their area under the curve (AUC) for receiver
operating characteristics (ROC), accuracy, sensitivity, and specificity [69,70]. A new dataset
of 23 subjects (11 females), with ages ranging from 23 to 29 y (mean age 25.02 ± 3.14),
was also applied to trained classification models to evaluate practical performance. The
statistics and machine learning toolbox of Matlab (2019b, Mathworks Inc., Natick, MA,
USA) was used for classification and cross-validation. The classification measures are
defined as follows.

• Accuracy is used to calculate the proportion of the total number of predictions that
are correct.

Accuracy (%) = (TP + TN)/(TP + FN + TN + FP) × 100

• Sensitivity is used to measure the proportion of actual positives that are cor-
rectly identified.

Sensitivity (%) = TP/(TP + FN) × 100

• Specificity is used to measure the proportion of actual negatives that are cor-
rectly identified.

Specificity (%) = TN/(TN + FP) × 100

• AUC: area under the receiver operating characteristic curve. The AUC value lies be-
tween 0.5 and 1, where 0.5 denotes a bad classifier and 1 denotes an excellent classifier.

Here, TP represents the correctly classified motion sickness (HMD), FN is the incor-
rectly classified motion sickness (HMD), TN is the number of true negative classifications
and FP is the number of true positive classifications.

3. Result
3.1. SSQ Scores

The paired-samples t-test showed significant differences (increasing the post-viewing)
for the total SSQ score in the HMD viewing conditions between the pre- and post-viewing
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(t(46) = −14.640, p = 0.0000, with a large effect size (Cohen’s d = 4.317)). In the 2D viewing
condition, no significant differences were found between the pre- and post-viewing condi-
tions (t(46) = −0.805, p = 0.4041). The ANCOVA analysis showed significant differences
(increasing the HMD condition) in the post-viewing condition for the total SSQ score with
the pre-viewing condition as a covariate (F(1,46) = 149.035, p = 0.0000, with a large effect
size (ηp2 = 0.768)), as shown in Figure 3.
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and post-viewing in the HMD condition.

3.2. Pupillary Response: Time Domain Index

As shown in Figure 4, the pupillary rhythms were fairly regular and stable in the
pre- and post-viewing 2D conditions, with the pupil diameters almost identical. After
being exposed to the 2D condition, the mean pupil diameters (mPDs) for participants 1,
10 and 24 were changed from 35.556, 34.853 and 37.219 to 34.004, 34.872 and 38.467 pixels,
with the changes in standard deviations (sPDs) from 1.276, 0.968 and 1.549 to 1.264, 1.001
and 1.332 pixels, respectively. In contrast, participants’ pupillary rhythms were fairly
regular and stable before the HMD viewing condition. However, they became irregular
and unstable after the HMD viewing condition with the significantly increasing pupil
diameter. After the HMD viewing condition, the mPD values for participants 1, 10 and
24 were changed from 35.168, 35.465 and 36.342 to 42.522, 44.885 and 43.620 pixels, with
the following changes in their sPD values from 1.276, 1.046 and 1.564 to 2.889, 2.649
and 2.417 pixels. Similar results were observed for most of the participants, except for
participant 6 showing no significant differences in the mPD and sPD values between
the 2D and the HMD viewing conditions. The mPD and sPD values for participant 6
were changed from 39.902 and 0.854 to 38.200 and 0.798 pixels after experiencing the 2D
condition, and changed from 39.543 and 0.798 to 38.899 and 0.902 pixels after experiencing
the HMD condition.

A paired-sample t-test showed significant differences (increasing during the post-
viewing measurement) for the mPD and sPD in the HMD viewing condition between the
pre- and post-viewing measurements (mPD: t(46)) = −11.544, p = 0.0000, with a large effect
size (Cohen’s d = 3.404); sPD: t(46)) = −8.265, p = 0.0000, with a large effect size (Cohen’s
d = 2.437). In the 2D viewing condition, no significant differences were found between the
pre- and post-viewing measurements (mPD: t(46) = −0.645, p = 0.5251; sPD: t(46) = −2.156,
p = 0.0418]) based on the Bonferroni correction. The ANCOVA analysis showed a significant
difference (increasing after the HMD condition) in the post-viewing condition for mPD
and sPD with the pre-viewing condition as a covariate (mPD: F(1,46) = 90.793, p = 0.0000,
with a large effect size (ηp2 = 0.669); sPD: F(1,46) = 37.248, p = 0.0000, with a large effect
size (ηp2 = 0.453)), as shown in Figure 5 and Appendix A.
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Figure 4. (A) Clear examples (for participants 1, 10 and 24) and (B) unclear example (for participant 6) of changes in
pupillary rhythms (mPD and sPD) pre- and post-viewing 2D and HMD.
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Figure 5. Representation of the mPD and sPD for motion sickness between the 2D and HMD
conditions. There was a significant difference based on a paired t-test and ANCOVA (* p < 0.05;
*** p < 0.001). (a) The ANCOVA test between the 2D and HMD viewing condition. (b) A paired t-test
between pre- and post-viewing in the 2D condition. (c) A paired t-test between pre- and post-viewing
in the HMD condition.

3.3. Pupillary Response: Frequency Domain Index

As seen in Figure 6, the spectral power of the pupillary rhythms was concentrated in
a specific frequency band before and after viewing, for the 2D condition. For example, the
PRC ratios for participants 1, 10 and 24 changed from 0.530, 0.467 and 0.579 to 0.556, 0.429
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and 0.500, respectively, after experiencing the 2D condition. In contrast, the spectral power
of pupillary rhythms was concentrated in a specific frequency band in the pre-viewing
measurement for the HMD condition, but dispersed across the entire frequency band
after viewing. The PRC ratios for participants 1, 10 and 24 changed from 0.595, 0.473 and
0.605 to 0.092, 0.043 and 0.072, respectively, after experiencing the HMD condition. These
results were reported for most of the participants, however, participant 6 again showed no
significant difference between the 2D and HMD viewing. The PRC ratio for participant 6
changed from 0.505 to 0.481 after experiencing the 2D condition and changed from 0.505 to
0.476 after experiencing the HMD condition.

A paired-samples t-test showed significant differences (decreasing the post-viewing)
in the PRC ratio in the HMD viewing condition between the pre- and post-viewing mea-
surements (t(46) = 10.483, p = 0.0000, with a large effect size (Cohen’s d = 3.091)). In the
2D viewing condition, no significant differences were found between the pre- and post-
viewing measurements (t(46) = 2.341, p = 0.0283) based on the Bonferroni correction. The
ANCOVA analysis showed a significant difference (decreasing after the HMD condition) in
the post-viewing condition for the PRC ratio with the pre-viewing condition as a covariate
(F(1,46) = 75.358, p = 0.0000, with a large effect size (ηp2 = 0.629)), as shown in Figure 7 (see
Table A1).
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Figure 6. (A) Clear (for participants 1, 10 and 24) and (B) unclear examples (for participant 6) of changes in the spectrum of
pupillary rhythms (PRC ratio) pre- and post-viewing 2D and HMD.
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Figure 7. Representation of the PRC ratio for motion sickness between the 2D and HMD conditions.
There was a significant difference based on a paired t-test and ANCOVA (* p < 0.05; *** p < 0.001).
(a) The ANCOVA test between the 2D and HMD viewing condition. (b) A paired t-test between
pre- and post-viewing in the 2D condition. (c) A paired t-test between pre- and post-viewing in the
HMD condition.

3.4. Correlation Analysis and Classification

A multiple regression analysis was conducted for partial correlation and for calculating
the residuals with covariates (SSQ scores and pupillary responses in the pre-viewing
conditions). As seen in Figure 8, the plot for residuals of SSQ scores and pupillary responses
(mPD, sPD and PRC ratio) with linear regression lines. The correlation coefficients between
SSQ scores and each pupillary response in the post-viewing condition were statistically
significant (mPD: r = 0.751, p = 0.0000; sPD: r = 0.559, p = 0.0000; PRC ratio: r = −0.756,
p = 0.0000).
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Figure 8. Results of the correlation analysis between SSQ scores and significant features of pupil-
lary rhythms.

As seen in Table 1, classification measures existed (accuracy, sensitivity, specificity
and AUC) for the training dataset with 10-fold cross validation and for the new dataset
according to four classifiers (LDA/decision tree/linear SVM/RBF SVM). ROC curves were
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applied for the training dataset in Figure 9A and for the test dataset in Figure 9B and
Appendix A.
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Figure 9. Receiver operating characteristics curves for the (A) training dataset and (B) test dataset
according to the four classifiers.

Table 1. The performance of different types of classifiers according to the training and test dataset.

Classifier
10-Fold Cross Validation Test Set Validation

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

LDA 0.88 0.83 0.92 0.93 0.80 0.74 0.87 0.90
Decision Tree 0.83 0.75 0.92 0.95 0.76 0.65 0.87 0.76
Linear SVM 0.90 0.88 0.92 0.92 0.80 0.74 0.87 0.90

RBF SVM 0.90 0.88 0.92 0.92 0.80 0.74 0.87 0.89

Note: LDA: linear discriminant analysis; Linear SVM: linear kernel support vector machine; RBF SVM: radial basis function kernel support
vector machine.

3.5. Non-Contact Measurement System of Motion Sickness in Real Time

The real-time system for the noncontact measurement of motion sickness in this study
consisted of an HMD device, add-on IR camera (HTC Vive Eye Tracking Add-On from
Pupil Labs, 120 fps with 640 × 480 resolution), add-on lamp and a personal computer
for analysis, and can be classified as motion sickness or non-motion sickness state using
non-contact measurement, as shown in Figure 10. This system was developed using Visual
C++ 2010 and OpenCV 2.4.3, and signal processing was performed using LabVIEW 2010
(National Instruments Inc., Austin, TX, USA). The flowchart and non-contact real-time
system of motion sickness are shown in Figures 10 and 11, respectively.
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Figure 10. Flowchart for the offline training and online testing stage in the non-contact measurement system of mo-
tion sickness.
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Figure 11. Non-contact measurement system of motion sickness using an infrared (IR) webcam. (A) Introduction to the
measuring software: (a) protocol for detecting the pupil area; (b) raw signals of pupillary diameter; (c) filtered pupil
diameter signals in time domain and detecting MPD and SPD; (d) power spectral density of pupillary rhythms in the
frequency domain and detecting the PRC ratio; (e) binary decision for the motion sickness state. (B) Configuration of the
measuring device including the HMD device, add-on IR webcam and lamp. (C) Overview of the real-time system.

4. Discussion

The aim of this study was to determine a method for measuring the motion sickness
that appears as a side effect of experiencing VR content (HMD) using the pupillary rhythm
and to propose a new indicator for evaluating motion sickness (high-level cognitive load).
VR content from an HMD was presented to participants with the goal of causing motion
sickness, and the pupillary responses of the participants were compared to the responses
after a 2D experience. Participants’ responses to an SSQ confirmed their experience of
motion sickness from the HMD; such confirmation verified that the changes in their
pupillary response were related to motion sickness.

Overall, the study yielded two significant findings: firstly, the pupil diameters sig-
nificantly increased during motion sickness. Many previous studies have reported that
an increased pupil diameter is closely related to a decay in information processing by the
brain [49–51,71,72]. The increase in pupil diameter in this study provides evidence that the
experience of motion sickness is associated with physiological changes in cognitive load.

Second, the standard deviation of the pupillary rhythm significantly increased, and
the PRC ratio significantly decreased after experiencing the HMD condition as compared
to the 2D condition. An increase in the sPD and a decrease in the PRC ratio revealed
irregular changes in pupil size due to the power of the pupillary rhythm spectrum being
dispersed across various spectral bands and the deviation of the pupillary rhythms being
increased. These results indicate that fluctuations in pupillary rhythms became irregular
after experiencing motion sickness. In previous research, cognitive load has been related
to heart rhythm patterns (HRPs) with one study reporting that increasing cognitive load
leads to a pattern of irregular and unstable heart rhythms [19]. As the heart responds to
external sensory inputs such as visual information transmitted to the brain through afferent
pathways, cognitive processes occur not only in the brain, but also through brain–heart
connectivity, which influences the cognitive function [59,73]. Pupillary rhythms (i.e., change
in pupil size) are strongly affected by the regulation of the sympathetic and parasympathetic
nervous system (autonomic balance) based on the contraction function of the sphincter
and dilator muscles, and the autonomic balance is determined by the HRP [45,47,48,74]. If
a pattern of irregular and unstable heart rhythms is related to cognitive load, the irregular
rhythm of the pupil can also be interpreted as being related to cognitive load. Additionally,
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the pupils are known to be closely related to the central nervous system [44–48], and many
studies have reported that they are indicators of cognitive load [49–51,71,72].

Changes in pupillary rhythms were correlated with functional brain processing, such
as cognitive load or mental workload, attention and working memory based on neural
pathways in the midbrain. Many previous studies have demonstrated that changes in
pupillary rhythms are correlated with neural activity in the locus coeruleus–norepinephrine
(LC–NE) system [75–79], dorsal attention network (DAN) (i.e., activity in the superior
colliculus and the right thalamus) [79–81] and cingulate cortex [79,82]. These regions are
known to be related to cognitive and attentional functions. Thus, the neural resources
needed to process the visual information in the brain is reflected in the change of pupillary
rhythms, and these results support the findings that increase the pupil diameter and show
an irregular pattern of pupillary rhythms.

From these two significant findings, the main contributions of this work can be
summarized as follows: firstly, an increase in pupil diameter and an irregular rhythm
of the pupil are strongly related to motion sickness, which can be interpreted as a decay
in the human vision system. Many previous studies reported that 3D visual fatigue is
related to the degradation of the human vision system caused by information processing
rather than to visual discomfort, because 3D content involves more visual information,
such as image depth, than 2D content [14,19,42,83]. Experience of VR content using HMD
should also be interpreted as consuming the neural resources to process the massive visual
information. Other research has shown that motion sickness from HMD devices is caused
by incongruities in the spatiotemporal relationships between actions and perceptions of
visual information, which can lead to distortions and delays in the visual information
system [17,83]. Thus, motion sickness is related to an increase in visual information to be
processed and to the loss of neural resources caused by the inconsistency or conflict among
different sensory information, that is, the high-level cognitive load caused by the massive
and inefficient information processing. Results show that evaluating the pupils can be an
appropriate way to measure motion sickness rather than interpreting symptoms such as
dizziness, fatigue and nausea.

Among the algorithms for classifying motion sickness, the RBF–SVM in this study
achieved the highest average recognition accuracy (89.6% for training and 80.4% for the
test set). To better illustrate the study findings, this study compared the methods and
results with those of the past studies, with the accuracy rate of recognizing motion sickness
being 79.6–99.6% in the training set and 72.7% in the test set, as shown in Table 2. The
majority of previous studies have reported measurement methods for motion sickness
using neurophysiological responses such as the electroencephalogram (EEG), however,
these methods have limitations such as complex and expensive equipment, inconveniences
and a burden of sensor attachment [56–58]. In terms of accuracy, sample size, validation
data set and usability, these methods outperformed existing state-of-the-art classification
methods for motion sickness detection. In this way, motion sickness can be measured
by an infrared webcam through a simple, low-cost and non-contact method based on
pupillary rhythms.

Table 2. Performance comparison of the proposed method and previous methods of motion-sickness.

Study Device Feature Classifier
Accuracy

Train Set n Test Set n

1 Lin et al., 2013 HMD

EEG

PCA + SONFIN 0.82 17 - -
2 Pane et al., 2018 LCD CN2 Rules 0.89 9 - -
3 Mawalid et al., 2018 LCD Naïve Bayes 0.84 9 - -
4 Li et al., 2020 HMD SVM 0.79 18 - -
5 Dennison Jr et al., 2019 HMD EEG, EOG, RSP, etc. Tree Bagger 0.95 18 - -
6 Li et al., 2019 HMD EEG and COP Voting Classifier 0.76 20 - -
7 Present study HMD Pupillary Response SVM 0.90 48 0.80 46

Note: HMD: head-mounted display; LCD: crystal display liquid; EEG: electroencephalography; EOG: electrooculography; RSP: respiration;
COP: center of pressure in force plate; PCA: principal component analysis; SONFIN: self-organizing neural fuzzy inference network; SVM:
support vector machine.
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5. Conclusions

The aim of this study was to develop an accurate non-contact measurement method
for detecting motion sickness using pupillary rhythms measured with an infrared webcam.
This study found that motion sickness was significantly related to the irregular pattern of
pupillary rhythms, as demonstrated by increasing mPDs and sPDs and a decreasing PRC
ratio. These phenomena can be interpreted as a decay in visual information processing
(i.e., a high-level cognitive load). In addition, when it comes to VR using HMDs, monitoring
pupillary responses in real time was proven to be more appropriate than examining other
behavioral responses because a user’s face is covered by the device. The proposed method
can be adopted to quantitatively measure motion sickness using various parameters such
as gaze angle, fixation, retinal slip and field of view, and consequently improve the viewing
environment of viewer-friendly VR. The list of abbreviation of the manuscript can be found
in abbreviations.
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Abbreviations

Abbreviations Definition
HMDs head-mounted devices
VR virtual reality
SSQ simulator sickness questionnaire
MSSQ motion sickness susceptibility questionnaire
ANS autonomic nervous system
HR heart rate
SKT skin temperature
GSR galvanic skin response
RR respiration
BP blood pressure
CNS central nervous system
EEG electroencephalogram
fMRI function-al magnetic resonance imaging
ECG electrocardiogram
PPG photoplethysmography
IR infrared
CED circular edge detection
FFT fast Fourier transform
PRC pupillary rhythm coherence
ANCOVA analysis of covariance
LDA linear discriminant analysis
DT decision tree
SVM support vector machine
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RBF-SVM radial basis function kernel-SVM
AUC area under the curve
ROC receiver operating characteristics
HRPs heart rhythm patterns
LE–NC locus coeruleus–norepinephrine
DAN dorsal attention network
LCD liquid crystal display
EOG electrooculography
COP center of pressure in force plate
PCA principal component analysis
SONFIN self-organizing neural fuzzy inference network

Appendix A

Table A1. Results of the main experiments (training data set) for 24 participants.

Participants

Mean of Pupil Diameter (mPD) Standard Deviation of Pupil
Diameter (SPD)

Pupillary Rhythm Coherence Ratio
(PRC Ratio)

2D HMD 2D HMD 2D HMD

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

P1 35.556 34.004 35.168 42.522 1.276 1.264 1.276 2.889 0.530 0.556 0.595 0.092
P2 37.222 38.200 36.483 45.101 1.337 1.440 1.172 2.353 0.288 0.309 0.295 0.177
P3 37.910 35.546 35.984 46.919 0.766 0.815 1.011 2.735 0.504 0.578 0.483 0.220
P4 35.219 34.681 33.051 43.558 1.385 1.164 1.346 2.495 0.471 0.519 0.472 0.275
P5 36.593 36.259 35.295 46.890 1.228 1.321 1.266 4.679 0.308 0.298 0.381 0.203
P6 39.902 38.200 39.543 38.899 0.854 1.034 0.798 1.002 0.505 0.481 0.505 0.476
P7 35.779 34.193 34.413 41.298 1.133 1.247 1.235 2.006 0.526 0.531 0.561 0.207
P8 38.209 39.079 37.762 45.238 1.069 0.950 0.909 2.555 0.396 0.375 0.348 0.061
P9 35.034 36.221 36.716 45.841 1.157 1.263 1.308 2.385 0.391 0.379 0.361 0.151

P10 34.853 34.872 35.465 44.885 0.968 1.001 1.046 2.649 0.467 0.429 0.473 0.043
P11 32.706 38.702 32.450 40.274 1.265 2.817 1.326 2.329 0.294 0.189 0.305 0.142
P12 36.480 36.091 37.137 41.481 1.374 1.469 1.399 3.503 0.535 0.510 0.525 0.223
P13 40.176 38.140 40.469 43.943 0.903 1.089 0.906 3.237 0.407 0.384 0.414 0.315
P14 34.963 35.202 34.057 45.615 1.619 1.675 1.641 2.229 0.461 0.421 0.465 0.106
P15 39.275 38.859 37.092 45.010 1.657 1.799 1.855 2.130 0.399 0.350 0.387 0.128
P16 36.857 36.437 35.127 41.716 0.733 0.789 0.501 2.015 0.431 0.413 0.455 0.207
P17 35.758 37.403 35.374 40.396 1.051 1.339 1.062 1.987 0.504 0.461 0.505 0.247
P18 40.505 39.580 38.098 44.726 1.523 1.844 1.246 2.493 0.505 0.485 0.499 0.206
P19 39.858 41.734 38.038 44.355 1.368 1.468 1.211 1.336 0.613 0.502 0.614 0.156
P20 32.395 33.270 34.293 40.858 1.148 1.437 1.073 2.162 0.525 0.596 0.527 0.271
P21 33.973 38.319 34.214 36.064 0.743 1.927 0.941 2.104 0.297 0.151 0.296 0.115
P22 39.456 36.281 39.079 44.876 0.995 0.979 0.764 2.055 0.580 0.531 0.564 0.149
P23 33.016 35.834 35.664 40.332 1.280 1.120 1.215 1.758 0.384 0.348 0.381 0.196
P24 37.219 38.467 36.342 43.620 1.549 1.332 1.564 2.417 0.579 0.500 0.605 0.072
Avg. 36.621 36.899 36.138 43.101 1.183 1.357 1.170 2.396 0.454 0.429 0.459 0.185
SD 2.373 2.020 1.968 2.662 0.266 0.427 0.289 0.704 0.093 0.113 0.096 0.092
SE 0.484 0.412 0.402 0.543 0.054 0.087 0.059 0.144 0.019 0.023 0.020 0.019

Table A2. Results of the validation experiments (test data set) for 23 participants.

Participants

Mean of Pupil Diameter (mPD) Standard Deviation of Pupil
Diameter (SPD)

Pupillary Rhythm Coherence Ratio
(PRC Ratio)

2D HMD 2D HMD 2D HMD

Pre Post Pre Post Pre Post Pre POST Pre Post Pre Post

P1 33.241 34.062 34.142 39.643 1.144 1.126 1.212 1.872 0.512 0.506 0.492 0.212
P2 35.112 35.463 35.412 38.461 1.241 1.316 1.301 1.442 0.442 0.412 0.516 0.336
P3 34.024 38.127 34.781 37.034 0.972 1.107 1.042 1.136 0.372 0.320 0.416 0.310
P4 39.142 40.032 38.162 40.372 0.892 1.142 0.982 1.047 0.518 0.242 0.502 0.464
P5 34.117 35.012 35.172 42.174 1.112 1.146 1.047 1.562 0.482 0.446 0.572 0.312
P6 36.117 36.042 36.047 41.174 1.412 1.406 1.362 1.745 0.502 0.460 0.482 0.141
P7 33.192 35.174 34.562 35.149 0.872 1.121 0.946 1.088 0.432 0.116 0.502 0.420
P8 35.002 35.176 35.722 39.874 0.972 1.002 1.042 1.392 0.616 0.548 0.582 0.333
P9 38.162 38.472 37.663 42.164 1.212 1.244 1.198 1.562 0.441 0.402 0.482 0.206

P10 33.205 37.624 34.182 38.114 1.107 1.192 0.982 1.399 0.482 0.441 0.522 0.304



Sensors 2021, 21, 4642 16 of 19

Table A2. Cont.

Participants

Mean of Pupil Diameter (mPD) Standard Deviation of Pupil
Diameter (SPD)

Pupillary Rhythm Coherence Ratio
(PRC Ratio)

2D HMD 2D HMD 2D HMD

Pre Post Pre Post Pre Post Pre POST Pre Post Pre Post

P11 36.104 38.142 35.066 42.179 1.206 1.227 1.117 1.824 0.642 0.612 0.663 0.318
P12 34.112 34.922 35.016 40.327 1.466 1.432 1.372 1.590 0.381 0.388 0.415 0.224
P13 33.004 35.132 34.142 36.832 1.112 1.414 1.032 1.201 0.382 0.282 0.444 0.389
P14 37.109 40.442 36.492 39.032 1.142 1.166 1.002 1.312 0.446 0.412 0.496 0.182
P15 35.198 35.642 34.824 40.006 0.982 1.001 1.004 1.414 0.382 0.396 0.412 0.264
P16 36.121 36.897 35.002 39.446 0.876 0.924 0.882 1.221 0.702 0.664 0.641 0.344
P17 34.102 35.116 34.442 38.806 1.116 1.202 1.241 1.493 0.442 0.476 0.492 0.218
P18 38.166 38.442 38.264 44.162 0.882 0.896 0.942 1.411 0.392 0.364 0.382 0.164
P19 32.172 36.442 33.008 36.172 0.924 1.232 1.015 1.128 0.442 0.206 0.446 0.312
P20 36.045 38.323 35.414 37.032 1.142 1.362 1.624 1.832 0.366 0.227 0.516 0.412
P21 37.122 37.462 36.882 42.187 1.112 1.146 0.986 1.387 0.392 0.402 0.422 0.232
P22 34.562 35.032 35.003 39.556 0.941 1.002 1.065 1.475 0.485 0.444 0.396 0.246
P23 38.022 38.146 37.068 42.323 0.877 0.902 0.911 1.302 0.396 0.442 0.472 0.231
Avg. 35.354 36.753 35.499 39.662 1.075 1.161 1.100 1.428 0.463 0.400 0.490 0.286
SD 1.892 1.745 1.331 2.240 0.163 0.156 0.176 0.233 0.087 0.125 0.071 0.084
SE 0.386 0.356 0.272 0.457 0.033 0.032 0.036 0.048 0.018 0.026 0.015 0.017

Appendix B. (Example of Simulator Sickness Questionnaire, Kennedy et al., 1993)

No Date

SIMULATOR SICKNESS QUESTIONNAIRE

Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum and Michael G. Lilienthal (1993)

Instruction: Circle how much each symptom below is affecting you right now.

1. General discomfort None� Slight� Moderate� Severe�
2. Fatigue None� Slight� Moderate� Severe�

3. Headache None� Slight� Moderate� Severe�
4. Eyestrain None� Slight� Moderate� Severe�

5. Difficulty focusing None� Slight� Moderate� Severe�
6. Increased salivation None� Slight� Moderate� Severe�

7. Sweating None� Slight� Moderate� Severe�
8. Nausea None� Slight� Moderate� Severe�

9. Difficulty concentrating None� Slight� Moderate� Severe�
10. Fullness of Head None� Slight� Moderate� Severe�

11. Blurred vision None� Slight� Moderate� Severe�
12. Dizziness with eye open None� Slight� Moderate� Severe�

13. Dizziness with eye closed None� Slight� Moderate� Severe�
14. Vertigo None� Slight� Moderate� Severe�

15. Stomach awareness None� Slight� Moderate� Severe�
16. Burping None� Slight� Moderate� Severe�

Original version: Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator sickness questionnaire: An enhanced method for quantifying
simulator sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220.
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