
metabolites

H

OH

OH

Article

Plasma Metabolome and Lipidome Associations with Type 2
Diabetes and Diabetic Nephropathy

Yan Ming Tan 1,†, Yan Gao 2,†, Guoshou Teo 3,†, Hiromi W.L. Koh 3, E Shyong Tai 3, Chin Meng Khoo 3 ,
Kwok Pui Choi 1, Lei Zhou 2,4,5,* and Hyungwon Choi 3,*

����������
�������

Citation: Tan, Y.M.; Gao, Y.; Teo, G.;

Koh, H.W.L.; Tai, ES.; Khoo, C.M.;

Choi, K.P.; Zhou, L.; Choi, H. Plasma

Metabolome and Lipidome

Associations with Type 2 Diabetes

and Diabetic Nephropathy.

Metabolites 2021, 11, 228. https://

doi.org/10.3390/metabo11040228

Academic Editors: Amaury

Cazenave Gassiot, Federico Torta and

Bo Johannes Burla

Received: 3 March 2021

Accepted: 7 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore,
Singapore 117546, Singapore; yanmingtan5@gmail.com (Y.M.T.); choikp@nus.edu.sg (K.P.C.)

2 Singapore Eye Research Institute, The Academia, 20 College Road, Singapore 169856, Singapore;
gaoyan3540@outlook.com

3 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 119228, Singapore; guoshou@nus.edu.sg (G.T.); mdckwlh@nus.edu.sg (H.W.L.K.);
mdctes@nus.edu.sg (E.S.T.); mdckcm@nus.edu.sg (C.M.K.)

4 Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 119228, Singapore

5 Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School,
National University of Singapore, Singapore 169857, Singapore

* Correspondence: zhou.lei@seri.com.sg (L.Z.); hyung_won_choi@nus.edu.sg (H.C.)
† Authors contributed equally.

Abstract: We conducted untargeted metabolomics analysis of plasma samples from a cross-sectional
case–control study with 30 healthy controls, 30 patients with diabetes mellitus and normal renal func-
tion (DM-N), and 30 early diabetic nephropathy (DKD) patients using liquid chromatography-mass
spectrometry (LC-MS). We employed two different modes of MS acquisition on a high-resolution MS
instrument for identification and semi-quantification, and analyzed data using an advanced multi-
variate method for prioritizing differentially abundant metabolites. We obtained semi-quantification
data for 1088 unique compounds (~55% lipids), excluding compounds that may be either exogenous
compounds or treated as medication. Supervised classification analysis over a confounding-free par-
tial correlation network shows that prostaglandins, phospholipids, nucleotides, sugars, and glycans
are elevated in the DM-N and DKD patients, whereas glutamine, phenylacetylglutamine, 3-indoxyl
sulfate, acetylphenylalanine, xanthine, dimethyluric acid, and asymmetric dimethylarginine are
increased in DKD compared to DM-N. The data recapitulate the well-established plasma metabolome
changes associated with DM-N and suggest uremic solutes and oxidative stress markers as the
compounds indicating early renal function decline in DM patients.

Keywords: diabetic nephropathy; data independent acquisition; prostaglandins; phospholipids;
uremic toxins; oxidative stress

1. Introduction

Diabetic nephropathy (DKD) is a multifactorial microvascular complication of diabetes
mellitus (DM) [1]. Declining kidney function of DM patients may manifest itself with or
without notable proteinuria, leading to chronic kidney disease and end-stage renal disease
in some patients over an average time span of several years [2,3]. In the clinical practice
around the world, formal diagnosis of DKD almost exclusively relies on invasive renal
biopsy, and only a limited proportion of DM patients with renal impairment undergoes
biopsy. For this reason, there has been a long-standing interest in introducing circulating
biomarkers as a diagnostic criterion or a monitoring tool for clinical management of the
diseases beyond the current gold standard, i.e., estimated glomerular filtration rate (eGFR)
and its past trajectories calculated from serum creatinine or cystatin-C with adjustments for
age, gender, and race, and urine albumin/creatinine ratio (uACR). As discussed in recent
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extensive reviews of diagnostic biomarkers of DKD [4] and clinical management [5], a
growing body of evidence from prospective and cross-sectional studies supports the utility
of plasma or urinary protein markers originating from various anatomical sites of origin,
such as cystatin C [6,7], copeptin [8], kidney injury molecule-1 (KIM-1) [9,10], neutrophil
gelatinase-associated lipocalin (NGAL) [7], TNF receptors, as well as microRNAs.

Metabolomics studies have also contributed to the repertoire of candidate biomarkers
for non-diabetic chronic kidney disease (CKD) such as IgA nephropathy, revealing amino
acids and their metabolites, tryptophan metabolites, uric acid and other purine metabolites,
oxidative stress, and lipids and acylcarnitines as promising markers [11]. However, the pres-
ence of DM influences the circulating levels of metabolites and the search for DKD-specific
markers may require the direct comparison of healthy non-DM subjects, DM patients with
normal renal function, and DKD patients. Moreover, in contrast to the plasma proteomics
studies for DKD biomarker discovery, most discovery-phase metabolomics studies were
conducted before 2015. This was an era when untargeted mass spectrometry used to
be performed without systematic MS/MS fragmentation, with compound identification
depending on the precursor ion information and proprietary libraries from instrument
vendors. MS technology and bioinformatics software have substantially advanced over
the past few years, and it is worth revisiting the global identification of compounds and
semi-quantification by untargeted LC-MS in this arena.

To address these gaps, we applied a modern untargeted metabolomics workflow to a
cross-sectional case control study of 90 participants. Here we compare metabolite levels
among healthy controls (N = 30), DM patients with normal renal function (DM-N, average
eGFR 108.6 mL/min/1.73m2, N = 30), and DM patients with early nephropathy patients
(DKD, average eGFR 72.6 mL/min/1.73m2, N = 30). We first employed data-dependent
acquisition (DDA) MS to all ninety plasma samples to achieve a high rate of MS/MS-
based identification. We subsequently re-analyzed the samples using data-independent
acquisition (DIA) MS for consistent semi-quantification across all samples.

In addition, we demonstrate a network-based multivariate data analysis approach as
a feature exploration tool for the identification of differential metabolites for DM-N and
DKD. This approach is particularly useful for the analysis of omics data sets in which the
measurements are highly correlated. At the same time, however, we emphasize that the
technical advances presented in this work do not address the fact that the data are generated
from a cross-sectional case study, and refrain from interpreting the altered metabolite levels
between groups as causal agents in the pathogenesis of DM and DKD.

In what follows, we structured the groups comparisons in two stages. To identify the
changes in plasma levels of metabolites and lipids, we first compared the 60 DM patients
to the 30 control, and later compared the 30 DKD subjects and the 30 DM-N patients. In
parallel, we first undertook traditional differential analysis using univariate hypothesis
testing, and repeated the analysis for metabolite panel selection for the two stages using
the supervised multivariate analysis. We describe these results in more detail below.

2. Results
2.1. Description of the Cohort

The patient characteristics of 90 subjects can be found in Table 1. The DM-N group
was derived from patients with type 2 DM with eGFR > 90 mL/min/1.73 m2. The DKD
groups was derived from patients with type 2 DM with eGFR <90 mL/min/1.73 m2.
Overall, the duration of DM was 9.8 (6.9) years (8.6 years for DM-N vs. 10.8 years for DKD,
p = 0.23). Compared to the 60 DM patients, the control samples were entirely Chinese and
younger overall. The DM-N group contained more females than the others. As expected
from the phenotypes, DM-N and DKD groups showed higher body mass index (BMI)
than the controls, with elevated systolic blood pressure and substantially higher glycated
hemoglobin (HbA1c) levels. Serum creatinine levels were the highest among the DKD
groups, which is the major determinant in the estimation of glomerular filtration rates
(eGFR). Lastly, the mean eGFR of the DKD patients was 72.6 with standard deviation of
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16. This suggests that in the patients classified to the DKD group, the kidney damage is
mild and renal function is still well preserved with eGFR levels corresponding to stage 2
kidney disease.

Table 1. Patient characteristics and clinical biochemistry values in the controls, subjects with diabetes
mellitus (DM) and normal renal function (DM-N), and subjects with diabetic nephropathy (DKD).

Variable Unit/Level Controls (N = 30) DM-N (N = 30) DKD (N = 30) Statistical
Significance

Age Years 32.7 (10.2) 48.6 (10.6) 54.9 (7.0) p < 0.001

Gender Male
Female

22 (73.3%)
8 (26.6%)

14 (46.7%)
16 (53.3%)

23 (76.7%)
7 (23.3%) p = 0.028

Race

Chinese
Indian
Malay
Other

30 (100.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)

15 (%)
4 (%)
9 (%)
2 (%)

17 (56.6%)
1 (3.3%)
9 (30.0%)
3 (10.0%)

p < 0.001

BMI kg/m2 25.3 (3.4) 29.6 (3.2) 27.8 (4.0) p = 0.014

SBP mmHg 123.3 (13.9) 131.1 (13.6) 133.6 (14.9) p < 0.001

HbA1c % 5.3 (0.4) 8.6 (1.8) 8.5 (2.1) p < 0.001

eGFR mL/min/1.73m2 126.0 (23.4) 108.6 (12.3) 72.6 (16) p < 0.001

sCR µmol/L 75.3 (13.5) 59.7 (13.9) 101.7 (34.3) p < 0.001

TC mmol/L 4.7 (0.7) 4.9 (1.4) 4.7 (1.5) p = 0.390

TG mmol/L 1.1 (0.5) 1.8 (0.9) 1.9 (1.0) p < 0.001

HDL mmol/L 1.3 (0.3) 1.2 (0.3) 1.2 (0.3) p = 0.101

LDL mmol/L 2.9 (0.6) 2.6 (0.8) 2.7 (1.3) p = 0.050
BMI—body mass index. SBP—systolic blood pressure. eGFR—estimated glomerular filtration rate. sCR—serum
creatinine. TC—total cholesterol. TG—total triglycerides. HDL—high-density lipoprotein. LDL—low-density
lipoprotein. For continuous variables, the numbers are averages and standard deviations (in parenthesis) per
group. For categorical variables, the numbers are counts and percentages (in parenthesis) per group. For statistical
significance values, the Kruskal–Wallis test was used for continuous variables and the chi-squared test was used
for categorical variables.

2.2. Compound Identification and Semi-Quantification

We next performed LC-MS analysis of plasma samples in information-dependent
(IDA) acquisition, a form of DDA analysis, for compound identification using an ultrahigh-
performance liquid reverse phase chromatography (UPLC) coupled to a high-resolution
time-of-flight mass spectrometer (see Materials and Methods). We analyzed all 90 sam-
ples for DDA acquisition to achieve the most depth in identification and create the most
comprehensive MS/MS spectral library from these samples. The analysis was performed
in positive and negative ionization modes for all samples. MetaboKit software identified
1233 unique compounds and 449 records of possible in-source fragmentation (ISF) in pos-
itive ionization mode, whereas it identified 937 unique compounds and 321 ISF events
in negative ionization mode. In both cases, we discarded the ISFs from all downstream
analysis. We remark that, at this stage of data curation, the compounds include not only
endogenous compounds, but also a number of contaminant chemicals such as EDTA as
well as drug compounds.

We next analyzed the same samples with sequential window acquisition of all theoret-
ical mass spectra (SWATH-MS) scans of 25 Da isolation windows (1 Da overlap), a mode of
DIA, for metabolite semi-quantification by peak area calculation across the samples (see
Materials and Methods, Table S2). Using the MS/MS spectral library generated from the
IDA data with each constituent spectrum marked with adduct, precursor m/z, and retention
time (RT) information annotated by MetaboKit [12,13], we extracted peak area data at both
MS1 and MS2 levels, with MS2-based fragment ion peak areas rolled up to each metabolite
using the mapDIA software with default parameters [14]. Unfortunately, fragment ion
chromatograms were generally of inferior quality with respect to the smoothness of ion
chromatograms in these data, possibly due to a fast gradient in the LC system used in the
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study. Therefore, all quantitative data are based on the peak areas of precursor ions from
here onwards. We chose all compounds with missing data up to 10 percent of samples
(N = 9), and we imputed the values with the 90% of the minimum observed peak areas in
each compound.

This process produced 1088 endogenous compounds with semi-quantification across
the 90 samples. These compounds encompass a diverse class of metabolites. Although
standard methanol-based extraction is not particularly geared to the identification of lipids,
55% of the compounds with MS/MS matching were lipids, including prostaglandins,
phospholipids, ceramides, but few neutral lipids such as mono, di, and triacylglycerols as
well as sterols were detected. Other detected compounds included fatty acids (8%), and
organic acids, amino acids (including their derivatives), and short peptides all accounting
for approximately 5% of the compounds, and acylcarnitines, nucleosides/nucleotides,
sugars, glycans, purine metabolism intermediates, and uremic toxins were from other
classes of metabolites. The remaining ~12% of the detected metabolome includes trace
quantities of alcohols, aldehydes, alkaloids, ketones, and organic bases.

Meanwhile, we were also able to identify 125 compounds that are either exogenously
synthesized or therapeutic agents (Table S2). Exclusion of potential drug or exogenous
compounds is crucial for the downstream analysis in this cohort, since they also contribute
to the separation of the sample groups. For example, we observed that diabetes medications
metformin and sitagliptin were elevated only among the DM patients, as expected. We
also observed the antiplatelet therapeutic clopidogrel, the anti-hypertension medications
losartan, irbesartan and valsartan, an ACE inhibitor medication enalapril, blood lipid
lowering atorvastatin, sulfonylurea-class glipizide and gliclazide among the DM patients,
but mostly in DKD patients. However, the most consistently administered medication was
metformin, and other compounds were mostly detected above the noise level in fewer than
10% of the subjects. We excluded these compounds from the analysis as they are likely
a consequence of the disease or subsequent treatment rather than causal markers of the
diseases (Table S1).

Finally, we explored the correlation structure between the endogenous compounds
and the clinical parameters collected from the patients, including age, gender, race, body
mass index, systolic blood pressure, HbA1c, eGFR, serum creatinine, total cholesterol, total
triglycerides, HDL and LDL by series of univariate linear regression analysis. Table S3
shows multiple testing corrected significance values (q-values) for these pairwise associ-
ations. According to this screen, other than the three variables directly associated with
the disease pathology (HbA1c, eGFR, and serum creatinine), age was the only risk factor
with statistically significant association with 24 compounds, some of which are prioritized
below. As such, we will include age as a potential confounder in the multivariate analysis
in Section 2.5 below.

2.3. Diabetes Mellitus Is Associated with Circulating Levels of Organic Acids and Lipids

We next performed differential abundance analysis using univariate hypothesis test-
ing. As mentioned earlier, we first compared 60 DM patients and 30 controls (Figure 1,
Table S4). At 5% false discovery rate and fold change of magnitude greater than 25%,
108 compounds were differentially abundant. Among these, a total of 48 compounds
could be classified as lipids. A multitude of eicosanoids including prostaglandins and
leukotriene B4, and lysophosphatidylethanolamines (LPEs) were significantly higher in
the DM patients, while ether-linked phosphatidylethanolamines (PEs) were lower. A
number of amino acid derivatives, including fructosyl isoleucine, fructosyl phenylala-
nine, PAG, acetylphenylalanine, methyllysine, asymmetric dimethylarginine (ADMA),
3-phenylpropionylglycine, N-palmitoylglycine and manoyltryptophan, as well as numer-
ous dipeptides were elevated in the DM patients. In terms of carbohydrates, we observed
elevation of sucrose and galactouronic acid, an oxidized form of D-galactose in the diabetes
groups, but reduction in 2-deoxy-D-glucose, an inhibitor of glucose-6-phosphate produc-
tion through glycolysis. Last but not least, the concentrations of adenine nucleotides (AMP,
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ADP), a purine nucleotide (deoxyguanosine triphosphate, or DGTP), and a nucleoside
(5-methyluridine) were higher in the DM groups.

Figure 1. Heatmap of relative abundance values (log-transformed, base 2) of endogenous compounds
differentially abundant between 60 DM patients and 30 controls. Data were normalized by the median
of the 30 control samples in each metabolite.

While most of the aforementioned compounds are consistently elevated in the two
DM groups compared to the controls, few are directly involved in the pathophysiology of
diabetic nephropathy to the best of our knowledge. By contrast, we observed a few uremic
solutes that were already elevated in the DM-N patients that stay elevated in the DKD
patients, including tryptophan catabolites indolelactic acid and indole-3-propionic acid,
a theophylline metabolite 1,3-dimethylurate, and urea. Interestingly, the neuroprotective
antioxidant 3-indolepropionic acid (also known as 1H-indol-3-propanoic acid), produced
by human microbiota in the gastrointestinal tract, was lower in the DM-N and DKD
groups than in the control group. Lastly, catabolic products of vitamin B6 (pyridoxine),
namely 4-pyridoxic acid and pyridoxal [15], were significantly elevated in the DM-N group,
indicating that some of the DM-N patients already showed metabolite profiles reflecting
renal insufficiency.

2.4. DKD Is Associated with Plasma Uremic Toxins

We next examined the difference in relative abundance between early DKD patients
and DM-N patients. In this analysis, the total number of significant findings was relatively
small. As such, we allowed a lenient significance threshold controlling the FDR at 0.2,
keeping the 25% minimum fold change requirement (Table S4). This resulted in 17 signif-
icant compounds (Figure 2), and all these metabolites were elevated in the DKD group
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compared to the DM-N group, with some compounds showing increasing concentrations
from controls to DM-N and to DKD.

Figure 2. Heatmap of relative abundance values of endogenous compounds (log-transformed, base 2) differentially abundant
between 30 DKD patients and 30 DM-N. Data were normalized by the median of the 30 DM-N samples in each metabolite.

The most statistically significant abundance differences included 3-methylhistidine, a
marker of muscle protein catabolism in DM-N; glutamine and PAG, a feature of urea cycle
disorders; 3α-etiocholanediol (5β-androstane-3α,17β-diol), epiandrosterone (5α-androsten-
3β-ol-17-one), 16-dehydropregnenolone (5,16-pregnadien-3β-ol-20-one), metabolites of
androgen and testosterone; indoxyl sulfate and hippurate, both uremic toxins; xanthine, a
purine degradation product; and an ether-linked phosphatidylcholine 34:3e, all of which
had increased average concentrations from control to DM-N and to DKD (FDR < 0.1).
Additional compounds in the next tier of statistical significance (FDR < 0.2) included
ADMA, a well-known nitric oxide synthase inhibitor, acetylphenylalanine, an amphipathic
metabolite of phenylalanine, and 1,3-dimethylurate, a theophylline metabolite.

2.5. Partial Correlation Network Analysis for further Prioritization of Candidate Markers

A drawback of statistical differential abundance analysis is that, despite assuring fold
changes between groups, not all compounds are directly correlated with essential clinical
parameters such as HbA1c and eGFR within each comparison group. To further prioritize
the compounds with correlation with these parameters, we have performed a supervised
network-based differential analysis. To this end, we first estimated a partial correlation
network of 1088 endogenous compounds and all clinical parameters excluding gender and
race from the entire data using sparse Gaussian graphical model called graphical lasso [16],
which resulted in 23,456 and 20,731 network edges of non-zero partial correlations, a form
of confounding-free correlation, when analyzing all 90 subjects and the 60 subjects with
DM, respectively. Using the non-zero partial correlations as a pseudo-network, we used the
iOmicsPASS algorithm [17] to identify subnetworks associated with DM, and subsequently
with early DKD (Table S5).

Figure 3A shows that several major hub metabolites underlie the confounding-free
correlation network in the comparison between 60 DM patients and 30 controls, including
HbA1c measured by an immunoassay, and metabolites AMP, DGTP, sucrose, and ADMA
measured by the SWATH-MS analysis. With the exception of 2-deoxy-D-glucose, the
plasma levels of these compounds were higher in the subjects with DM. Among these,
AMP, ADMA, and sucrose exhibited nonzero partial correlations with HbA1c, the main
diagnostic criterion for type 2 diabetes, as verified by the heatmap of relative abundance
values of individual compounds (Figure 3B). Recalling that the control subjects were
younger than the DM patients by 16 years, on average, a caveat in this interpretation is that
age has non-trivially large partial correlations with AMP and AMDA, implying that the
elevated levels of AMP is in part due to the older age of 60 subjects with DM. However,
the selected edges in the network represent the residual associations that contribute to
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the discrimination of sample groups. Accordingly, a part of the joint variation in the
aforementioned compounds still represents age-independent effects of DM.

Figure 3. (A) Subnetwork signature of 60 DM patients compared to the 30 controls. Network edges
are drawn in different colors depending on the sign of the partial correlations (positive in red,
negative in blue); thicker edges represent stronger relationships. The size of the nodes corresponds
to their respective –log10(q-value) from univariate differential abundance tests (two-sample t-test).
(B) To demonstrate the abundance patterns more clearly, heatmap of relative abundance values
of individual compounds was drawn (log-transformed, base 2) normalized by the median of the
control group.

Likewise, Figure 4A demonstrates that the eGFR, the main parameter associated with
albuminuria, has the strongest partial correlations with several metabolites already verified
by the univariate hypothesis testing above, including glutamine, (microbiome-associated)
PAG, indoxyl sulfate, hippurate, and 3-methylhistidine. However, the network-based
multivariate analysis prioritized several other compounds such as a tryptophan, metabolite
kynurenine, hippuric acid and 4-hydroxyhippuric acid as additional candidates associated
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with the discriminant factors for DKD from DM-N. These markers were barely missed by
the statistical significance threshold in the univariate analysis, but were restored based on
their stronger independent correlation to the key clinical parameter eGFR (Figure 4B).

Figure 4. (A) Subnetwork signature distinguishing 30 DKD patients from 30 DM-N patients. Network edges are drawn in
different colors depending on the sign of the partial correlations (positive in red, negative in blue); thicker edges represent
stronger relationships. The size of the nodes corresponds to their respective −log10(q-value) from univariate differential
abundance tests (two-sample t-test). (B) To demonstrate the abundance patterns more clearly, heatmap of relative abundance
values of individual compounds was drawn (log-transformed, base 2), normalized by the median of DM-N, in which the
plasma levels of a majority of compounds were elevated in DKD patients.
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3. Discussion

In this work, we used DDA (IDA) acquisition to create a customized MS/MS spec-
tral library, and subsequently performed DIA (SWATH-MS) analysis for reproducible
re-identification and semi-quantification across a large number of samples. This workflow
of combining both DDA and DIA from the same samples was seamlessly carried out by
a data processing software MetaboKit [13], with the help of reference MS/MS spectral
libraries that constantly evolve and are made publicly available to the metabolomics and
lipidomics research community by various parties. However, we note that it is not always
necessary to perform DDA on all samples. In routine practice, samples pooled from a
selected subset of samples often provide enough information to build a spectral library with
DDA. Thereafter, as long as the same type of LC system is used, the MetaboKit software
assists the user to build a maturing customized spectral library, with which future analysis
can be performed using DIA only for semi-quantification.

We also showcased a network-based multivariate analysis framework via iOmicsPASS,
rather than the conventional hypothesis testing-based filtering and interpretation of data
or multivariable regression modeling approaches that often fail to deal with the multi-
collinearity problem in correlated high-dimensional data sets. However, it is important
to note that we used the method as a feature exploration tool to capture significantly
discriminative, correlated variations from a systems biology point of view, and the reported
network signatures of DM and DKD, reported in Figures 3 and 4, respectively, were not
validated in independent cohorts. It is thus possible that a good proportion of weak edges,
i.e. those with partial correlations close to zero, may not be reproduced if the partial
correlation network analysis were to be repeated in independent data sets, and the nodes
connected by thin edges (weak co-expression scores) may not be selected in future data
sets. However, we expect the major hubs in the networks, such as AMP and ADMA, to be
highly discriminative features of the network signatures in other studies.

A number of plasma and urine metabolomics studies in DKD and non-diabetic CKD
have previously been conducted using GC-MS or LC-MS techniques [18–20]. Most metabo-
lites we reported to be associated with DKD, or closely related metabolites, have already
been captured with concordant directions of change by respective studies, including
compounds involved in urea and ammonia metabolism and excretion [21], gut microbiome-
associated tryptophan metabolism [22], uremic toxins [23–26], glutamate and PAG excretion
in urine [27], and uremic solutes also produced by the gut microbiome [24,28]. On the other
hand, our metabolome coverage had a limitation of its own. For example, our experiment
did not capture some of the well-known free fatty acids and organic acids and interme-
diates from renal organic ion transport and mitochondrial activity such as TCA cycle, as
previously reported [11,20]. In certain compounds, the direction of changes we observed in
our experiments (e.g., glucuronide, hippuric acid) was inconsistent with those reported in
a previous urine metabolomics study [29], although it is possible that the changes in blood
and urine may not always coincide.

Several interesting observations arose from our data. First, the circulating level
of AMP is elevated in subjects with DM with a high correlation with HbA1c. The in-
crease in the plasma levels of adenine nucleotides insinuates subsequent overactivation
of the fuel-sensing enzyme AMP-activated protein kinase (AMPK) in insulin resistant
individuals [30,31], or AMP elevation may predate the hyperglycemia as an upstream
regulator of glucose uptake in the whole body [32,33]. Therefore, assays of AMPK activity
in relevant tissues such as skeletal muscle and the plasma AMP/ATP ratio in the same
hyperglycemic person’s blood sample may be important complementary information to
insulin sensitivity and insulin resistance assays for more detailed diagnosis of DM. How-
ever, we acknowledge that our data were generated from plasma samples collected from a
cross-sectional case control study with skewed age distribution between the groups, and
thus the association of AMP elevation with DM is confounded by the older age in the
DM patients.
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Second, we observed that plasma levels of indole-3-propionic acid (IPA) and indole-3-
lactic acid (ILA) are elevated in DM-N and DKD patients, both metabolized from trypto-
phan by gut flora. It was previously shown that, in a prospective study of at-risk Finnish
individuals, higher levels of IPA were associated with lower risk of type 2 diabetes and
serum CRP-based low-grade inflammation levels [34]. Similarly, ILA has been linked
to amelioration of salt-sensitive hypertension [35]. In the context of cross-sectional case–
control study, we can deduce that the elevated levels of IPA and ILA in the subjects
with DM are likely the microbiome-mediated response to the treatments for improved
glycemic control.

Last, we observed increased levels of a few lysophosphatidylethanolamine (LPE) and phos-
phatidylamine (PE) species and decreased levels of ether-linked phosphatidylethanolamine
species as well as other lysophospholipids of different head groups in DM-N and DKD. It is
likely that this change in balance in the phospholipid composition has to do with systemic
dyslipidemia, and has little to do with localized perturbation of lipid efflux, uptake, and
metabolism in kidney tissues in the case of DKD [36,37]. Although the methanol-based
metabolite extraction still resulted in a decent coverage of eicosanoids, sterol lipids, phos-
pholipids and some ceramides, a shortcoming of our current study is that we did not detect
the majority of triglycerides and cholesteryl esters. Despite this drawback, the biochemical
assay data in Table 1 suggest that only the total triglyceride level is elevated in DM and
DKD, but LDL, HDL, and total cholesterol levels are more or less equivalent to the controls.
We therefore speculate that even the composition of individual TG species would not have
provided additional information delineating the difference between DM-N and DKD in
the current study cohort. We leave this aspect of investigation to future research.

4. Materials and Methods

Metabolite extraction. In this process, 800 µL of ice cold methanol was added to 200 µL
of each plasma sample. The mixtures were incubated at −20 ◦C for 60 min to precipitate
proteins and centrifuge at 16,000 g at 4 ◦C for 10 min. The supernatants were divided
into two aliquots and dried in a vacuum concentrator. Quality control (QC) samples were
prepared by pooling equal volume of all plasma samples in this study to monitor the
stability and repeatability during LC-MS analysis and the same protocol was used for
metabolite extraction from QC samples.

LC-MS/MS analysis. Metabolite analysis was performed on an ACQUITY I-class
UPLC system (Waters, Milford, MA, US) coupled to a TripleTOF 5600 fitted with a Du-
oSpray ion source (SCIEX, Foster, CA, US). Each sample was reconstituted in 30 µL of
95/5 water/methanol (v/v) and 5 µL was injected for each analysis in the positive mode
and negative ionization mode, with both information-dependent acquisition (IDA) and
sequential windows acquisition of all theoretical fragment ion mass spectra (SWATH-MS).
Samples were injected in a randomized order and a QC sample was injected after every
10 samples. Mass calibration was automatically performed after every 20 injections by the
automated calibration delivery system.

Reverse phase liquid chromatography and positive ionization mode. The column used for
positive ionization mode was a Waters HSS T3 2.1 mm × 100 mm, 1.8 µm. Mobile phase A
was 0.1% formic acid in 5% acetonitrile and mobile phase B was 0.1% formic acid in 95%
acetonitrile. The gradient profile was 2% B from 0 to 1 min, 50% B at 8 min, 98% B from
13 min to 15 min and 2% B at 15.1 min to 20 min. The flow rate was set to 0.4 mL/min. The
temperature of the column oven and auto-sampler was set to 40 ◦C and 4 ◦C, respectively.
The source voltage was 5500 V.

Reverse phase liquid chromatography and negative ionization mode. The column
used for analysis in the negative ionization mode was a Waters BEH C18 2.1 mm × 100 mm,
1.7 µm column. Mobile phase A was 5 mM ammonium bicarbonate in 5% acetonitrile
and mobile phase B was 5 mM ammonium bicarbonate in 95% acetonitrile. The gradient
profile was 2% B from 0 to 1 min, 50% B at 8 min, 98% B from 13 min to 15 min and 2% B at
15.1 min to 20 min. The flow rate was set to 0.4 ml/min. The temperature of the column
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oven and auto-sampler was set to 45 ◦C and 4 ◦C, respectively. The source voltage was
4500 V.

IDA (DDA) acquisition. Each IDA duty cycle contained one TOF MS survey scan
(180 ms) followed by 20 MS/MS scans (40 ms). The mass ranges of TOF MS and MS/MS
scans were 100 to 1000 and 30 to 1000 m/z, respectively. The following IDA parameters were
applied: dynamic background subtraction, charge monitoring to exclude multiply charge
ions and isotopes and dynamic exclusion of former target ions for s. Ramped collision
energies of 20 to 40 V and −20 to −40 V were applied for positive and negative MS/MS
scans, respectively.

SWATH-MS (DIA) acquisition. Each SWATH duty cycle contained one TOF MS survey
scan (150 ms) followed by 36 SWATH scans (20 ms each). The fragment ion window for
SWATH was from 100 to 1000 m/z in steps of 25 Da. The mass range of TOF MS and
SWATH scans were 100 to 1000 and 30 to 1000 m/z, respectively. Ramped collision energies
of 20 to 40 V and −20 to −40 V were applied for positive and negative MS/MS SWATH
scans, respectively.

MetaboKit analysis [13]. IDA files were processed for spectral library construction
using the NIST2014, HMDB [38], MassBank [39], LipidBlast (main and fork) [40] as refer-
ence libraries. For peak extract, we considered ion chromatograms spanning between 3
and 100 s. For compound identification, precursor ion m/z should match the theoretical
monoisotopic mass within 15 ppm. For MS/MS-based scoring, the modified dot product
score was required to be at least 0.5, and at least two fragment ions must match peaks in
the reference spectra within 30 ppm. This process generates an MS1-based peak area table
as well as a custom MS/MS library with matching records to the reference libraries.

For the SWATH-MS analysis, we trimmed the raw data by removing all peaks with
an intensity value of 1000 or below. The length of ion chromatograms was limited to 3
to 100 s, as in the IDA analysis. Using the custom library created above [12], we rolled
up the peak areas of the top six most intense fragment ions to derive a semi-quantitative
value for individual compounds. Ion chromatograms of fragment ions were required to
have at least 0.5 Pearson correlation with the ion chromatograms of the corresponding
precursor ion, with the dot product score at the apex of the elution to be 0.5 and above.
This time point was also required to be within 20 s from the RT marked for each record in
the custom library.

Statistical analysis. Log-transformed (base 2) peak areas of precursor ions from the
SWATH-MS analysis were used as semi-quantitative data for metabolites. Univariate differ-
ential expression analysis (t-test with multiple testing correction by q-value [41]), univaraite
linear regression analysis, heatmap visualizations, and sparse Gaussian graphical model
estimation (glasso) for deriving sparse inverse covariance matrix were performed using
glasso package in R [16]. The estimated inverse covariance matrix was converted into a
partial correlation matrix, and metabolite pairs (nodes) with non-zero partial correlations
were connected by lines (edges) to form the partial correlation network.

Network-based multivariate classification analysis with iOmicsPASS. Using this net-
work as the background, supervised classification analysis was performed by the iOmic-
sPASS software [17] to identify subnetwork signatures of DM-N and DKD groups from 87
and 59 samples, respectively, after dropping the outliers. In iOmicsPASS, the co-expression
score of an edge for a given sample is derived from the z-scores of the two connected
nodes. If the partial correlation between the nodes is positive, the edge score for that
sample is calculated as the sum of the two z-scores. If the partial correlation is negative,
the edge score is the difference between the two z-scores, whichever node was named
first in the network input file. Hence, the interpretation of up and down between groups
depends on the order of appearance of the nodes, and therefore it is important to reaffirm
the abundance levels of individual nodes for proper interpretation in the latter case. The
subnetworks for individual comparison groups (DM-N and DKD in Figure 3 and DKD
in Figure 4) were then visualized using Cyotpscape software. In the networks, an edge
was colored in red if the partial correlation between the two nodes was positive, and in
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blue if the partial correlation was negative. The thickness of edges was proportional to
the magnitude of the group centroid values, i.e., the discriminative co-expression score
reported by the supervised classifier in iOmicsPASS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11040228/s1, Table S1: IDA analysis for compound identification and MS/MS library
building, Table S2: SWATH-MS analysis for semi-quantification of compounds, Table S3: association
between metabolites and clinical parameters, Table S4: differential abundance analysis, Table S5:
iOmicsPASS analysis.
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