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A B S T R A C T   

Purpose: Aim of the present study is to characterize a deep learning-based auto-segmentation software (DL) for 
prostate cone beam computed tomography (CBCT) images and to evaluate its applicability in clinical adaptive 
radiation therapy routine. 
Materials and methods: Ten patients, who received exclusive radiation therapy with definitive intent on the 
prostate gland and seminal vesicles, were selected. Femoral heads, bladder, rectum, prostate, and seminal ves-
icles were retrospectively contoured by four different expert radiation oncologists on patients CBCT, acquired 
during treatment. Consensus contours (CC) were generated starting from these data and compared with those 
created by DL with different algorithms, trained on CBCT (DL-CBCT) or computed tomography (DL-CT). Dice 
similarity coefficient (DSC), centre of mass (COM) shift and volume relative variation (VRV) were chosen as 
comparison metrics. Since no tolerance limit can be defined, results were also compared with the inter-operator 
variability (IOV), using the same metrics. 
Results: The best agreement between DL and CC was observed for femoral heads (DSC of 0.96 for both DL-CBCT 
and DL-CT). Performance worsened for low-contrast soft tissue organs: the worst results were found for seminal 
vesicles (DSC of 0.70 and 0.59 for DL-CBCT and DL-CT, respectively). The analysis shows that it is appropriate to 
use algorithms trained on the specific imaging modality. Furthermore, the statistical analysis showed that, for 
almost all considered structures, there is no significant difference between DL-CBCT and human operator in 
terms of IOV. 
Conclusions: The accuracy of DL-CBCT is in accordance with CC; its use in clinical practice is justified by the 
comparison with the inter-operator variability.   

Introduction 

In modern external beam radiation therapy (RT) the main chal-
lenges, when treating prostate cancer, are the geometrical uncertainties 
due to set up and positional changes of both the prostate and sur-
rounding organs at risk (OAR) [1]. 

During conventional RT, when the same treatment plan is being 
applied over the course of several weeks, treatment quality and dosi-
metric accuracy are potentially compromised due to intra and inter 
fraction changes. The intra-fraction residual motion of the prostate and 

seminal vesicles (SV) represents a relevant issue during treatment de-
livery [2]. Nevertheless, dosimetric deviations mainly arise from inter- 
fraction changes of either OAR volumes or relative distances between 
clinical target volume (CTV) and bladder or rectum [3]. 

To achieve the best outcome in terms of efficiency and accuracy, 
adaptive radiotherapy techniques (ART) have been introduced to ensure 
an accurate treatment delivery [4]. ART procedures include the actions 
taken to modify patient therapies, in case of discrepancies. Variations 
occurring during an ongoing fraction require an online ART strategy; an 
offline ART strategy is instead appropriate to define new irradiation 
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criteria. When treating prostate patients, both ART strategies can be 
used to correct daily variations. Many steps in ART are dependent on fast 
and accurate OAR and target delineation on cone-beam computed to-
mography (CBCT). Auto-segmentation can reduce the workload for ra-
diation oncologists and improve work efficiency. 

Manual contouring on CBCT is a time-consuming process that limits 
the applicability of ART solutions. Therefore, deformable image regis-
tration (DIR) based methods, in which the structures contoured on the 
planning computed tomography (CT) are propagated on the CBCT via a 
DIR map, are widely used [5]. The performance of these methods is good 
within the limits of small deformations, while it may fail in presence of 
large deformations between the scans [6,7], such as in the pelvic region 
where changes in bladder and rectum filling frequently occur. 

Recently, deep learning-based auto-segmentation become a main-
stream support contouring techniques in CT [8,9]. Extending the use of 
deep learning algorithms to the contouring of structures on CBCT may 
contribute to mitigating the issues encountered with DIR based methods. 
Therefore, it may be appropriate to evaluate the applicability of these 
algorithms in the pelvic region. 

However, the low image quality of CBCT, characterized by higher 
noise, artefacts and lower contrast for soft tissue compared to CT, can be 
a limiting factor for the application of deep learning algorithms [10,11]. 
In addition to limitations due to image quality, applications of deep 
learning techniques for CBCT segmentation are also limited by the 
scarcity of labelled images, necessary for training the algorithms. In fact, 
CBCT images are usually not contoured in clinical routine [12]. How-
ever, recent studies have shown promising results using hybrid deep 
learning-DIR [13,14] or only deep learning methods [12,15]. Further-
more, this approach is already integrated into the proprietary software 
of some Linac manufacturer, oriented toward the use of adaptive 
radiotherapy [16]. 

Several studies have described the clinical implementation of deep 
learning auto-segmentation software for CT [8,17,18]. Regarding deep 
learning CBCT auto-contouring, the currently published studies analyse 
different training methods for the neural networks [12,15,19–21]. 
However, evaluations of the clinical implementation of a deep learning 
CBCT auto-segmentation software have not yet been published. 

Recently, a new deep learning auto-segmentation software imple-
mented a beta version of auto-contouring of structures typically used in 
prostate treatments with an algorithm specifically trained on CBCT 
images. The application of this system for online or offline ART will 
depend on the degree of integration of the future clinical version, with 
pre-existing ART systems. However, the suitability in terms of perfor-
mance will be necessary for its clinical use. 

This is the first attempt to characterize the performance, in terms of 
accuracy and reliability, of this software for the automated contouring of 
prostate, seminal vesicles, femoral heads, bladder and rectum on CBCT 
images. Its performance on CBCT was compared against a gold standard 
consensus contour (CC). Furthermore, the accuracy was related to 
human inter operator variability (IOV) to evaluate its clinical 
applicability. 

Material and methods 

Deep learning-based auto segmentation 

We used a commercial deep learning-based auto-segmentation soft-
ware (DL) which uses deep convolutional neural network models based 
on a U-net architecture specific for each structure. DL technical details 
and training methods of the neural network have been already described 
[18]. DL for CT (DL-CT) images is validated by published studies that 
investigate its qualitative and quantitative accuracy and time savings 
[17,22,23]. A beta version (1.5.0-D2) is currently being developed to 
implement a contour model specifically trained on CBCT images (DL- 
CBCT). The CBCT model was trained using a combination of CBCTs from 
different linear accelerator manufacturers, coming from a variety of 

collaborating customers and publicly available datasets and imple-
mented using TensorFlow [24]. Data augmentation and regularization 
techniques are used during training to improve model performance and 
prevent overfitting. Post processing of the contours, before the creation 
of a finalized structure set, includes outlier removal and contour 
smoothing. Further details of model generation and optimization 
methods used by DL have not been made public by the manufacturer. 

DL obtains information related to the acquisition protocol by reading 
the DICOM metadata of the CT/CBCT images. The corresponding auto- 
segmentation model is automatically used to create auto-segmented 
contours that are exported alongside the CT/CBCT images to the 
Treatment Planning System (TPS) software. 

Image acquisition and contouring 

Ten patients, who received exclusive RT with definitive intent on the 
prostate gland and seminal vesicles, were selected in this study. A 
moderate hypofractionated schedule was employed: 70 Gy on the 
prostate gland and 63 Gy on the seminal vesicles in 28 fractions [25] 
delivered with a simultaneous integrated boost. All the patients were 
treated on a TrueBeam linear accelerator (Varian Medical Systems − A 
Siemens Healthineers Company, Palo Alto, CA, USA). CBCT scans were 
acquired by the on-board imager Varian Digital X-Ray imaging system 
with 125 kVp half fan 360 degrees acquisition. The voxel resolution of 
the CBCTs were 0.9 mm × 0.2 mm × 2 mm. 

One CBCT was selected for each patient (at fraction number 3) and 
four observers (expert radiation oncologists contourer − EC) indepen-
dently delineated the prostate gland, seminal vesicles, femoral heads, 
bladder, and rectum. Operators were blinded to other operators’ con-
tours. All contours were segmented using Eclipse (Version 15.6) TPS 
contouring workspace. 

Starting from these contours, a consensus contour was generated for 
each organ, using the simultaneous truth and performance level esti-
mation (STAPLE) method [26] in the Computational Environment for 
Radiotherapy Research (CERR) software package [27]. These consensus 
contours were used as references for contour comparison analysis. The 
same CBCTs were contoured by DL using algorithms trained on both 
CBCT (DL-CBCT) and on CT (DL-CT). 

Comparison of DL contours versus consensus contour 

Multiple metrics, including Dice similarity coefficient (DSC), centre 
of mass (COM) shift and volume relative variation (VRV) were calcu-
lated to evaluate the segmentation accuracy of DL by comparing CC with 
both DL-CBCT and DL-CT. DSC [28] was used to quantify the overlap 
between the contours of DL-CBCT and DL-CT and CC. Let X and Y be two 
volumes to be compared, the coefficient DSC is defined as DSC (X|Y) =
2|X ∩ Y|/(|X|+|Y|). DSC values range from 0 for no overlap to 1 for 
complete overlap. 

The centre of mass (COM) shift was evaluated in the three directions 
(X latero-lateral, Y cranio-caudal and Z antero-posterior direction). The 
absolute shift vector in 3D space was also evaluated to measure the 
displacement (mm) between CC and both DL-CBCT and DL-CT. All the 
metrics were obtained from the statistics tool of the contouring module 
of Varian Eclipse TPS. Furthermore, the DL contours were evaluated by 
the expert radiation oncologists and a qualitative description of the main 
differences was provided. 

DL contours and inter-observer variability 

Comparing the contours of DL-CBCT and DL-CT with respect to CC 
allows to quantitatively characterize its performances. However, as no 
tolerance limit can be defined for the used metrics, this analysis does not 
give a clear indication on the applicability of DL-CBCT to clinical 
routine. To study this possibility, the DL-CBCT performance was 
compared with the inter-operator variability (IOV) of 4 Radiotherapy 
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Oncologists, using the same metrics previously described. With this 
approach, the range of metric values for human-generated structures 
was used as reference for contour acceptability. 

For each CBCT image set, DSC, absolute COM shift and VRV were 
evaluated between DL-CBCT and the four ECs resulting in multiple 
metrics values (DL-CBCT-EC) for each structure. Similarly, DSC, abso-
lute COM displacement and VRV were measured between each EC pair, 
generating multiple EC-EC values to obtain an estimation of the IOV. 

For DSC and COM, the average DL-CBCT-EC and EC-EC values for 
each case were used in the statistical analysis. Otherwise, in the case of 
VRV, the RMS was considered to account for the volume variations, 
regardless of their sign. 

Statistical analysis was performed using the Wilcoxon signed-rank 
test to compare the DL-CBCT-EC distributions versus the EC-EC ones 
for each organ; p-values < 0.05 were considered statistically significant. 

Results 

Comparison of DL contours versus consensus contour 

Femoral heads are the structures showing the best agreement be-
tween CC and both DL-CT and DL-CBCT. On average, DL-CBCT provides 
about 5 % ± 2 % (RMS 5 %) smaller volumes than CC while DL-CT 
contours are approximately 2 % ± 3 % (RMS 3.5 %) smaller than CC. 

The mean femoral heads COM shift is less than 2 mm, for both DL-CT 
and DL-CBCT. The mean DSC for femoral heads contours is 0.96 ± 0.01 
for both DL-CT and DL-CBCT. 

Concerning the bladder, the mean VRV with respect to consensus 
contour is − 2% ± 14 % (RMS 13 %) in the case of DL-CBCT and − 9% ±
14 % (RMS 16 %) for DL-CT. The mean COM displacement is 2.2 ± 1.6 
mm for DL-CBCT and 3.0 ± 2.0 mm for DL-CT. The mean DSC for 
bladder contours for all patients is 0.90 ± 0.06 and 0.89 ± 0.06 for DL- 
CBCT and DL-CT, respectively (Fig. 1). 

In all cases the rectal volume contoured by DL is smaller than the 
STAPLE one. The rectal mean VRV is − 15 % ± 10 % (RMS 18 %) and 
− 13 % ± 20 % (RMS 23 %) for DL-CBCT and DL-CT, respectively. The 
mean COM shift for all patients is 3.8 ± 3.7 mm for DL-CBCT and 5.7 ±
5.9 mm for DL-CT. The mean DSC score is 0.86 ± 0.05 (DL-CBCT) and 
0.81 ± 0.08 (DL-CT) (Fig. 1). 

Regarding the qualitative assessment of the deep learning-generated 
contours by the expert radiation oncologists, the largest differences were 
found in the rectum segmentation for both DL-CT and DL-CBCT. Indeed, 
DL contoured rectum correctly included the anal canal caudally. How-
ever, cranially, the DL contour did not include the higher rectum, 
already outlined by DL as sigma. With respect to other organs at risk, 
expert radiation oncologists could not find any important difference. For 
example, DL contoured femoral heads correctly, stopping at the ischio- 

pubical branch. 
Table 1 summarizes the mean variation of the contour metrics for 

target volumes (prostate gland and seminal vesicles). 
In the case of the prostate gland, the volume differences with respect 

to consensus contour for DL-CBCT and DL-CT are − 11.8 % ± 14 % (RMS 
17 %) and − 11.5 % ± 23 % (RMS 25 %), respectively. Fig. 2 shows, for 
each patient, the mean COM shift (Fig. 2A) and the COM displacement in 
each direction for DL-CBCT (Fig. 2B). The mean prostate DSC for DL- 
CBCT is 0.83 ± 0.06 while for DL-CT it drops to 0.74 ± 0.10. 

The seminal vesicles are the structures in which the largest differ-
ences between CC and both DL-CBCT and DL-CT have been found. DL- 
CBCT shows a mean volume reduction of about 21 % ± 23 % (RMS 
30 %) compared to CC, a mean COM shift of 3.9 ± 4.0 mm and a mean 
DSC of 0.70 ± 0.16. The performances of DL-CT on seminal vesicles are 
lower. The mean change in volume is − 40 % ± 24 % (RMS 46 %), with 
50 % of patients having changes greater than 50 %. The COM shift is 6.8 
± 10.5 mm while the DSC is 0.59 ± 0.28. In Fig. 3, the performance of 
the results for OARs and CTVs contour are shown. Regarding the target 
volumes, the qualitative assessment could not show any specific pattern 
for DL. 

DL contour and inter-observer variability 

In Fig. 4, the EC-EC and DL-CBCT-EC distribution of DSC, COM shift 
and VRV RMS for femoral heads, rectum, bladder, prostate, and seminal 
vesicles is illustrated. 

The statistical analysis shows that, for almost all the structures 
considered, there are no statistically significant differences between DL- 

Fig. 1. DL-CBCT (black and grey) and DL-CT (dashed black and grey) DSC for bladder and rectum contours.  

Table 1 
Contour volume data variation, COM displacement and DSC for prostate and 
seminal vesicles.   

prostate seminal vesicles 

DL-CBCT DL-CT DL-CBCT DL-CT 

Volume [cc] − 7.8 ± 9.1 − 7.9 ±
12.3 

− 6.1 ± 5.5 − 9.7 ± 6.3 

COM shift (Lateral) 
[mm] 

− 0.3 ± 0.8 − 1.2 ± 1.3 0.5 ± 1.7 1.1 ± 2.4 

COM shift (AP) [mm] 0.3 ± 1.5 3.3 ± 3.7 1.2 ± 4.6 5 ± 11 
COM shift (Sup-Inf) 

[mm] 
1.6 ± 1.9 1.7 ± 4.9 1.7 ± 2.0 0.9 ± 2.1 

COM shift (Vector) 
[mm] 

2.5 ± 1.6 6.1 ± 3.8 3.9 ± 4.0 6.8 ± 10.5 

DSC 0.83 ±
0.06 

0.74 ±
0.10 

0.70 ±
0.16 

0.59 ±
0.28 

The value shown is the average value among all observers and patients. The 
value after ± represents one standard deviation. 
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CBCT and human operator in terms of inter-operator variability. For DSC 
analysis, the only exception are the femoral heads, where there is a 
statistically significant difference (p-value < 0.01). However, the dif-
ference of median DSC between DL-CBCT-EC and EC-EC distribution is 
clinically not significant, with values of 0.94 and 0.93, respectively. 

Similar results were found for COM shift. The distributions of the 
femoral heads show a statistically significant difference (p = 0.02), also 
for this metric. The median COM shift is 2.0 mm for EC-EC distribution 
and 1.7 mm for the DL-CBCT-EC one. 

Concerning the analysis of VRV RMS, statistically significant differ-
ences were found for femoral heads and rectum (p < 0.01). As in the 
previous metrics, the DL-CBCT-EC distribution indicates a lower median 
variability than the EC-EC distribution. In particular, the median VRV 
RMS value for the rectum is 22 % for EC-EC and 15 % for DL-CBCT-EC. 
For femoral heads the median values are 4 % and 3 % for EC-EC and DL- 
CBT-EC, respectively. 

Discussion 

Recent studies have shown promising results for deep learning CT 
auto-segmentation of OARs and CTVs [8,29], with greater accuracy and 
time savings compared to atlas-based methods [30,31]. 

However, there are very few studies on CBCT-based soft tissue seg-
mentation, primarily aimed at evaluating optimal training techniques 
[12,15,19,20]. 

The present study compares the performance of a beta version of a 
new commercial deep-learning based software, for auto-segmentation of 
the prostate gland, seminal vesicles, femoral heads, bladder, and rectum 
on CBCT images against a consensus contour, used as reference. 
Furthermore, the accuracy of DL-CBCT contours is validated against 
expert radiation oncologists inter observer variability. 

With respect to OARs, the results show that the automatically 
generated contours are in general smaller than the manual reference 
contours. Lower discrepancies are obtained for DL-CBCT compared to 

Fig. 2. Prostate COM shift [cm] with respect to CC for DL-CBCT (black) and DL-CT (grey) (A); COM displacement [cm] in x, y and z direction (B).  

Fig. 3. Example of DL-CBCT contour.  

Fig. 4. EC-EC (white) and DL-CBCT-EC (grey) DSC, COM shift and VRV RMS boxplot distributions for Femoral Heads (FH), prostate, rectum, bladder and Seminal 
Vesicles (SV). 
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DL-CT, except for femoral heads. Moreover, for COM shift and DSC 
analysis, the best results are always obtained for DL-CBCT compared to 
DL-CT. These results suggest using algorithms specifically trained on the 
imaging modality of interest. 

DSCs for femoral head, bladder and rectum are good. The analysis of 
DSC for CBCT images showed that the bladder achieved the best results 
(0.90 ± 0.06) compared to the rectum volume (0.86 ± 0.05). This relies 
on the general good contrast of the bladder in comparison to its sur-
rounding tissue, except for the intersection with the prostate. DSC values 
for these OARs were similar to those found by Abbani et al. [20]: 0.91 ±
0.04 and 0.83 ± 0.06 for bladder and rectum respectively. Leger et al. 
[15] tested different training approaches for a deep learning segmen-
tation algorithm; their best results, compared to a single human oper-
ator, showed a DSC of 0.874 ± 0.096 and 0.814 ± 0.055 for bladder and 
rectum, respectively. A similar approach has also been described by Fu 
et al. [21]. In their study, a DSC of 0.96 ± 0.03 and 0.93 ± 0.08 was 
reported for bladder and rectum, respectively. Schreier et al. [19] found 
a DSC of 0.932 and 0.871 for bladder and rectum. However, their ana-
lysed image set contains both CT and CBCT. All the previous publica-
tions did not compare the auto segmented contours with a consensus 
contour. Therefore, the results do not explicitly consider the variability 
related to the single human operator. 

A consensus contour approach was instead used by Gardner et al. 
[32]. In their study, the performance of a DIR based CBCT segmentation 
approach was evaluated. The inter-operator variability compared to a 
STAPLE CC on CBCT was also analysed. In the case of the bladder, a DSC 
of about 0.95 and 0.85 was found for human and DIR propagated con-
tours, respectively. Concerning the rectum, a DSC of about 0.85 and 0.75 
was found for human and DIR propagated contours, respectively. The 
previously described inter-operator variability results are compatible 
with the performance of DL-CBCT, also with respect to the literature 
data. 

Regarding the COM shift of the organs at risk, the rectum exhibited 
the largest value (3.8 mm), which could be mainly identified in the 
cranial region. A similar behaviour, with variations of up to 2 mm in the 
z-direction for the rectum, was found by Lütgendorf-Caucig et al. [33] by 
analysing the inter-operator variability on CBCT. 

Regarding target volumes, the performance of the system specifically 
trained on CBCT is superior to that of the algorithm trained on CT and 
used for CBCT segmentation. 

The most significant variations between DL-CBCT and CC were 
observed for the prostate gland in the superior-inferior direction (1.6 ±
1.9 mm). A possible explanation may be that the physicians contoured 
the prostate slice-by slice in the axial view. Due to the low image 
contrast of the prostate in the CBCT image, it is a challenge for the 
clinician to distinguish whether the prostate is seen via a single axial 
view in the inferior direction, resulting in a large CC uncertainty. Similar 
results were found by Gardner et al. [32]. The prostate COM shift of 
human contoured CBCT versus a consensus contour was 2.01 ± 0.46 
mm, with the main contribution seen in the superior-inferior direction. 

The prostate DSC result for DL-CBCT (0.83) is consistent with other 
deep learning algorithms reported in the literature: Schreier et al. [19] 
found a DSC of 0.84, Abbani et al. [20] described a DSC of 0.85 ± 0.04. 
Furthermore, the prostate DSC value was shown to align with the inter- 
operator variability described by Gardner et al. [32] (DSC = 0.872 ±
0.05). 

Due to the small size of the SVs, a small change in shape definition 
has a great influence on the DSC values. In fact, the SVs show the lowest 
DSC value (0.70 ± 0.16) among all structures, comparing DL-CBCT 
contour to that of the consensus. This result is similar to that of Schre-
ier et al. [19] (0.70). Furthermore, Lütgendorf-Caucig et al. [33] found a 
high variability in the contouring of the seminal vesicles on CBCT, 
although they use slightly different parameters. 

Because of the lower soft tissue contrast, this organ is the most 
difficult to contour for both human and auto-segmentation algorithms 
within the entire pelvic body site. 

More generally, it is observed that the largest discrepancies between 
manual and deep learning-based organ structures occurred because of 
insufficient contrast at organ interfaces. 

Comparing the performance of DL-CBCT over CBCT versus the data 
of DL-CT over CT reported in the literature [17 23], it is noted that they 
are comparable with respect to DSC and volume variation for bladder, 
rectum and femoral heads, while a slight worsening (of about 2 mm) of 
DL-CBCT on CBCT is found with respect to the COM shift of bladder and 
rectum. 

Inter-observer variability for contouring is a widely analysed source 
of uncertainty [34] for planning CTs. Fewer studies are present for CBCT 
segmentation [33], however there is an indication of a higher IOV in the 
case of CBCT. 

The use of DL-CBCT in clinical practice can be justified by the 
comparison with the inter-operator variability. As highlighted in Fig. 4, 
for most of the structures and metrics used, DL-CBCT does not change 
the department inter-operator variability. Moreover, in cases of statis-
tically significant differences between EC-EC and DL-CBCT-EC distri-
butions, the comparison shows a reduction in variability for DL-CBCT- 
EC. This fact shows that DL-CBCT contours have not significant varia-
tions compared to human contours, indicating a substantially 
robustness. 

Furthermore, since the department IOV is at least qualitatively 
comparable with that of other publications [32,33], the previous eval-
uations can be generalized to other situations. 

An accurate review by a human expert operator is however always 
necessary. In fact, the delineations of organs such as the prostate and 
seminal vesicles can follow different indications than the simple 
anatomical conformation when contoured as CTV, depending on the 
clinical needs. Furthermore, although DL-CBCT has shown comparable 
performances to a human operator, some errors have been noted. 

In conclusion, the accuracy of DL trained on CBCT images is in 
accordance with CC and comparable to expert IOV for the RT structures 
analysed in this study. The clinicians are required to review or perform 
minor/major correction on the structures. 

Furthermore, it is necessary to point out that we tested a beta version 
of a software whose clinical release will be forthcoming. It is possible 
that some features will be further optimized in the official version. 

However, for application in online ART, adequate integration be-
tween the clinical version of the auto-segmentation software and the 
online imaging and dose calculation system will be required. Addition-
ally, in the case of dose calculation on CBCT images, there are problems 
related to the assignment of electron density, the size of the field of view 
of the CBCT images and, more generally, the reconstruction of synthetic 
CT images [35]. 

Moreover, our sample, limited to 10 CBCTs, only allows for a pre-
liminary evaluation that could show the appropriateness of this beta 
release and suggests an adjunctive analysis when the clinical version will 
be available. 

Even so, the use of DL CBCT segmentation in clinical practice most 
likely will lead to significant benefits to the RT planning workflow and 
resources. Hence, these results are encouraging for the adoption of 
automated deep learning-based segmentation software into the clinical 
workflow as a step towards the clinical implementation of ART, to 
simplify and optimize the segmentation process of organs at risk 
necessary for a quantitative dosimetric evaluation. 
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