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Total synthesis of cyrneines A–B and glaucopine C
Guo-Jie Wu1, Yuan-He Zhang1,2, Dong-Xing Tan1,2 & Fu-She Han 1,3

The cyrneine diterpenoids represent a structurally intriguing subfamily of cyathane diterpe-

noids and could significantly induce neurite outgrowth. Therefore, the efficient synthesis of

these natural products is of great importance. Herein, we present a route for the collective

synthesis of cyrneines A, B, and glaucopine C. As the key precursor, the 5-6-6-tricyclic

scaffold is efficiently constructed by employing a mild Suzuki coupling of heavily substituted

nonactivated cyclopentenyl triflate and a chelation-controlled regiospecific Friedel-Crafts

cyclization as key transformations. The stereoselective installation of the all-carbon qua-

ternary center at C6 ring junction of the tricycle is achieved via Birch reductive methylation.

Subsequently, a carbenoid-mediated ring expansion furnishes the essential 5-6-7-tricyclic

core. Finally, manipulation of this core by several appropriately orchestrated conversions

accomplishes a more step-economic synthesis of cyrneine A (20 steps), and the first

synthesis of cyrneine B (24 steps) and glaucopine C (23 steps).
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The cyathane diterpenoids compose a large family of natural
products with greater than 100 members1–3. These mole-
cules feature a common 5-6-7 fused tricarbocyclic core

with most of which possessing two all-carbon quaternary ste-
reocenters at the ring junctions with anti-orientation. The unique
structural framework coupled with the diverse oxidation and
unsaturation states around the ring periphery gives rise to the
structural complexity and diversity. Biological evaluation revealed
that cyathane diterpenoids exhibit a rich variety of biological
activities such as antibiotics, antimicrobial, antitumor, anti-
inflammatory, and most significantly, nerve growth factor (NGF)-
regulating properties. Over the roughly 20 years, considerable
total synthesis efforts have been conducted, and a number of
molecules within the subclasses of allocyathin, erinacine, sarco-
donin, cyathin, scabronine, and cyanthiwigin have been synthe-
sized in enantioselective or racemic forms. Of note are important
contributions from the groups of Nakada2, Ward4,5, Trost6,7,
Danishefsky8, Stoltz9, Phillip10, Reddy11, Snider12,13, and
others14,15.

The cyrneines A−E and glaucopine C16-19, isolated form the
Sarcodon Cyrneus, are a novel subfamily of cyathane diterpenoids
(Fig. 1a). Unique to the structures of this subfamily as compared
with other subclasses2–15 is the extra oxidation at C1 (e.g., 1, 3, 5,
and 6), or at both C1 and C4 (e.g., 2 and 4) in the five-membered

ring. This causes considerable synthetic challenges resulting from
the higher oxidation states as well as the increased stereocenters
at C1 or C4, especially for compounds 2 and 4 bearing an allylic
functionality at C4 and two vicinal quaternary centers at C4 and
C9 ring junction. To date, only cyrneine A (1) has been synthe-
sized by Gademann and co-workers20 with an elegant sequence of
24 steps from (-)-(R)-carvone (Fig. 1b). The key transformations
involved a reductive Knoevenagel condensation, a Heck cycliza-
tion, and a Yamamoto ring expansion. On the other hand, bio-
logical evaluations showed the activity of this subfamily was
markedly influenced by the minor structural differences. Among
the molecules evaluated, cyrneines A (1) and B (2) could induce
significantly the neurite outgrowth in PC12 cells and the
expression of NGF in 1321N1 cells in a concentration-dependent
manner. Thus, driven by the structural complexity, biological
potential, and the interest for an in-depth SAR elucidation, it is of
great importance to develop a strategically new route that could
be used for efficient and versatile synthesis of these natural pro-
ducts and potential analogues. Herein, we report such a route as
demonstrated by a more step-economic synthesis of cyrneine A
(1), and the first synthesis of cyrneine B (2) and glaucopine C (3).

Results
Retrosynthetic analysis. We envisioned that the 5-6-7 tricyclic
core A could serve as an advanced intermediate for our divergent
synthesis (Fig. 2). The key challenge for accessing cyrneine A (1)
and the intermediate B would be the β-selective reduction of
carbonyl at C14 in A. The glaucopine C (3) and cyrneine B (2)
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Fig. 1 Cyathane diterpenoid natural products. a The structures of cyrneines
A−E and glaucopine C. The [5.6.7]-tricycle highlighted in blue circle
indicates a common core structural motif shared by the natural products. b
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were planned to be synthesized from C by means of 1,3-proto-
tropic shift and γ-oxidation at C4, albeit numerous concerns such
as stereo- as well as regio- and chemoselectivity are appreciably
involved in these late-stage manipulations arising from the con-
jugation effect of multiple olefinic functionalities in the 5- and 7-
membered ring, and the acidity of proton at C2 and C18. The

intermediate A was proposed to be derived from the 5-6-6 tri-
cyclic D by ring expansion. For the installation of the all-carbon
quaternary stereocenter at the angular C6, we conceived of Birch
reductive methylation from tricyclic ketone E. To our knowledge,
such transformation has never been explored in the synthesis of
cyathane-type natural products presumably due to the concerns
of annular strain, steric hindrance, and stereoselectivity1–3.
However, the great potential to streamline the synthesis of cya-
thane compounds prompted us to investigate it. The construction
of the crucial tricyclic system F might be achieved through an
intramolecular Friedel-Crafts reaction of aldehyde G whose
synthesis would be implemented through the Suzuki-Miyaura
cross-coupling of a heavily substituted nonactivated vinyl triflate
H. Simplification of H revealed the five-membered cyclic ketone
I, which was to be prepared through an enantioselective desym-
metric reduction of 2,2-disubstituted 1,3-cyclopentanedione J.

Synthesis of cyrneine A. The synthesis commenced with asym-
metric synthesis of the cyclopentenyl triflate 15a (Fig. 3).
Accordingly, allylation of the readily available 2-methyl 1,3-
cyclopentanedione 7 with allylic bromide 8 or 9 afforded 2,2-
disubstituted cyclopentanedione 10 and 11 in high yields,
respectively. Desymmetric enantioselective reduction of 10 and
11 was carried out by CBS reduction21,22. However, the result was
less satisfactory in terms of enantio- and diastereoselectivity, and
scalability. We then inspected the enzyme-catalyzed reduction
with baker’s yeast23,24. Excellent enantioselectivity of up to 99%
ee and moderate diastereoselectivity of ca. 8–9:1 were observed
for 10. The imperfect diastereoselectivity prompted us to inves-
tigate the sterically more hindered 11. Delightedly, the d.r. ratio
could be improved to ca. 25:1. Thus, a comparison of the results
obtained from different ways showed that the enzyme-catalyzed
reduction of prenyl substituted 11 afforded the best outcome. The
reaction could be uneventfully performed on decagram scales to
give α-hydroxyketone 12 in 65–68% yield with 99% ee and 25:1
d.r. (see Supplementary Fig. 36). Configuration inversion of the

Me

TBSO OTf

Me

TBSO O

Me

OO

15a (9.0 g) 14 (8.0 g)

10, R = H
11, R = Me
      (20.0 g)

OO

7

Me

Br

R

R
8, R = H
9, R = Me

Me

OHO

12 (6.0 g)
99% ee
dr = 25:1

b) D-glucose
baker's yeast

c) p-NO2-C6H4CO2H
PPh3, DEAD

d) K2CO3, MeOH/THF

g) LiHMDS
PhNTf2

8 or 9
       K2CO3

75-80%

R
R

88%
(2 steps)

Me

OHO

13 (3.0 g)

e) TBSCl
imidazole

f) NaH, iPrI
then HCl

80% (94% brsm)
(2 steps)

80%

67% (for 11)

a)

Fig. 3 Synthesis of 15a. Reagents and conditions: (a) 8 or 9 (2.0 equiv),
K2CO3 (1.5 equiv), acetone, rt, overnight (75−80%); (b) Yeast extract (50
wt%), D-glucose, dry active baker’s yeast, H2O, rt, 36 h (67%); (c)
p-NO2-C6H4CO2H (2.0 equiv), PPh3 (2.0 equiv), DEAD (2.0 equiv), THF, 0
to 50 °C, overnight (90%); (d) K2CO3 (2.0 equiv), MeOH/THF (v/v= 1:2),
0 oC, 30min (98%); (e) TBSCl (1.2 equiv), imidazole (1.2 equiv), DMF, rt,
overnight (91%); (f) NaH (5.0 equiv), iPrI (10.0 equiv), THF, reflux,
overnight; then aq. HCl (2M), rt, 1.5 h (88%); (g) LiHMDS (1.3 equiv, 1.0M
in THF), PhNTf2 (1.3 equiv), THF, −78 oC to rt, 3 h (80%). DEAD diethyl
azodicarboxylate, TBSCl t-butyldimethylsilyl chloride, LiHMDS lithium
hexamethyldisilazide, THF tetrahydrofuran, DMF N,N-dimethylformamide

Table 1 Suzuki–Miyaura cross-coupling of 15a and 16aa

Entry Catalyst (5 mol%) Base (equiv) Solvent T (oC) Yield (%)b

1 PdCl2(dppf) K2CO3 DMSO 85 21
2 Pd(PPh3)4 K2CO3 dioxane 85 34
3 Pd(PPh3)4 K3PO4 dioxane 85 44
4 Pd(OAc)2/dppp K2CO3 dioxane 85 33
5 Pd(OAc)2/dppb K2CO3 dioxane 85 41
6 PdCl2/dppp K2CO3 dioxane 85 22
7 Pd(OAc)2/dppb K3PO4 dioxane 85 61
8 18 K2CO3 DMF/EtOH (v/v= 1:1) rt >99c

9 18 K2CO3 DMF/EtOH (v/v= 1:1) rt 95d

aReaction conditions: 15a (47.0 mg, 0.1 mmol), 16a (27.6 mg, 0.2 mmol), catalyst (5 mol%), and base (3.0 equiv), in 1 mL solvent under nitrogen atmosphere for 12 h
bIsolated yield
cThe reaction was run at rt for 5 h
dThe reaction was performed with 6.6 g of 15a and was quenched until 15a had disappeared as monitored by TLC
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α-hydroxy group in 12 was carried out smoothly under Mitsu-
nobu conditions to give the desired β-hydroxy intermediate 13.
Protection of the β-hydroxy in 13 with TBS followed by a base-
mediated isopropylation with iPrI provided ketone 14 in 80%
yield over two steps (94% brsm). A literature survey showed that
α-alkylation of ketone with secondary alkyl iodide was relatively
difficult25,26. We examined the isopropylation under the effect of
LDA, MHMDS (M= Li, Na, K), and NaH, respectively. The

results showed that NaH was a more efficient base. Treatment of
14 with LiHMDS and PhNTf2 afforded the enol triflate 15a.

The Suzuki-Miyaura cross-coupling involving sterically con-
gested nonactivated enolate substrates was relatively rare. Initial
scouting of the conditions for coupling triflate 15a with 16a was
carried out by examining an array of conditions reported in
literature27–31 (Table 1). Unfortunately, most of the reactions
were less effective, affording the coupled product 17a in low
yields (entries 1−6). While a combination of Pd(OAc)2 and dppb
ligand could afford the product in moderate yield (entry 7), a
large scale synthesis was problematic owing to an elongated
reaction time, leading to partial hydrolysis of 15a. To compare
with the prior literature27–31, the low coupling efficiency is
probably due to the excessively congested structure of 15a with
the additional presence of a bulky OTBS. To overcome this
obstacle, we turned to examine the catalytic efficiency of
phosphinamide-derived palladacycle 18, which was developed
in our previous studies toward synthesizing P-stereogenic
compounds through C–H arylation of phosphinamide32,33 and
exhibited excellent catalytic activity for Suzuki cross-coupling of
aryl (pseudo)halides under mild conditions34. To our delight, we
found that the palladacycle 18 did display high catalytic activity
for such a heavily substituted nonactivated triflate 15a. The
coupled product 17a could be obtained in almost quantitative
yield at room temperature (entry 8). Most significantly, the
reaction could be reliably scaled up to multigram scales (6.6 g of
15a) without compromising the yield (entry 9).

To further expand the potential utility of the new precatalyst
for mild and effective coupling of sterically hindered nonactivated
enolate derivatives, we examined the substrate scope by varying
the structures of both reaction partners. Effective cross-coupling
was observed for an extensive combination of an array of heavily
substituted nonactivated enol triflates and aryl boronic acids. As
shown in Table 2, both the five-membered (17b–17n) and six-
membered (17o–17r) cyclic enol triflates reacted smoothly with a
rich range of aryl boronic acids whose structure was modified by
electron-donating OMe, tBu, and Me, as well as electron-
withdrawing F, 3,4,5-trifluoro, CF3, and CO2Me groups. In
addition, a [2.2.1]-bridged bicycle (17s–17w) also exhibited good

Table 2 Scope of substratesa

aConditions: Enol triflate 15 (0.2 mmol), boronic acid 16 (0.4 mmol), K3PO4 (3.0 equiv) in a mixed EtOH/DMF (v/v= 1:1) solvent (2.0 mL) at room temperature under nitrogen. Isolated yield. The use of
K3PO4 instead of K2CO3 was more effective for the coupling of boronic acids without free phenol group
bThe yield was determined based on the 1H NMR spectroscopy because of the contamination of a small amount of inseparable homocoupled product of boronic acid
cThe methyl ester group of the product was partially exchanged to ethyl ester
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Fig. 4 Synthesis of the tricyclic compound 23. Reagents and conditions: (a)
OsO4 (4mol%), NaIO4 (5.0 equiv), pyridine (3.0 equiv), dioxane/H2O
(v/v= 5:1), 80 °C (80%); (b) EtMgBr (1.1 eqiuv, 1.0M in THF), −78 to 40
oC, overnight, then K2CO3 (2.0 equiv), MeI (5.0 equiv), and DMF were
charged in situ, 55 oC, 10 h (72%); (c) PCC (4.0 equiv), NaOAc (4.0 equiv),
celite (ca. 130 wt%), rt, 6 h (82%). THF tetrahydrofuran, DMF N,N-
dimethylformamide, PCC pyridinium chlorochromate
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compatibility. Notably, the reaction was viable for 2-furyl and
benzo-2-furyl boronic acids (17 f, 17j, 17n, 17r, and 17w). These
results would be appealing because coupling of 2-heteroaryl
boronic acids is a considerable challenge resulting from the
detrimental pyrolysis under conventional heating conditions35,
especially with the nonactivated enol triflates as seen from the
sporadic examples explored in the synthesis of relevant natural
products36.

Having established the robust conditions for large scale
synthesis of 17a in this way, we then shifted our focus to
construct the 5-6-6 tricarbocyclic system 23 (Fig. 4). Oxidation of
the double bond in 17a delivered the aldehyde 19. For the
Friedel-Crafts cyclization of 19, we first examined the acid-
mediated protocols as investigated in Trost’s28 and Jiang’s37

synthesis of hamigeran B. However, similar to their outcome, the
reaction proved to be futile owing to multiple difficulties
associated with the poor regioselectivity of para vs. ortho to
phenolic OH, the lability of OTBS group, and the ease of further
dehydration of the cyclized product. After a careful deliberation,
we devised a chelation-controlled strategy and found that EtMgBr
was a suitable reagent. Namely, treatment of 19 with EtMgBr
produced a magnesium phenolate salt. The Mg(II) ion may be
acting to serve as a Lewis acid to coordinate with the aldehyde
group, and thereby forming intermediate 20 through chelation-
control. Consequently, the Friedel-Crafts reaction proceeded
exclusively at the position ortho to phenolic OH to afford the
tricyclic product 21. Upon in situ selective methylation of

phenolic OH, the tricyclic alcohol 22 could be obtained as a single
regioisomer in 64–72% yield on multigram scales. Oxidation of
22 gave the corresponding ketone 23 smoothly.

Next, our task was moved forward to complete the synthesis of
cyrneine A (1) (Fig. 5). Attempted installation of methyl group at
C6 in 23 was carried out by executing the Birch reductive
methylation. However, initial trials showed that the reaction was
considerably challenging. Only a complex mixture was afforded
under a broad array of conditions. Based on the NMR analysis of
the crude products, the reaction was mainly complicated by the
competitive reduction of C3=C4 double bond, aryl ring, and
carbonyl group without observation of the methylated product.
After an exhaustive screening and optimization of conditions, we
could successfully install the angular methyl group based on the
methods reported early by Narisada38 and Gibbard39. It was
found that addition of scrupulously dried LiBr was crucial. The
desired product 24 could be obtained in 72–75% yield as a single
diastereoisomer over gram scale. The exceptionally high stereo-
selectivity is presumably attributed to the steric hindrance of
methyl group at C9, which compels the nucleophilic attack of TS-
1 anion to MeI to take place from the less hindered si-face as
illustrated by mode I versus mode II. The stereochemistry of 24
was determined by NOESY correlations (see Supplementary
Fig. 21) and was further confirmed by X-ray single crystal analysis
of the final product (vide infra).

Concerning the reduction of the carbonyl functionality in the
central ring of 24, many unexpected obstacles were encountered.
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Fig. 5 The completion of the synthesis of cyrneine A. Reagents and conditions: (a) Liq. NH3, tBuOH (1.0 equiv), K (2.5 equiv), Et2O, −78 °C, 10min; then
LiBr (2.5 equiv), MeI (5.0 equiv), and THF were charged in situ, −78 °C, 1 h, then warmed to rt over a period of 1 h (72%); (b) 25 (5.0 equiv), NaOAc (5.0
equiv), EtOH, 35 °C, 3 h; (c) KOtAm (5.0 equiv), degassed xylene, 140 °C, 1.8 h (36% for 26; 18% for 27); (d) TBSCl (1.2 equiv), imidazole (1.2 equiv),
DMF, rt, overnight (93%); (e) 5% aq. HCl, THF, 15 to 20 oC, 40min (89%); (f) LiHMDS (1M in THF, 3.5 equiv), CNCO2Me (3.0 equiv), THF, −78 °C, 1
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equiv), rt, 10 min (73% for 2 steps); (h) TMSOTf (5.0 equiv), CH2Cl2, -25 oC, 15 min; (i) LiAlH4 (6.0 equiv), Et2O, 10 min at −78 °C, then warmed to rt; (j)
MnO2 (50 equiv), CH2Cl2, rt, overnight (58% in 3 steps); tAm= tert-amyl; DBU= 1,8-diazabicyclo[5.4.0]undec-7-ene; TMSOTf= trimethylsilyl
trifluoromethanesulfonate
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First, we examined the Barton-McCombie40 radical reduction
involving reduction of the carbonyl group (NaBH4, MeOH),
thiocarbonation of hydroxy (NaH, CS2, MeI), and radical induced
deoxygenation. However, the product 26 was obtained in lower than
20% yield under a free combination of various radical initiators (e.g.,
AIBN, ABCN, Et3B,) and reductants (e.g., Bu3SnH, TMSH, TTMSS,
and Ph2SiH2). Although no vigorous proof, it seemed that the
cleavage of C6−C7 bond occurred facilely under radical conditions.
Alternatively, the Wolff–Kishner–Huang type reduction was also
proved to be ineffective under an array of routine conditions41–48.
Extensive decomposition of substrate was observed. Fortunately, a
patient investigation revealed that the reaction of 24 with
semicarbazide 2549,50 followed by treatment of the resulting
semicarbazone with KOtAm in degassed xylene afforded 26 in ca.
36% yield accompanied by ca. 18% of desilylated 27, which could be
resilylated to give 26. As a result, 26 could be obtained in 53% yield
in a synthetically useful level. Hydrolysis of the vinyl ether in 26
gave ketone 28, which was immediately subjected to the ring
expansion reaction without careful purification since 28 was
somewhat easily oxidized under ambient atmosphere. For ring
expansion, Nakada in the synthesis of allocyathin B22 employed a
four-step sequence involving acylation, iodomethylation, SmI2-
promoted ring expansion, and LDA/I2-meidated elimination.
Inspired by a protocol of Zercher51, we accomplished the
conversions through a two-step operation involving acylation
followed by a one-pot Zn carbenoid-mediated ring expansion and
I2-promoted elimination. Compound 29 was thus obtained

efficiently in 73% yield over two steps. Finally, elaboration of 29
by removal of TBS, simultaneous reduction of ketone and ester, and
selective oxidation of allylic primary alcohol furnished the total
synthesis of cyrneine A (1) in 58% yield over three steps. Notably,
the reduction proceeded highly stereoselectively at C14 to afford
β-OH product. The structure of 1 was unambiguously confirmed by
1H- and 13C-NMR, HRMS, and single crystal X-ray (CCDC
1830226) analysis. The data and dextrorotary property of the final
product matched well with those of the reported natural sample16

(See Supplementary Table 1 and 2, and Supplementary Fig. 26).

Synthesis of cyrneine B and glaucopine C. Having successfully
synthesized cyrneine A, we entered the final stage toward syn-
thesizing cyrneine B (2) and glaucopine C (3) (Fig. 6). Based on
our retrosynthetic design, the advanced intermediate 29 was
converted into β,γ-enone 30 through four routine transforma-
tions. After an optimization of reaction sequence and conditions,
we found that the 1,3-prototropic shift and concomitant
deprotection of acetyl in 30 proceeded smoothly under the effect
of NaOMe to deliver the thermodynamically preferred enone 31
as a single C4 β-H stereoisomer. The stereochemistry was
determined by NOESY correlation (see Supplementary Fig. 29).
The exceptionally good stereoselectivity is presumably resulted
from the differential steric hindrance between re-face and si-face
of TS-2. As a result, the enolate anion prefers to approach the
electrophiles from the less congested si-face rather than the
hindered re-face (i.e., mode III vs. IV). Subsequently, selective
oxidation of the allylic primary alcohol completed the synthesis
of glaucopine C (3). Encouraged by the highly stereo- and
regioselective prototropic shift, the installation of C4 β-hydroxy
toward synthesizing cyrneine B (2) was carried out though a
base-mediated prototropic shift and aerobic γ-CH oxidation
cascade from 30. While a complex mixture with high polarity
was obtained in initial scouting of the conditions under the effect
of weak bases and heating presumably due to over oxidation of
olefins and acidic CH at C2 and C18, treatment of 30 with
LiHMDS by lowering the temperature to –78 °C under O2

atmosphere afforded 32 in 58% yield. Finally, removal of acetyl
followed by selective oxidation of the allylic alcohol delivered
cyrneine B (2). The structures of cyrneine B and glaucopine C
were confirmed by various spectroscopic analyses and by com-
parison of the analytical data of the synthetic samples with those
reported for natural products16,19 (see Supplementary Table 3–6,
and Supplementary Fig. 30–35).

Discussion
In summary, we have developed an efficient route that allowed for
a more step-economic total synthesis of cyrneine A (20 steps),
and the first total synthesis of cyrneine B (24 steps) and glauco-
pine C (23 steps) from readily available commercial materials.
The synthesis features the use of a mild and efficient Suzuki-
coupling of heavily substituted nonactivated vinyl triflate, a
Mg(II)-mediated chelation-controlled Friedel–Crafts cyclization,
a Birch reductive methylation, and a zinc carbenoid-mediated
ring expansion. These key transformations enable an efficient and
rapid construction of the 5-6-7 tricyclic core. Finally, the diver-
gent synthesis of the three natural products from this core is
achieved through several carefully orchestrated manipulations
involving a stereoselective reduction of C14 carbonyl, a stereo-
selective 1,3-prototropic shift, and a stereo- and chemoselective
prototropic shift/γ-CH oxidation cascade at C4. The utility of the
new strategy and methods for efficient and flexible synthesis of
other structurally relevant products is currently underway.
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Fig. 6 The synthesis of cyrneine B and glaucopine C. Reagents and
conditions: (a) LiAlH4 (6.0 equiv), Et2O, 20min at −78 °C, then warmed to
rt; (b) Ac2O (15.0 equiv), DMAP (20mol%), pyridine, 30min, rt; (c) HF•Py
(excess), THF, rt, 2 h; (d) DMP (1.6 equiv), CH2Cl2, 30min, rt (52% for
4 steps); (e) NaOMe, MeOH, 35 °C, 4 h (73%); (f) MnO2 (15 equiv),
CH2Cl2, rt, 3 h (82%); (g) LiHMDS (2.0 equiv), THF, −78 °C, 15 min, then P
(OMe)3 (4.0 equiv), O2, 2 h (58%); (h) K2CO3 (excess), MeOH, 35 °C, 4 h
(51% for 2 steps). DMAP 4-(dimethylamino)pyridine, Py pyridine, DMP
Dess–Martin periodinane
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Methods
Procedures for the synthesis of cyrneines A–B and glaucopine C. The detailed
experimental procedures for the synthesis of cyrneines A, B, and glaucopine C were
provided in Supplementary Information.

General procedure for the cross-coupling reaction of enol triflates. To a
solution of vinyl triflate 15 (0.2 mmol) in a mixed solvent of DMF (1.0 mL) and
EtOH (1.0 mL) was added arylboronic acid 16 (0.4 mmol, 2.0 equiv), palladacycle
18 (5.6 mg, 5 mmol%), and K3PO4 [127 mg, 0.6 mmol, 3.0 equiv (K2CO3 was used
for the coupling of 15a with 16a)] at room temperature under nitrogen atmo-
sphere. The resulting mixture was stirred at the same temperature until the vinyl
triflate had disappeared as monitored by TLC. The reaction mixture was then
poured into water and extracted with ethyl acetate (3 × 25 mL). The organic layer
was combined, washed with brine, dried over Na2SO4, and concentrated under
vacuum. The residue was purified by silica gel column chromatography to afford
the desired cross-coupling product 17.

Data availability. Chemical compound information including NMR and HRMS
data, copies of 1H- and 13C-NMR of all new compounds, 2D NMR of compounds
24, 31, cyrneine B (2), and glaucopine (3), HPLC charts for compound 12, and
single X-ray crystal data of cyrneine A (1). This material is provided in Supple-
mentary Information. The X-ray crystallographic coordinates for cyrneine A (1)
reported in this study have also been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition number 1830226. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. Other supporting data related to this work
are available from the corresponding author upon reasonable request.
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