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Abstract
In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets

(Vespa velutina), mainly in the period from April to November. During the co-evolution of

these two species honey bees have developed several strategies to defend themselves

such as learning the odors of hornets and releasing alarm components to inform other

mates. However, so far little is known about whether and how honey bees modulate their

olfactory learning in the presence of the hornet predator and alarm components of honey

bee itself. In the present study, we test for associative olfactory learning of A. cerana in the

presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a

floral odor (hexanal) as a control. The results show that bees can detect live hornet odors,

that there is almost no association between the innately aversive hornet odor and the appe-

titive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when

compared with a floral odor. In order to imitate natural conditions, e.g. when bees are forag-

ing on flowers and a predator shows up, or alarm pheromone is released by a captured

mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both

of these combinations led to reduced learning scores. This study aims to contribute to a bet-

ter understanding of the prey-predator system between A. cerana and V. velutina.

Introduction
The appetitive form of associative learning plays a major role in honey bee (Apis mellifera) for-
aging. Foragers learn to associate visual and olfactory stimuli with a food reward quickly and
reliably, and form a long-lasting memory of this association [1,2]. Workers can also learn to
respond to an odor stimulus in a laboratory setting. In what has become known as the probos-
cis extension response or PER paradigm [3,4] a harnessed bee learns to associate a sucrose
reward with an odor stimulus offered immediately prior to the reward. Memory formation is
evidenced when the harnessed bee extends its proboscis in response to the learned odor in
anticipation of the sucrose reward. This form of classical conditioning has been successfully
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used to characterize multiple characteristics of associative learning [5–7] and also proved ame-
nable in A. cerana [8] and A. florea [9]. The acquisition process, the dynamics of memory for-
mation and the corresponding neural and molecular mechanisms of memory formation in the
bee can be studied in great detail with this paradigm [7,10,11].

The odors applied in appetitive PER conditioning are generally floral-like, such as hexanal
or nonanal [12]. However, training can also be carried out successfully with non-floral odors
such as the bee´s Nasonov pheromone components geraniol and citral [13,14] and some pesti-
cides [15–17]. For example, A.mellifera can be trained to respond with proboscis extension
even when the learned odor is the sting pheromone, indicating that workers can override their
innate response to sting pheromone and learn to associate this odor with a food reward
[18,19]. This shows that even an aversively-laden odor like sting pheromone can still be learned
in an appetitive context. Context dependence of the behavioral response to odors has also been
demonstrated in ants [20]. We wondered if odors indicating predation risk, such as hornet
odors and the main components of alarm pheromone of honey bees, can be overcome and con-
verted to an appetitive stimulus by reward learning in eastern bees, and whether the hornet
odor or the sting pheromone can alter learning of a floral odor.

The hornet Vespa velutina is endemic to Southeast Asia and preys on bees and other insects
[21]. When under attack by a hornet, workers of A. cerana and A.mellifera recruit nest mates
to aggregate at the nest entrances, shimmer and engage in heat balling if the hornet gets closer
[22–27]. Since the establishment of this hornet species in Europe, attention has focused
increasingly on the relationship between bees and hornets [28,29]. In recent years, we found
that A. cerana bees detect V. velutina when the hornet hovers at the bee hive entrance. Guards
will shimmer to repel the hornet attack and this shimmering behavior is innate to A. cerana
[30,31]. As the hornets get closer, the risk of attack increases, more bees are recruited, and the
shimmering strength increases [31]. Those results indicated that A. ceranamay judge the pre-
dation-risk level, and adjust their defensive strategies accordingly.

Breed et al. [32] divided honey bee defensive responses into different sequences of events—
perception, orientation, discrimination and identification of the predator, then recruitment of
other nest mates, and finally attack. Alarm pheromones not only direct the recruited bees
towards the predator, they also guide their attack. Isopentyl acetate (isoamyl acetate, or IPA) is
one of the principal active alarm pheromone components in the genus Apis [33,34]. In the
present study, we report investigations into learning of A. cerana under predation risk and ask
whether: (1) worker bees can detect live hornet odors, (2) associate hornet odors and honey
bee main alarm pheromone IPA with sucrose reward, (3) bees respond differently to predator
odor and IPA, and (4) whether the predator odors modulate olfactory learning of flower odors.

Methods
The experiments were performed from April to November, when eastern bees (Apis cerana)
and hornets (Vespa velutina) coexist, in the experimental apiary of Eastern Bee Research Insti-
tute in Yunnan Agricultural University campus. Six bee colonies were housed in standard
Langstroth hives and each colony comprised two frames of brood and two frames of honey and
pollen (Which is a normal strength for an A. cerana colony).

To determine if A. cerana foragers could detect live hornet (V. velutina) odors, electroana-
tennography (EAG) was used to test the bees’ antennal responses. Six foragers were taken from
each of three colonies. Each antenna of one bee was used to test the response to three control
and three hornet odors, with a control and hornet inter-present sequence. A live hornet was
trapped in a PTFE tube where it served as a hornet odor generator; the control group had no
hornet in the tube. All EAG tests were conducted on sunny days only. We first carefully
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captured an A. cerana forager, chilled it briefly on ice, cut off its antennae, and placed each
antenna into a glass body Ag/AgCl electrode filled with insect Ringer’s solution [35]. Each
antenna was placed 1 cm away from the outlet of a PTFE tube (1 cm inner diameter, 15 cm
long) that provided the test odor by combining a clean (500 mL active charcoal filtered) and
wet (distilled water, 90% RH) 15 ml/s continuous air flow and a pre-filtered and wet 5 ml/s
pulsed air flow (90% RH) with the test odor (hornet odor or control odor). For each stimula-
tion, pulsed odor air flow was delivered into the odor pipette for 3 s, mixing into the continu-
ous flow. To record the antennal responses, we used a custom stimulus controller, a modified
EAG Combi Probe amplifier (Syntech, NL, but modified to increase sensitivity) outputting a
signal into an HP34405A Digital Multi Meter (Agilent, USA) and BenchVue software (Key-
sight, USA) running on a PC.

Conditioning experiment general setups
Returning nectar foragers were captured in small vials at the entrance of the hive on sunny
days, pollen foragers were excluded from our collection. The bees were then transferred back to
the laboratory and were chilled until motionless and then mounted in small plastic tubes leav-
ing the bee head and proboscis flexible [8]. The bees were placed in an incubator (24°C, 65%
RH) for five hours. Two hours before each experiment the bees were stimulated with sucrose
solution (US) and then with an odor (CS). Bees that showed the PER to the odor prior to condi-
tioning or failed to exhibit a PER in response to sucrose stimulation were discarded from the
experiment.

In the test of whether honey bees modulate their olfactory learning in the presence of the
hornet predator and the alarm pheromone components of honey bee itself. Live hornets were
captured with a nylon trap net and placed individually in a plastic syringe (60 ml) which served
as a hornet olfactory stimulus generator. Hexanal and nonanal (Hexanal, 98%, Sigma-Aldrich
Co., St. Louis, USA; Nonanal, 98%, Sigma-Aldrich Co., St. Louis, USA) were used as floral con-
trol odors in PER conditioning. Two μl hexanal were placed on a strip of filter paper (5×5 mm)
in a plastic syringe (20 ml). Two μl isopentyl acetate (IPA, 98%, Aladdin Reagent Database Inc.
Shanghai, China), a classic component found in bee alarm pheromone, was placed on filter
paper (5×5 mm) in a plastic syringe (20 ml), and used as a substitute for alarm pheromone.
Three syringes were placed with their tips 1.5 cm from the bee’s head. One syringe contained
only filter paper and delivered a constant airflow to reduce learning of the mechanosensory
component of the stimulus. The other two syringes containing hexanal or the treatment odor
(hornet odor, IPA or nonanal) were attached to a valve at the end of a Y-shaped silicon tube,
and an air pump. The bees were placed in a continuous airflow (main airflow of 50 mls-1)
which was switched between two syringes, one with the control odor (hexanal) and one with
treatment odor (hornet odor, IPA or nonanal). The rewarding unconditioned stimulus (US)
was 30% (m/v) scentless sugar syrup. An air stream exhaust system was formed by a 10 cm
diameter tube that was placed 12 cm behind the bee.

Experiment 1 Hornet odor and IPA conditioning
Olfactory conditioning of PER was performed according to Bitterman et al. [4] except that the
bees were conditioned on the same day as they were captured. Hornet odor and IPA was used
as a conditioned stimulus, respectively; and the floral odor hexanal was used as a control stimu-
lus. During the PER conditioning, the conditioned stimulus was presented for 5 s, the uncondi-
tioned stimulus started 3 s after onset of the CS and lasted for 3 s. The US was delivered with a
toothpick containing the sucrose solution. First the antennae were touched and then the pro-
boscis. Each individual bee underwent six training trials. The interval between two trials was 10

Modulation of Olfactory Learning in Honey Bees

PLOS ONE | DOI:10.1371/journal.pone.0150399 February 26, 2016 3 / 12



min. One hour after the last training trial, all bees were tested with respect to their retention of
the CS by presenting the CS only. Three groups of animals were run in parallel. In total, 118
worker bees were tested with hornet odor, 120 worker bees with IPA and 120 bees with
hexanal.

Experiment 2 Two-odor combination conditioning
In order to imitate natural conditions whereby a bee encounters a hornet predator when forag-
ing on a flower or receives the alarm signal from its mates, the bees were first stimulated with
hornet odor or IPA for 5 s and then with hexanal for another 5 s. From the third second of hex-
anal onwards the bees were rewarded with sucrose. A combination of nonanal (5s) and hexanal
(5s) stimuli was applied to a control group. Six training trials were applied to each individual
bee. The interval between the trials was 10 min. Each bee was tested for its response to the CS
alone one hour after the last training trial. Each group of bees achieved a retention score
expressed in the percentage of bees of each group responding to the conditioned odors. In
total, 107 worker bees were tested with hornet-hexanal, 110 worker bees with IPA-hexanal and
110 bees with nonanal-hexanal.

Statistics
To test the olfactory response of bees to live hornets, mean responses (peak amplitudes were
used as the response to odors, Log transformed EAG responses) were to each of the three trials
of control odors and hornet odors obtained from each bee antenna. We used univariate
ANOVA with different odors and different bees from different colonies as a fixed factor to
determine if the bee can discriminate hornet odor from the control odor.

Data were recorded as the proportion of bees exhibiting the PER in each of the experimental
groups (retention score). These data were analyzed with a repeated measures ANOVA, using
trials as the within-subject effect and different odor groups (hexanal, hornet odor and IPA) as
the between-subject effect, respectively. We performed Mauchly’s sphericity test to ensure that
the assumption of sphericity was not violated. Alternatively, we used the Greenhouse-Geiser
degrees of freedom adjustment for sphericity. A post hoc test (least significant differences,
LSD) was used to determine if there were significant differences between the predator odor
group, alarm odor group and control group, respectively.

A one-way ANOVA was used to determine if there were any differences in retention scores
among the hornet odor group, IPA group and hexanal group in hornet and IPA conditioning
experiments. Paired t-tests were used to determine if there were differences in the retention
scores between experienced odors and non-experienced odors in two odor combination experi-
ments. The retention scores among these three groups (hornet-hexanal combination group,
IPA-hexanal combination group and nonanal-hexanal group) were compared with a one-way
ANOVA. All calculations were conducted with SPSS Statistics 19.0 (www.spss-china.com).

Results

Can live hornet odor be detected by bees?
In total, 18 bees were tested with hornet odor, and 18 bees were tested with the control odor.
The EAG responses showed that A. cerana can discriminate hornet odor from the control
odor, which showed higher antennal responses to hornet odor (F1,35 = 5.82, P = 0.03). How-
ever, no difference was found between different bees from different colonies (colony effect:
P = 0.06, different bees: P = 0.27) (Fig 1).
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Do bees associate hornet odor or IPA with sucrose reward?
In total, 118 worker bees were tested with hornet odor, 120 worker bees with IPA and 120 bees
with hexanal. The A. cerana bees showed learning scores of up to 69% when floral odors were
trained. However, peak scores of only 43% were found if the alarm component IPA was trained
(Fig 2A). Even lower learning scores were found when the predator odor was trained. A com-
parison of the three different groups showed significant differences: A. cerana learnt flower
odor most, and this performance was significantly higher than for IPA or the predator odor
(repeated measured ANOVA, between-subjects effects: F2,355 = 66.59, P<0.01). Post hoc tests
also indicated similar results for each of the two groups (P<0.01) (Fig 2A).

Retention scores determined one hour after the last acquisition trial (Fig 2B) were highest in
the hexanal group (73%), followed by the IPA group (47%), and then by the hornet odor group
(11%) (F2,357 = 61.547, P<0.01, Fig 2).

Does the hornet odor or the alarm odor affect the bees’ learning and
memory?
Next we exposed the bees to combinations of odors (Fig 3). As expected, learning scores were
highest in the nonanal-hexanal combination group (71%, N = 110 bees), while in the hornet
odor-hexanal combination group (45%, N = 107 bees) and in the IPA-hexanal combination
group (44%, N = 110 bees) they were lower and rather similar. The statistical analyses showed
that acquisition in the floral odor group was significantly higher than that observed in the
other two groups (repeated measures ANOVA, between-subjects effects: F2,324 = 22.75,
P<0.01). Similar results were also found by multiple comparison analysis. In addition, those
results indicated a lack of a statistically significant difference between the hornet odor group
and the IPA group (P = 0.153, Fig 3).

Fig 1. EAG responses of A.cerana to live hornet odor.

doi:10.1371/journal.pone.0150399.g001
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Fig 2. Learning and retention of hexanal, hornet odor and IPA in eastern honey bees. (a) Acquisition
function of the three test groups. (b) Retention scores of the three groups as tested one hour after the last
acquisition trial.

doi:10.1371/journal.pone.0150399.g002

Modulation of Olfactory Learning in Honey Bees

PLOS ONE | DOI:10.1371/journal.pone.0150399 February 26, 2016 6 / 12



Fig 3. Learning and retention of three combinations of two sequential presentations of two odors:
nonanal-hexanal, hornet-hexanal and IPA-hexanal. (a) Acquisition functions for the three combinations.
(b) Retention scores after training to one of the three odor combinations one hour after the last acquisition trial
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This result is confirmed by the retention tests (Fig 3B, gray bars). Bees from both the hornet
odor and IPA group responded with a similar low level of retention (one-way ANOVA:
F2,326 = 17.801, P<0.01).

We introduced three other groups in these tests exposing naïve animals to the same odor
combinations (Fig 3B, black bars). All three groups give the same low level of PER (hornet-hex-
anal combination group: 10%; IPA-hexanal combination group: 11%; nonanal-hexanal combi-
nation group with naïve animals: 14%, one way ANOVA: F2,326 = 0.336, P = 0.715). Paired
t-tests were applied to analyze the PER between the corresponding trained and naïve groups.
Bees showed strong training effects in the nonanal-hexanal combination group (t109 = 14.968,
P<0.01) as well as in the hornet-hexanal combination group (t106 = 8.129, P<0.01), and the
IPA-hexanal combination group (t109 = 7.738, P<0.01; Fig 3A and 3B).

Discussion
In our experiments, eastern honey bees, A. cerana, can detect the odor of live hornets, and asso-
ciate odor signaling a potential risk with the sucrose reward. However, acquisition scores are
lower for the odor of the predator, V. velutina, and for honey bee’s alarm pheromone compo-
nent, IPA, than for a floral odor (Fig 2A). Thus, compared to a floral odor, both risk-signaling
odors are less well learned as predictors of reward. Furthermore, combinations of the risk-sig-
naling odor with the floral odor reduce appetitive learning of the floral odor (Fig 3A). These
data are confirmed by the retention scores of the respective test groups (Figs 2B and 3B). Pre-
dation is signaled to social bees both by odors from the predator itself and by the pheromone
of attacked nest mates. Bees foraging among flower patches are subject to attack by various sit-
and-wait predators (ants, bugs, mantis and spiders) [36] and other opportunist predators (hor-
net)[30]. Eastern honey bees have the opportunity to learn the odors of the hornet V. velutina
during the summer and autumn since this wasp is endemic to Southeast Asia [37]. V. velutina
have meanwhile invaded Europe causing significant threats to local apiculture of A.mellifera
[28,29,38,39]. Tan and colleagues compared the different behaviors of A. cerana and A.melli-
fera when exposed to hornets and found that the longer evolutionary history of coexistence of
A. cerana with its predators has led to more efficient defense behaviors such as more efficient
shimmering behavior and heat balling [40,41]. It is thus likely that A. cerana has inherited
response mechanisms to hornet odors which may not exist in A.mellifera [30].

A common defense mechanism in all Apis species is the release of an alarm pheromone
[33,34,42] which serves to recruit more hive mates to the defense of the colony against an
invader [32] or to alert mates about risky conditions at a foraging site [34]. IPA is one of main
components of the alarm pheromone. IPA was first identified in A.mellifera and was shown to
be an active alarm pheromone [13,43] which can be used to defend the colony [44].

Olfactory learning can be studied under laboratory conditions just as well in A. cerana as in
A.mellifera, for which the appetitive PER paradigm was developed [8]. Both species associate
not only floral odors but also risk-signaling odors, including the odor of the hornet predator,
with reward. Not surprisingly, hornet odors and IPA are learned less well than floral odors cor-
roborating the notion that hornet odors transmit an innate aversive component (Fig 2A). This
conclusion is supported by the results of the second set of experiments showing that learning
of the floral odor hexanal is reduced if hornet odors or IPA precede this floral odor (Fig 3A).
The lower level of acquisition also leads to a lower level of memory as shown by the retention
tests performed one hour later after the acquisition phase (Figs 2B and 3B). Similar results on

(gray bars). In addition, the PER of three groups of naïve animals is shown for the three combinations (black
bars).

doi:10.1371/journal.pone.0150399.g003
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the effect of IPA modulation of appetitive learning were found in A.mellifera. When bees were
exposed to IPA for 30 minutes they learnt a floral odor less well than control bees not exposed
to IPA [45], the main component of alarm pheromones which not only induces a stress-like
response but also impairs bees learning to associate odors with sucrose reward [46]. These
results correspond well with field data showing that bees reduce their foraging behavior under
predation risk [34,36,47,48]. The fact that hornet odor is less well learned and remembered
than IPA may indicate that bee olfactory learning is more strongly affected by direct predation
risk (hornet odor) than by indirect predation risk (IPA). Our results for this pollinator-preda-
tor system (A. cerana and V. velutina) are in agreement with previous findings for A.mellifera.
So why should learning of floral odor be lower when bees are exposed to risk-signaling condi-
tions? This question may be put into the context of how bees should react to direct and indirect
predation risk. Optimal defensive theory and optimal foraging theory suggest that bees need to
maximize their foraging efficiency and minimize risk posed by predators. If bees were to stop
foraging altogether in response to an overall high risk, the colony might suffer. Thus bees may
need to assess the current risk and behave accordingly. Higher risk may be signaled by the odor
of the predator, lower risk by the alarm pheromone since the predator is not in the immediate
surroundings, and the alarm pheromone alerts the bee but may not trigger an immediate
response. Furthermore, floral odors may be experienced in sequence with or without risk-sig-
naling odors. Again hornet odors would signal a higher risk than alarm pheromone. Better
learning of floral odors without risk-signaling odors or only in combination with alarm odors
would lead to a preference for these signals over hornet-signaling odors.

Similar conditions may apply at the hive entrance when the whole colony needs to be pro-
tected. Ono et al. [49] reported that the Japanese honey bee A. cerana japonica can detect the
hornet-marking pheromone (pheromones from the van der Vecht glands of hornet, which
were used to detect the prey locations): when one defending bee captured a hornet, more than
500 additional worker bees were soon recruited via IPA (isoamyl acetate in Ono et al., 1995) to
form a heat ball against predator invasion. A similar phenomenon was found in A. cerana cer-
ana: when a hornet hovered around the entrance of a bee hive, guard bees were able to detect
an increasing risk and the closer the hornet came, the more bees were recruited to shimmer
[31]. Even the naïve A. cerana bee evolved to shaking their body to repel the predator at an
early age [30].

Reduced learning and memory of a floral odor in the context of a risk-signaling odor could
reflect an innate preparedness of the animal to avoid the appetitive signal or it could reflect a
conflict between two opposing behaviors. These behaviors would be an appetitive approach in
response to the learned floral odor and innate retraction or attack of the risk-signaling odor.
The latter behaviors could lead to aversive learning and/or to blocking of appetitive learning.
Our results show that learning of floral odors is not blocked under risk conditions, and no indi-
cation for aversive or aggressive responses is seen (e.g. sting extension). It appears, therefore,
that two opposing behaviors may compete leading to a lower level of appetitive responsiveness
to the learned floral odor. Conditioning of the sting extension response (SER) [50] may help to
unravel the acting conditions. SER conditioning would not lead to such a competition of
behaviors. Therefore, one would expect that risk-signaling odors are better learned and that flo-
ral odors produce competing behaviors.
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