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The growing volume of Earth science data available from climate simulations and

satellite remote sensing offers unprecedented opportunity for scientific insight, while

also presenting computational challenges. One potential area of impact is atmospheric

correction, where physics-based numerical models retrieve surface reflectance

information from top of atmosphere observations, and are too computationally intensive

to be run in real time. Machine learning methods have demonstrated potential as fast

statistical models for expensive simulations and for extracting credible insights from

complex datasets. Here, we develop DeepEmSat: a deep learning emulator approach for

atmospheric correction, and offer comparison against physics-based models to support

the hypothesis that deep learning can make a contribution to the efficient processing of

satellite images.
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1. INTRODUCTION

Contemporary satellite remote sensing is responsible for contributing Earth science data to public
repositories at an unprecedented volume (Overpeck et al., 2011). This abundant data has drawn
interest to applying machine learning (ML) for data mining (Castelluccio et al., 2015; Xie et al.,
2016; Mou et al., 2017), climate data downscaling (Vandal et al., 2017), and to advance process
understanding in Earth sciences (Reichstein et al., 2019). These emerging success stories suggest
that machine learning has potential for extracting credible insights from complex datasets in
multiple domains.

Land surface products such as crop forecasts, vegetation indices, snow cover, and burned area are
derived from a basic parameter termed surface reflectance (SR). SR is a characteristic of the Earth’s
surface and is produced from raw, top of atmosphere (TOA) observations by removing the effects
of atmospheric scattering and absorption. This process, termed atmospheric correction (AC) allows
greater comparability between observations across space and time. However, physically based
numerical models for atmospheric correction are too computationally intensive to be calculated
in real time, relying instead on look-up tables with precomputed values. Additionally, atmospheric
correction models must be tuned for new sensors, which may have short operational lifespans.

Here, we examine the hypothesis that deep learning can make contributions to the efficient
processing of satellite data. We develop an experiment in atmospheric correction and present
results to suggest that a deep learning model can be trained to emulate a complex physical process.
Results are presented to demonstrate the emulator’s stable retrieval of surface reflectance when
validated against traditional physics-based models.
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2. MATERIALS AND METHODS

2.1. Related Work
2.1.1. Atmospheric Correction
Figure 1 provides a schematic drawing of radiative transfer
processes in the atmosphere. Non-learning approaches to AC use
physical modeling and empirical relationships to retrieve surface
reflectance from observations contaminated by atmospheric
scattering and absorption processes that occur in the paths
between the sun, the Earth’s surface, and the satellite sensor.

The algorithm used to derive MOD09GA, the daily
SR product from NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) corrects for gases, aerosols and
Raleigh scattering. Due to prohibitive computational complexity,
MOD09GA relies on look-up tables for aerosol retrieval and for
precomputed SR retrieved according to atmospheric conditions
(Vermote and Kotchenova, 2008). MAIAC is a newer algorithm
that uses time series and spatial analysis to detect clouds, retrieve
aerosol thickness and retrieve SR (Lyapustin et al., 2011a,b,
2012). MAIAC uses two algorithms, depending on whether
the observation area is stable or undergoing rapid change, as
classified by the change detection algorithm (Lyapustin et al.,
2012). These approaches, and other state-of the art approaches
including Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) rely on sensor calibration and retrieval
of accurate atmospheric conditions (Cooley et al., 2002).

2.1.2. Machine Learning in Remote Sensing
ML techniques have been applied to remote sensing with results
that enhance upon non-learning methods. ML has been used to
implement empirical bias corrections to MODIS measurements
(Lary et al., 2009). In atmospheric correction, a Support Vector
Machine (SVM) has been used to predict SR from TOA
reflectance with good agreement between reflectance products

FIGURE 1 | (A) Physics-based atmospheric correction algorithms simulate reflection and scatting processes at the Earth’s surface and in the atmosphere. (B)

Architecture of the emulator model, a modified ResNet with n residual blocks and N hidden units.

retrieved from the ML method and from two radiative transfer
models (Zhu et al., 2018). This approach trains a separate model
for each band.

Prior work also has blended data produced by multiple
satellites to obtain synthetic images with enhanced spatial or
temporal resolution (Gao et al., 2006). Convolutional Neural
Networks (CNN) have been used in remote sensing for tasks such
as land cover classification, object detection and precipitation
downscaling, which make use of local correlation structures
(Castelluccio et al., 2015; Long et al., 2017; Mou et al., 2017;
Vandal et al., 2017).

Outside of the remote sensing domain, CNNs have been
used for style transfer, where image content is preserved and
image texture is modified (Gatys et al., 2016). This problem
has similarities to the problem of atmospheric correction, in
which we wish to preserve semantic structure of the image while
applying some effect. In atmospheric correction, this includes
reversing the blue shift and reducing the blurring caused by
passage through the atmosphere.

2.1.3. Deep Residual Networks
Deep CNNs can reach an accuracy saturation, where increasing
depth is associated with decreasing training accuracy (He
et al., 2015). It is understood that a stack of nonlinear layers
has a difficult time learning an identity mapping, thus a
difficult time preserving the resolution of images. He et al.
introduced deep residual nets (ResNets) in 2015. ResNets
outperform state of the art methods in several image recognition
competitions and are believed to be generalizable to vision and
non-vision tasks.

2.2. Datasets
Data from two satellites are used in this experiment: Terra and
Himawari-8. Terra is low earth orbit (LEO) satellite carrying the
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TABLE 1 | Summary of target SR bands: MODIS Terra Level 1B and AHI-12 SR

product.

Center wavelength (nm)

Band MODIS Terra AHI

Blue 470 471

Green 555 510

Red 648 639

NIR 858 857

Center wavelengths are shifted slightly due to the different sensors.

MODIS sensor. Terra travels in a north-south direction, passing
over the poles and crossing the equator at a near- orthogonal
angle. As the Earth rotates, the satellite scans the Earth’s surface
over a span of hours to days. The Japan Meteorological Agency
geostationary (GEO) satellite Himawari-8 carries the Advanced
Himawari Imager (AHI) sensor, which has similar spectral
characteristics to MODIS. In contrast to LEO satellites, GEO
satellites orbit in the same direction as the Earth’s rotation,
staying “stationary” when viewed from the Earth’s surface. GEO
satellites orbit at a higher altitude than LEO satellites, but
have the capacity to observe locations within their view with
sub-hourly frequency.

The Advanced Himawari Imager TOA reflectance described
below comprises the input to the emulator model. Surface
reflectance produced from Terra’s MODIS is the target for
prediction. An Advanced Himawari Imager SR product, also
calibrated against MODIS SR, provides performance comparison
with a physically-based model.

2.2.1. AHI TOA Reflectance
To prepare TOA reflectance, raw scans from Himawari-8 are
georeferenced and assembled into a gridded format. Pixel values
are converted to TOA reflectance according to the Himawari-
8/9 Himawari Standard Data User’s Guide, Version 1.2 (Japan
Meteorological Agency, 2015). The resulting full disk TOA
is reprojected into geographic (latitude-longitude) projection
with a 120◦ by 120◦ extent and 0.01◦ resolution. The domain,
extending from 85◦E to 155◦W and 60◦N to 60◦S, is divided
into 6◦ by 6◦ tiles. Full disk observations are repeated every 10
min. This gridded product (HM08_AHI05) is publicly available
(https://www.geonex.org/). Four bands—blue, green, red, and
near infrared (NIR)—are selected from AHI TOA data (Table 1).
The data is treated as a multi-channel image, concatenated with
two additional channels of solar zenith and solar azimuth angles.

2.2.2. MODIS Terra Surface Reflectance
MOD09GA is a seven-band surface reflectance product
computed from Terra MODIS sensor (Vermote and Kotchenova,
2008). This MODIS SR product, which is validated with ground
observations, provides a standard for the calibration of other
atmospheric correction algorithms (Liang et al., 2002). Four
bands from MOD09GA, corresponding to four AHI bands,
are selected based on available spatial resolution (Table 1).
MOD09GA is resampled from the distributed 1km x 1km

sinusoidal projection to a 0.01◦ geographic projection, described
above, using GIS tools.

2.2.3. AHI Surface Reflectance
GEO surface reflectance is retrieved from AHI TOA reflectance
using the MAIAC algorithm (henceforth referred to as MAIAC
SR). MAIAC is a semi-empirical algorithm originally developed
for MODIS and adapted to perform SR retrievals for Himwari-8
AHI. Performance of MAIAC is evaluated by comparison with
MOD09GA. The projection and resolution are identical to AHI
TOA reflectance, described above. This product (HM08_AHI12)
is released as a provisional product and is available upon request
(https://www.geonex.org/).

All data belongs to a 3 month period of December 2016
through February 2017. We use observations over the Australian
continent. This landmass is chosen as it provides a large
contiguous landmass with a variety of land cover classes with
which to train a flexible emulator. Where satellite images are
affected by missing pixels due to clouds, aerosols, and water
bodies, we select images for training and testing only if they
contain 80% valid pixels or greater. We create and apply a
composite mask to standardize valid pixels between all images
from the same date. Furthermore, all reflectances are normalized
to intensity between 0 and 1.

2.3. Proposed Method
In this section we introduce a residual neural network to predict
MODIS-like multispectral SR from TOA reflectance and solar
geometry. This emulator model is trained with MODIS SR
as the target, with the objective of emulating the MOD09GA
atmospheric correction algorithm.

2.3.1. Network Architecture
We modify ResNets with long and short skip connections, as
defined by He et al. and as depicted in Figure 1 (He et al., 2015).
In this modified architecture, patch dimensions (width and
height) are preserved throughout the network, as only relatively
local information is necessary to retrieve pixelwise SR. Input
patches are treated as six channel images, with four wavelength
bands and two solar angle bands. Output images are four channel
images with four wavelength bands.

ResNets and CNNs with varying numbers of residual
blocks and hidden units are trained to determine the
optimal architecture for this application. Models with partial
convolutions (ResNet-P and CNN-P) and without partial
convolutions (ResNet and CNN) are tested.

2.3.2. Partial Convolutions
Missing pixel values pose a processing problem in CNNs. When
they fall within the convolutional window centered around a
neighboring pixel, missing values create anomalous output, or
edge effects. Partial convolutions offer a semantically aware
method for normalization of output values that performs well on
irregularly shaped holes. In this method, a binary mask is used
to calculate scaling factors that adjust outputs according to the
number of valid inputs.
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Given M, a binary mask denoting the positions of valid and
invalid pixels, x, the values in the sliding convolution window,
andW, the convolution windowweights, the output of the partial
convolution layer is defined as:

x′ =

{

WT(x · M) 1
sum(M)

+ b if sum(M) > 0

0 if sum(M) = 0
(1)

Convolutions with some or all valid pixels in the window are
properly weighted and accepted as a valid response; convolutions
with no valid pixels are not accepted. In each step, the binary
mask is updated where a valid response was made, progressively
shrinking holes. We adapt partial convolutions to prevent ill
effects in processing satellite images with missing pixels due to
clouds, cloud shadows andwater bodies. Partial convolutions also
have the desirable effect of eliminating edge effects in patches
when used in combination with zero padding.

Partial convolutions are implemented in TensorFlow using
the convolutional operation described by Liu et al. (2018).
While partial convolutions shrink holes in images, our approach
reapplies the original mask to the model output. This preserves
the interpretability of the results, as ground truth surface
reflectance values are not available for all missing pixels that
are inferred through inpainting. We compare the results of both
models with partial and regular convolutions.

2.3.3. Implementation Details

2.3.3.1. Loss Function
A mean square error loss function with weight regularization
is employed to learn the regression based convolutional neural
network written as

L(2) =
1

N

N
∑

i=1

(

y− f (x|2)
)2

+ λ||2||2 (2)

where 2 consists of weights and bias parameters of neural
network f .

2.3.3.2. Experimental Setup
Each network is trained on 50 by 50 pixel image patches
randomly extracted using Adam optimization with β1 = 0.999,
β2 = 0.9, ǫ = 1e − 8, a batch size of 30, and learning rate of
0.001 (Kingma and Ba, 2014). Observations covering southern
Australia are used for training with northern Australia set aside
for testing. By geographically dividing training and testing data,
we ensure that testing images are covering a region totally
unseen in the training examples. The model, implemented using
TensorFlow, is trained for 300,000 iterations on one NVIDIA
GeForce GTX 1080ti graphics card over approximately 7 h.

2.3.4. Implementation Details
The reflectance product generated by the emulator is validated
by comparison with MODIS SR (MOD09GA). Reference to a
comprehensively validated SR product is a standard assessment
for new SR products (Feng et al., 2012). In addition to direct
comparison with MOD09GA, performance of emulator SR
retrieval is benchmarked by comparison with the MAIAC SR

product, also generated from Himawari-8 TOA reflectance. This
MAIAC algorithm has been calibrated using agreement with
MODIS SR, and provides a comparison between the emulator
and a physically based model using the same sensor.

We use root mean square error (RMSE) as a metric of distance
between prediction and MODIS SR, and evaluate each spectral
band individually. RMSE is computed on the dimensionless pixel
reflectance, which takes values between 0 and 1. To further
assess the goodness of fit, Pearson’s r, and the related metric R2,
are statistical measures calculated to determine the amount of
variation of data explained by the model. R2 always falls between
0 and 1, with a higher R2 value indicating better fit of the model
to the data. Pearson’s r and R2 are commonmetrics in the remote
sensing domain to measure the coherence between images for
validation purposes (Vinukollu et al., 2011; Tang et al., 2014).
Additionally, we compute mutual information (MI) as an image
matchingmetric. Mutual information is a dimensionless quantity
that expresses how much information one random variable gives
us about another. MI here is calculated with respect to the
MODIS SR product.

3. RESULTS

3.1. Compared Methods and Models
For the prediction of surface reflectance, we compare plain CNNs
and ResNets of varying depth and width. We test models grid-
search style with 1–5 residual blocks and 16–128 hidden units.
For modified ResNet, the 5 residual block architecture with
64 hidden units per layer achieves the best performance. For
CNN without residual connections, a 4 layer architecture with
64 hidden units per layer performs best. We test each of these
models with partial convolutions (referred as ResNet-P, CNN-P)
and regular convolutions (referred as ResNet, CNN). As shown
in Table 2, ResNet-P achieves the best performance among the
four models, with 19% lower RMSE than that of CNN.

We also evaluate the contribution of solar angle information
to performance by training the model with and without solar
angle information. We find that this additional information has a
negligible impact on prediction accuracy.

3.2. Prediction of Surface Reflectance
Performance of the emulator is evaluated by comparison with
MODIS SR, and benchmarked by comparison of MAIAC SR to
MODIS SR (Figure 2). We evaluate RMSE for each wavelength
and also for the full spectrum inTable 2. This measure of distance
suggests ResNet-P as the best performing model, with error on
the order of 10% or less of normalized pixel values. Predictions
for a representative testing set tile plotted are pixelwise against
ground truth data from the MODIS product and presented in
Figure 2. R2 and best fit (slope and intercept) by wavelength
for the testing set are presented in Figure 2. The R2 values
evidence high agreement between the emulator predictions and
the MODIS retrievals of surface reflectance for the red and NIR
bands, and lesser predictive power for the green and blue bands.
Outliers are observed in all bands, particularly where MODIS
reflectance exceeds the prediction by the other model. Outliers in
SR are generally caused by localized light sources or reflections.
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TABLE 2A | Performance metrics by band and for full spectrum for ResNet,

ResNet with partial convolutions (Resnet-P), CNN, CNN with partial convolutions

(CNN-P), and MAIAC.

Model
Testing RMSE (10−2) R2 Mutual

information
Blue Green Red NIR Full Blue Green Red NIR

ResNet-P 0.80 1.4 2.5 2.8 1.9 0.54 0.63 0.86 0.83 0.94

ResNet 1.0 1.7 2.2 2.9 2.2 0.46 0.51 0.82 0.81 0.92

CNN-P 1.0 1.9 2.4 3.0 2.2 0.54 0.56 0.82 0.78 0.92

CNN 1.1 1.9 2.4 3.2 2.3 0.86 0.68 0.70 0.68 0.88

MAIAC 1.1 2.1 3.2 5.6 3.6 0.39 0.50 0.85 0.77 0.96

Best values are bolded.

Mutual information, which captures both linear and nonlinear
dependence, also suggests ResNet-P as the best model among
those compared.

In comparison with MAIAC SR, the emulator SR results in
lower RMSE and better R2 agreement in all bands. MAIAC
outperforms the emulator in MI score. This result suggests that
some aspects of MODIS SR may be better captured by a deep
learning model, while other aspects are better captured by the
physical model.

3.3. Stability of Retrievals by Land Cover
Type
The Australian continent is host to multiple land cover types,
including savannas, shrublands, and forest, as delineated by the
Collection 6 MODIS Land Cover Product (Sulla-Menashe and
Friedl, 2018). We assess the stability of SR retrieval across land
cover types by presenting performance metrics for the emulator
across tiles dominated by these three homogeneous land cover
types: savanna, shrubland, and forest.

Metrics for each land cover class are presented in Table 2.
The results suggest good generizability of the emulator, with
comparable performance across savanna and shrubland, and
poorer performance for forested area, particularly driven by
poorer performance for the NIR band.

3.4. Partial Convolutions for Missing Data
We evaluate the performance of partial vs. regular convolutions
to handle missing pixels. We find that use of partial convolutions
produces a 4% reduction in RMSE. Because partial and regular
convolutions perform identically for regions of valid pixels,
we would expect the differential in RMSE between the two
techniques to be strongly correlated to the quality of the image,
i.e., the number of missing pixels.

4. DISCUSSION

Herein is presented DeepEmSat, an emulator for physically-
based atmospheric correction. The objective of this work is to
test the hypothesis that deep learning can make a contribution
to the efficient processing of reflectance observations from
Earth-observing satellites. The premise examines the possibility

TABLE 2B | Performance metrics by band and for full spectrum for ResNet-P and

MAIAC across three land cover types.

Model Land cover
Testing RMSE (10−2) Mutual

information
Blue Green Red NIR Full

Emulator

Savanna 0.70 1.2 2.2 2.7 1.9 0.95

Shrubland 0.80 1.1 2.3 2.3 1.8 0.95

Forest 0.70 1.2 2.7 4.0 2.5 1.0

MAIAC

Savanna 1.1 1.7 1.9 3.7 2.4 0.97

Shrubland 1.0 2.1 3.3 6.6 4.0 0.97

Forest 1.0 1.5 1.3 5.2 2.9 0.98

that a sufficiently complex neural network can learn the
potentially nonlinear mapping of TOA reflectance to SR.
This hypothesis also examines the possibility that semantic
relationships between pixels in reflectance observations can be
harnessed by convolutional networks.

The results of this study suggest that deep learning emulators
can make some contribution to efficient processing of satellite
images. The evaluation metrics comprise linear measures of
similarity (Euclidean distance, linear correlation) as well as a
measure from probability theory (mutual information). These
metricsmay describe different aspects of the relationship between
variables. However, it is important to recall that physically-
based AC algorithms contain biases and uncertainties of their
own, making comparison with existing SR products an imperfect
method of validation.

By training and testing on separate geographic regions, we
demonstrate the generalizability of the model for locations
outside of the training dataset. Our assessment of emulator
performance over various land types suggests also stable
SR retrieval by the emulator model. We demonstrate the
improvement of model accuracy with the addition of
partial convolutions, although more rigorous investigation
of this effect is warranted. Through comparison with
MAIAC, a physically based AC algorithm, we demonstrate
the relatively strong performance of the emulator in
generating MODIS-like surface reflectance from GEO
TOA observations.

Diurnal, seasonal, and annual variation in solar angle limits
comparability between reflectance observations from different
times. Therefore, validation of emulator retrievals is limited to
the approximate time of MODIS observations. Inferences for
other locations, times of day, and seasons should be interpreted
with caution. Our dataset is comprised only of observations over
Australia. In future work, training data could be augmented with
annual observations and also with MODIS Aqua satellite, which
passes daily at 1:30 p.m. local time.

5. CONCLUSION

Prior studies have leveraged machine learning to extract insights
from complex Earth science datasets. Here, we examine the
hypothesis that a deep learning emulator of a physical model
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FIGURE 2 | (A) Counterclockwise from top left: input TOA reflectance, target MODIS SR, emulator SR, MAIAC SR, visualization of difference between MODIS and

two SR products. (B) Agreement between model predictions (ResNet-P, CNN-P, and MAIAC) and MODIS SR for 4 bands. Results are presented for one typical 600 ×

600 pixel image from the testing set.
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can contribute to efficient satellite data processing. In this
work, domain knowledge from atmospheric science is used in
covariate selection and design of model architecture. Our results
suggest that further work, including development of principled
approaches to the blending of physical and data science methods,
will be useful to extract insights from a growing volume of
remotely sensed Earth science data.
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