
Evolution, Medicine, and Public Health [2019] pp. 190–198

doi:10.1093/emph/eoz028

Adaptive phenotypic
plasticity in malaria
parasites is not constrained
by previous responses to
environmental change
Philip L. G. Birget,y Petra Schneider,*,y Aidan J. O’Donnell and Sarah E. Reece

Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences,

University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK

*Corresponding author. Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of

Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK. Tel: +44-131-6519219;

E-mail: petra.schneider@ed.ac.uk
yShared first authors.

Received 25 June 2019; editorial decision 19 September 2019; revised version accepted 25 September 2019

A B S T R A C T

Background and objectives: Phenotypic plasticity enables organisms to maximize fitness by matching

trait values to different environments. Such adaptive phenotypic plasticity is exhibited by parasites, which

experience frequent environmental changes during their life cycle, between individual hosts and also in

within-host conditions experienced during infections. Life history theory predicts that the evolution of

adaptive phenotypic plasticity is limited by costs and constraints, but tests of these concepts are scarce.

Methodology: Here, we induce phenotypic plasticity in malaria parasites to test whether mounting a

plastic response to an environmental perturbation constrains subsequent plastic responses to further

environmental change. Specifically, we perturb red blood cell resource availability to induce Plasmodium

chabaudi to alter the trait values of several phenotypes underpinning within-host replication and between-

host transmission. We then transfer parasites to unperturbed hosts to examine whether constraints

govern the parasites’ ability to alter these phenotypes in response to their new in-host environment.

Results: Parasites alter trait values in response to the within-host environment they are exposed to. We

do not detect negative consequences, for within-host replication or between-host transmission, of pre-

viously mounting a plastic response to a perturbed within-host environment.

Conclusions and implications: We suggest that malaria parasites are highly plastic and adapted to

adjusting their phenotypes in response to the frequent changes in the within-host conditions they

experience during infections. Our findings support the growing body of evidence that medical interven-

tions, such as anti-parasite drugs, induce plastic responses that are adaptive and can facilitate the

survival and potentially, drug resistance of parasites.
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Lay Summary: Malaria parasites have evolved flexible strategies to cope with the changing conditions

they experience during infections. We show that using such flexible strategies does not impact upon the

parasites’ ability to grow (resulting in disease symptoms) or transmit (spreading the disease).

K E Y W O R D S : life history theory; Plasmodium; resource allocation trade-off; phenotypic plasticity;

survival

INTRODUCTION

The ability to alter aspects of phenotype in response to changes in

environmental conditions (phenotypic plasticity) is commonly

observed in multicellular organisms [1–3]. But the notion that

phenotypic plasticity is central to the fitness of parasites has been

met with controversy in medicine and parasitology [4, 5]. This is

likely due to the longstanding assumption that parasites, since

they live inside their hosts, are sheltered from the rapidly changing

conditions of the exterior environment, such as weather, tempera-

ture and predators, light and dark, and that there is a high auto-

correlation in conditions experienced during infections and

between hosts [6, 7]. An alternative view is that parasites are ac-

tually confronted with frequent and fast changing within-host con-

ditions during each infection, as well as variation in conditions

experienced in different hosts (particularly for parasites with com-

plex, multi-host, life cycles). A number of within-host environmen-

tal factors vary during infections and across hosts, including the

availability of resources, mating opportunities, immune re-

sponses, intensity of competition with co-infecting parasites,

medical interventions and daily rhythms in host physiology.

Parasites, stemming from diverse phyla, appear to cope with the

challenges and opportunities arising from variable within-host

conditions using phenotypic plasticity in a wide variety of traits.

For example, the nematode Strongyloides ratti modifies its (gener-

ally stable) transcriptome in immunized hosts to avoid expulsion

[8]. The trematode Coitocaecum parvum adopts a three-host or a

two-host lifecycle depending on the availability of appropriate de-

finitive hosts [9]. Bacteriophages vary their lysis/lysogeny deci-

sion, and malaria parasites their sex ratio and reproductive

effort, in response to co-infecting conspecific genotypes [10, 11].

Like all traits, the evolution and expression of phenotypic plas-

ticity is assumed to be subject to costs, constraints and trade-offs.

These concepts are often hard to define and differentiate, and so

are rarely examined empirically [12], especially for parasites/

pathogens [5]. Costs of plasticity can be thought of as phenomena

that reduce the fitness of a plastic genotype compared to a non-

plastic genotype expressing the same trait value [12, 13].

Constraints of plasticity can be defined as phenomena that pre-

vent organisms from reaching the optimal phenotype that a given

environment demands [13]. For example, plasticity of many devel-

opmental traits is constrained by a window of sensitivity, i.e. a trait

is only responsive to environmental change during early develop-

ment and becomes fixed for the remaining lifetime of the

individual. Thus, there is a risk that a trait is beneficial in early life

but may become suboptimal at a later point because environmen-

tal conditions are likely to change. Such constraints include so-

called ‘trans-host effects’ (in analogy with transgenerational ef-

fects on genetic expression), which occur when, for example, en-

vironmental conditions in the current host affect the behaviour of

a parasite in the next host [14–17]. Analogous effects could occur

during dynamic infections if parasites are unable to keep up with

rapid changes in immune responses and resource availability.

Thus, if parasites rely on phenotypic plasticity to optimize host

exploitation and maximize transmission, then the history of

hosts/cells/within-cell conditions that parasites have experienced

could constrain the trait values of adaptive plastic responses to

future conditions as well as reduce within-host replication,

shorten infection duration or lower the rate of between-host trans-

mission [18–20].

Here, we use the rodent malaria parasite Plasmodium chabaudi

to explore the consequences of deploying plasticity. We do not test

for inherent costs of plasticity because that would require

comparing plastic and non-plastic parasites. Because non-plastic

P.chabaudi genotypes do not exist, we use a different approach

and test whether the effect of plasticity in response to an environ-

mental change effects future responses and parasite

performance.

Malaria parasites replicate asexually in the vertebrate host’s red

blood cells (RBC), but need to produce non-replicating sexual

stages (‘gametocytes’) for between-host transmission, resulting

in a trade-off between the allocation of resources to within-host

replication and between-host transmission [21]. Malaria parasites

adaptively adjust the proportion of each cohort of asexually

replicating stages that commits to gametocyte development

(‘conversion rate’) in response to within-host environmental con-

ditions, including resource availability, competition with co-in-

fecting parasites and antimalarial drug treatment [22–31].

Plasticity in other traits that underpin within-host replication also

exists. For example, Plasmodium berghei reduces the number of

progeny (merozoites) produced per asexual stage (‘burst size’) in

response to caloric restriction of the host [32], and P.chabaudi

increases burst size in anaemic hosts [33]. We harness the plastic

responses of P.chabaudi to host anaemia [33] to investigate the

impact of previous plastic responses on trait values for conversion

rate, burst size and asexual replication. Specifically, we exposed

parasites to either control hosts or anaemic hosts, to generate

parasites with a different history of plasticity-driven trait values.

Ghosts of the plastic past? Birget et al. | 191

Deleted Text: ,
Deleted Text: s
Deleted Text: 3
Deleted Text: 2
Deleted Text: ,
Deleted Text:  
Deleted Text: ``
Deleted Text: ''
Deleted Text: s
Deleted Text: s
Deleted Text: ,
Deleted Text:  
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text:  
Deleted Text:  


Subsequently, we mimic a rapid change of the within-host envir-

onment by transferring parasites from each control host and each

anaemic host to non-anaemic hosts that serve as a common gar-

den, i.e. parasites from both initial environments experience the

same final within-host environment. An impact of the history of

past within-host conditions and/or previously mounting a plastic

response (beyond the reduction of asexual parasite densities),

should manifest as a difference in trait values in the common

garden hosts.

METHODS

The experiment comprised of two sets of hosts (Fig. 1). Parasites

in initial hosts experienced a within-host environment of un-

treated hosts or of phenylhydrazine (PHZ) treated, anaemic

hosts. Parasites were then transferred from the initial hosts to

untreated, common garden hosts. We monitored the dynamics

of asexual parasites and gametocytes, and burst size (number of

merozoites/schizont) in the initial hosts to confirm parasites

adopt different trait values due to mounting plastic responses

to anaemia, and then monitored traits in the common garden

hosts.

Parasites and hosts

We obtained C57BL/6 female mice (aged 6–8 weeks) in-house

(University of Edinburgh) and the P.chabaudi clone AS

(AS12537) from the Edinburgh Malaria reagent repository. All ani-

mal care was in accordance with institutional and UK Home Office

guidelines. P.chabaudi was isolated from African thicket rats

(Grammomys poensis, previously called Thamomnys rutilans) in

Central Africa [34], and Mus musculus is a natural host for some

rodent malaria species [35]. After cloning, genotype AS has been

cryopreserved and undergone regular transmission through

mosquitoes to maintain its wild type phenotype [36]. We treated

initial hosts 4 days before infection (day–4 post-infection (PI))

with a single intraperitoneal injection of either 30 mg/kg of PHZ

dissolved in phosphate-buffered saline (PHZ, n = 14) or phos-

phate-buffered saline (Control, n = 11). PHZ causes anaemia by

provoking the premature clearance of mature RBCs, leading to the

release of immature RBCs (reticulocytes) into the blood as shown

in [23] through an erythropoietin-mediated feedback loop [37].

All initial hosts received an intravenous injection of 5� 106 AS-

parasitized RBCs on day 0 PI. On day 4 PI, we transferred 5� 106

parasitized RBCs from each initial host into a randomly chosen,

untreated, common garden host (CG hosts, n = 25) by a one-to-

one intravenous passage. Given that all hosts were inbred and age

and sex matched, our design simulates a rapid change in within-

host conditions (without the confounding effects of age of infec-

tion). We chose untreated hosts for our common garden hosts

because P.chabaudi replicates faster in PHZ-treated compared to

untreated hosts [23, 33]. This suggests that untreated hosts may

provide a harsher environment for the parasites, in which con-

straints may be more easily observed. We designate the common

garden hosts that received their parasites from a PHZ-treated

initial host as an ‘ExPHZ’ infection (n = 14) and those that received

their parasites from a control initial host as an ‘ExControl’ infec-

tion (n = 11). We monitored infections in the initial hosts from

days 1 to 4 PI and from days 1 to 16 PI in the common garden

hosts. Our design thus relies on three assumptions: first, that

parasites encounter different within-host environments between

PHZ-treated and control initial hosts, and second, that parasites

exhibit different phenotypes between PHZ-treated and control ini-

tial hosts. Third, we assume that different phenotypes between

the PHZ-treated and control initial hosts do not result from gen-

etic adaptation to our reticulocyte-rich anaemic hosts. Such adap-

tation is extremely unlikely in our experiment for several non-

mutually exclusive reasons: (i) parasites were expanded from

cryopreservation in untreated hosts that are not reticulocyte-rich

anaemic hosts. Any favourable variants would therefore have to be

selected for in only three replication cycles in our initial hosts; (ii)

for a single mutation to underpin such evolution, the highest pos-

sible estimate for a mutation to arise and expand in this time

would result in the ‘adapted parasites’ to be at approx. 0.01% of

the total parasite population; (iii) serial passage can result in gen-

etic evolution in P.chabaudi but this generally requires 11–20 pas-

sages of infections each lasting at least 7 days [38–40]; (iv)

plasticity may constrain genetic evolution because the ability to

adjust trait values to suit the new environment buffers against

fitness loss due to environmental changes, which in turn reduces

the strength of selection on fixed traits [41]; (v) any adaptation to

specifically infect reticulocytes is unlikely to have provided signifi-

cant fitness benefits because even in PHZ-treated hosts, reticulo-

cytes comprise a minority of the total RBC population.

Data collection and analysis

For all initial and common garden hosts, we measured RBC dens-

ity and RBC age structure (the proportion of RBCs that are imma-

ture RBCs; i.e. reticulocytes), the proportion of RBCs infected with

asexual stages and gametocyte density daily, with the exception of

day 1 PI gametocyte density in the initial hosts. We quantified RBC

density from 2 ml blood by flow cytometry (Beckman Coulter), and

made thin blood smears to count the ratio of mature

(normocytes) to immature (reticulocytes) RBCs, as well as the

proportion of asexual stage infected RBCs, by microscopy. We

quantified gametocyte densities from 10 ml blood samples by re-

verse-transcriptase quantitative PCR [42] as described previously

[23]. We assessed burst size on day 4 PI as the number of

merozoites counted from the first 30 mature schizonts observed

on blood smears taken shortly before schizogony (from a random

subset of n = 4 per treatment for the initial hosts, and for all com-

mon garden host infections).
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We characterized the within-host environment based on the

density of total RBC (i.e. the combined density of normocytes and

reticulocytes) and their age structure (i.e. the proportion of RBCs

that are reticulocytes). We calculated daily asexual parasite

densities by multiplying RBC density with the proportion of infected

RBCs, and used daily asexual parasite densities to derive replication

rate (replication rate day t ¼ asexual parasite density day ðtþ1Þ
asexual parasite density day ðtÞ . It was

only possible to calculate conversion rates for infections of CG

hosts since data from a longer infection duration than in the initial

hosts is required to use a state-of-the-art spline-based model, de-

veloped by Greischar et al. [43].

All calculations and statistical analysis were carried out using R

version 3.2.4. To analyse the dynamics of host and parasite traits

during the infections, we used linear mixed effect models

including treatment, day PI and their interaction as fixed effects,

and mouse identification number as a random effect to account

for repeated measures. For the analyses of burst size data we used

linear mixed effect models including treatment as a fixed effect,

and mouse identification number as a random effect to account

for repeated measures. We minimized nested models using max-

imum likelihood deletion tests, and we transformed response

variables to meet assumptions of homogeneity of variance (pro-

portion of reticulocytes and replication rates were square root

transformed, whilst asexual parasite density, gametocyte density

and conversion rate were log10 transformed adding half a

counting unit to all data to deal with zero values according to

[44]). To compare infections in initial with common garden hosts,

we used only data covering the same sample time points in both

data sets. We first used the above approach to verify that there was

a difference between the four host types, and subsequently

compared the four host type model with a model that groups

untreated initial hosts with the common garden hosts (i.e. PHZ

vs Control+ExControl+ExPHZ) to confirm that the PHZ is the out-

lying group. We present significant test statistics in the text, whilst

full statistical details are shown in Supplementary Table S1.

RESULTS

Our experiment required comparing plasticity in parasite traits for

parasites originating from either untreated (Control) or anaemic,

PHZ-treated initial hosts, after being placed in the same environ-

ment: untreated, non-anaemic common garden hosts (ExControl,

ExPHZ). First, we confirm the assumption that parasites experience

different environments in Control and PHZ-treated initial hosts.

Second, we confirm that parasites adopt different phenotypes in

Control and PHZ-treated initial hosts. Third, we compare the trait

values of parasites—stemming from different types of initial hosts—

in common garden hosts (ExControl vs ExPHZ), to test for effects of

previous plasticity, i.e. the trait values adopted in initial hosts.

RBC environments and parasite traits vary between

PHZ-treated and control initial hosts

PHZ treatment generated anaemia, whichwas maintained in thePHZ-

treated initialhosts throughout days0–4PI,asmeasuredbyadecrease

in RBC densities (treatment * dayPI interaction: �2 (4) = 13.92,

P = 0.0076) and an increased proportion of RBCs that were reticulo-

cytes (treatment effect: �2(1)=44.31, P< 0.0001) (Fig. 2A and B).

Figure 1. Experimental setup. We treated initial hosts with 30 mg/kg of PHZ to generate anaemia, or with PBS (control) on day–4 PI, and infected them with 5�

106 P.chabaudi AS infected RBCs on day 0 PI. On day 4 PI we transferred 5 � 106 infected RBCs from each initial host into common garden hosts by one-to-one

passage, and we followed these infections for 16 days. In all sets of hosts, we measured the daily densities (dynamics) of asexual stages and gametocytes, burst size

(on day 4 PI) and we estimated conversion rates for the CG hosts
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Parasites adopted different trait values in control and PHZ-treated

initial hosts in the manners described previously [23, 33]. First, daily

asexual replication rates varied between treatments (treatment *

dayPI interaction: �2 (2) = 15.96, P = 0.0003), with replication rates

in PHZ-treated hosts higher than in untreated hosts on day 1 PI (Fig.

2C). This results in differences between treatments for the dynamics

of asexual densities during days 1–4 PI (treatment * dayPI inter-

action: �2 (3) = 21.51, P< 0.0001), with higher asexual parasite

densities in PHZ-treated initial hosts than in control initial hosts

during days 2–4 PI (Fig. 2D). Second, parasites in PHZ-treated initial

hosts produced, on average, 1.15 times more merozoites per schiz-

ont than parasites in control initial hosts (�2 (1) = 12.73, P = 0.0004,

Fig. 2E). Third, the dynamics of gametocytes densities differed be-

tween treatments (treatment * dayPI interaction: �2 (2) = 9.92,

P = 0.0070), with gametocyte densities in PHZ-treated initial hosts

higher than those in control initial hosts (Fig. 2F).

Trait values in the common garden hosts

The dynamics of RBC densities (treatment: �2 (1) = 0.002,

P = 0.9617) and of proportion of reticulocytes (treatment: �2 (1)

= 0.001, P = 0.9719) were not significantly different between the

two groups of untreated common garden hosts (ExPHZ and

ExControl) for days 0–16 PI (Fig. 3A and B). For the time frame

during which data were collected in the initial hosts (days 0–4 PI),

the RBC environment did not significantly differ between the un-

treated common garden hosts (ExPHZ and ExControl) and the

control initial hosts (RBC density �2 (10) = 9.74, P = 0.4634; pro-

portion reticulocytes �2 (10) = 12.07, P = 0.2804). Thus, the as-

sumption that parasites in control initial hosts and all common

garden hosts experienced the same RBC environment was met.

We did not detect any significant differences in asexual stage

traits between ExPHZ and ExControl parasites (Fig. 3C–E). This

includes the dynamics of replication rate (Fig. 3C, treatment: �2

(1) = 0.27, P = 0.6059) and of asexual densities (Fig. 3D, treat-

ment: �2 (1) = 0.03, P = 0.8625), and day 4 PI burst sizes (Fig.

3E, treatment: �2 (1) = 0.058, P = 0.8103). We did observe a dif-

ference in gametocyte dynamics between ExPHZ and ExControl

parasites (Fig. 3F, treatment * dayPI interaction: �2 (15) = 45.24,

P< 0.0001), driven by gametocyte densities at the start of infec-

tions. Gametocytes on day 1 PI are likely carried over from the

initial hosts as well as originating from the conversion decision of

A B

C D

E F

Figure 2. The within-host environment and parasite traits differ between PHZ-treated (PHZ, green) and untreated (Control, purple) initial hosts. RBC densities

are lower (RBC dens, A) and the proportion of RBCs that are reticulocytes are higher (Prop retics, B) in PHZ-treated initial hosts. Asexual replication rates were

higher in PHZ-treated initial hosts on day 1 PI (C), resulting in higher asexual densities on days 2–4 PI (Asex dens, D). Burst sizes, measured as the number of

merozoites per schizont on day 4 PI (E), and gametocyte densities (Gct dens, F) were also higher in PHZ-treated initial hosts. Graphs show mean ± SEM (A–D, F) or

median (black dashed) and 25–75 percentiles, with whiskers 1.5 times the interquartile range and dots representing outliers (E)
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the asexual parasites in the inoculum used to infect the common

garden hosts, and therefore reflect the RBC environments of the

initial hosts rather than reflecting the performance of parasites in

common garden hosts. When excluding day 1 PI from the analysis,

neither the treatment * dayPI interaction (�2 (14) = 13.79,

P = 0.4654) or treatment (�2 (1) = 0.0008, P = 0.977) were signifi-

cant (Fig. 3F). Furthermore, daily conversion rates, i.e. the pro-

portional investment of asexual parasites into gametocytes, were

not significantly different between ExPHZ and ExControl parasites

(Fig. 3G, treatment: �2 (1) = 0.18, P = 0.6748).

DISCUSSION

We asked whether mounting phenotypically plastic responses to a

perturbation of the within host environment imposes longer-term

constraints on future plastic responses. Harnessing the diverse

phenotypically plastic traits expressed by P.chabaudi malaria para-

sites in response to host anaemia revealed no such effects.

Specifically, parasites transferred from anaemic initial hosts ex-

hibited trait values that were not significantly different to those of

parasites transferred from control initial hosts. We assume that

plasticity in the traits investigated here are at least in part under

parasite control. In principle, variation in burst size, replication rate

or conversion could be host-imposed. For example, if reticulocytes

are more nutritious (e.g. if they contain more LysoPC [45]), the age

structure of RBCs could directly influence replication rate. However,

evidence suggests that plasticity in parasite traits is at least in part

controlled by parasites. For example, the anaemia-driven increase in

burst size and conversion rate is not directly related to growth inside

reticulocytes but seems to be a response to the presence of reticu-

locytes per se [23, 28]. Furthermore, that conversion rate is altered

adaptively in response to a number of within-host variables, exhibits

genetic variation, and cannot be explained by differential mortality,

strongly suggests parasites control conversion rate [25, 28, 46].

The age composition of RBCs is expected to determine the rep-

ertoire of invasion receptors expressed by merozoites [47, 48] be-

cause reticulocytes and normocytes offer different ligands. This

could constrain the replication rate of parasites coming from a re-

ticulocyte rich, anaemic host if they experience a delay in switching

to the repertoire required in the reticulocyte rare environment of a

common garden control host. Our data provide no evidence of such

a constraint because the dynamics of asexual stages did not vary

between the two groups of common garden hosts. Whereas a re-

duction in replication rate could be offset by lowering conversion

rate and/or increasing burst size, we did not detect any differences in

these traits either. Furthermore, gametocyte densities are higher in

PHZ-treated initial hosts on day 2 PI, whilst originating from the

same asexual densities as parasites in the control hosts. Although

we did not directly quantify conversion rates in the initial hosts, this

implies conversion rates were increased in PHZ-treated hosts, as

shown previously [23]. Any costs/constraints related to such

elevated conversion rates did not affect the replicative capacity of

asexual stages or future conversion to gametocytes in common

garden hosts. Whilst conversion rate is the plastically adjusted trait,

the resulting density of gametocytes is better proxy for short-term

transmission probability (i.e. parasite fitness). We found no evi-

dence of fitness costs in terms of lower gametocyte densities in

parasites stemming from anaemic initial hosts.

The absence of a detectable effect of previous plasticity may

have several, non-mutually exclusive, explanations. (i) It is pos-

sible that our experimental design was unable to detect small

effects due to low power. (ii) Parasites may readily change reticu-

locyte/normocyte invasion ligands upon arrival in the common

garden hosts. (iii) The repertoire of invasion ligands expressed by

P.chabaudi may always be diverse enough for efficient invasion

independent of RBC age structure [33]. (iv) If asexual density is

viewed as a fitness proxy, the lower density in control initial hosts

on the day of transfer could be viewed as a cost, but this was

ameliorated by initiating infections in common garden hosts with

a fixed number of parasites. This approach controls the impact of

inoculum dose on infection dynamics, allowing us to test for ef-

fects of ‘quality’ rather than ‘quantity’ of parasites. (v) Costs/con-

straints may only manifest as trans-host, or host-vector effects,

which we have not tested for. Although we use a sequence of hosts

(initial and common garden hosts), we transferred parasites by

blood passage, rather than by mosquito (which is the natural

route for transmission), to simulate the changes in RBC density

and age structure experienced during infections. (vi) The com-

mon garden environment provided by naı̈ve hosts was not stress-

ful enough to elicit constraints. For example, Steinger et al. report

that sib-families of the plant Sinapis arvensis that show greater

plasticity in specific leaf area also suffer larger fitness costs in a

shady environment than in full light conditions [49], and plasticity

in internode length in Ranunculus reptans is more costly in com-

petitive than under benign conditions [50]. Intuitively, naı̈ve hosts

appear to be a benign environment. However, given that parasites

replicate faster in PHZ-treated compared to untreated hosts [23,

33], this suggests that untreated hosts are the harsher environ-

ment, but perhaps not harsh enough. (vii) We tested a single

parasite genotype to balance ethical considerations with testing

for proof of principle. It is possible that our results may not be

easily generalized to other genotypes. However, we generally see

qualitatively similar responses to environmental perturbations

across the available P.chabaudi genotypes. Genotype by environ-

ment interactions are sometimes observed but these result in

quantitative, rather than qualitative, differences in the genotypes’

responses to environmental change (e.g. [11, 23, 25, 33]). Further,

across the P.chabaudi clone bank, the genotype we chose (AS)

displays an intermediate level of plasticity in the traits we studied

(a.o. [23]), so we expect it is representative of the population. (viii)

We only exposed parasites to a single environmental change (an-

aemic to control hosts) and constraints and limits may only

emerge after parasites experience a longer sequence of different

within-host conditions. If costs and constraints are mainly
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exposed in stressful environments [51], future work could examine

parasites in common garden hosts that involve competition with

con-specific genotypes, in semi-immune hosts or during drug

treatment.

One of the preconditions for plasticity to evolve is that its costs,

relative to the negative consequences of suboptimal trait values,

must be low [12, 13]. For parasites that live in variable environ-

ments or that require extensive changes to their traits, selection

may have honed rapid responses and minimized costs/con-

straints. For example, the parasitic nematode Heligmosomoides

polygyrus increases expression of two immunomodulatory genes

in hosts mounting an inflammatory response, but readily reduces

expression when in hosts without inflammatory responses, even

after experiencing upregulated inflammation for four parasite

generations [52]. If costs and constraints do exist, they may only

be exposed in stressful environments [51]. Thus future work could

examine parasites in common garden hosts that involve compe-

tition with con-specific genotypes, in semi-immune hosts, or dur-

ing drug treatment. By using a single parasite genotype (to avoid

any confounding effects of genetic variation), we assume that

because conversion rates vary day-to-day (Fig. 3G), parasites in

both types of initial host and in common garden hosts are paying

the costs of environmental sensing. The standing costs of plasti-

city are thought to be low, but are hard to measure [12, 13]; future

A B

C D

E

G

F

Figure 3. The within-host environment and parasite traits do not differ between common garden hosts (ExPHZ, green and ExControl, purple). We observed no

significant differences in RBC densities (RBC dens, A), the proportion of RBCs that are reticulocytes (Prop retics, B), asexual replication rates (C), asexual parasite

densities (Asex dens, D) or burst sizes, measured as the number of merozoites per schizont, on day 4 PI (E) between ExPHZ and ExControl hosts. Gametocyte

densities are higher in ExPHZ compared to ExControl hosts on day 1 PI only because these gametocytes originate from infections in the initial hosts (Gct dens, F)

and conversion rates were not significantly different between common garden hosts (G). Graphs show mean ± SEM (A–D, F–G) or median (black dashed) and 25–

75 percentiles, with whiskers 1.5 times the interquartile range and dots representing outliers (E)
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work that selects for parasites with a fixed conversion rate might

allow these costs to be measured. Finally, the generality of our

results can be confirmed by extending experiments to include

multiple genotypes and species of malaria parasites.

Here we show that parasites are able to rapidly adjust fitness-

related life history traits to match changes in conditions

experienced in the within-host environment. Mechanisms

controlling environmental sensing in malaria parasites are only

partly understood (e.g. [32]), but evidence for epigenetic mechan-

isms governing commitment to gametocytes is accumulating rap-

idly [53–56]. Thus, in the context of conversion at least, our

findings suggest these epigenetic mechanisms quickly respond

to environmental change. The capacity for rapid and generally

appropriate responses to environmental change may play an

underappreciated role in treatment failure and the evolution of

resistance [41]. For example, plasticity in conversion allows para-

sites to find the best balance between short- and long-term trans-

mission after drug treatment [28]. Given that different types of

environmental change demand different trait values, could para-

sites be forced to make suboptimal decisions by exposing them to

several such environmental changes, simultaneously?
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Supplementary data is available at EMPH online.
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