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Abstract 

Ecosystem engineers modify their environment and influence the availability of resources for other organisms. Burrowing species, a 
subset of allogenic engineers, are gaining recognition as ecological facilitators. Burrows created by these species provide habitat for a 
diverse array of other organisms. Following disturbances, burrows could also serve as ecological refuges, thereby enhancing ecological 
resistance to disturbance events. We explored the ecological role of Common Wombat (Vombatus ursinus) burrows using camera traps 
in forests of southeastern Australia. We compared animal activity at paired sites with and without burrows, from the same fire severity 
class and habitat. We examined how animal activity at Common Wombat burrows was affected by the 2019–20 Black Summer bushfires 
in Australia. We predicted that burrows would serve as hotspots for animal activity and as refuges in burned areas. The activity of several 
species including Bush Rat (Rattus fuscipes), Agile Antechinus (Antechinus agilis), Lace Monitor (Varanus varius), Painted Button-quail (Turnix 
varius), and Grey Shrike-thrush (Colluricincla harmonica) increased at sites where Common Wombat burrows were present, while other 
species avoided burrows. Species that were more active at burrows tended to be smaller mammal and bird species that are vulnerable to 
predation, whereas species that avoided burrows tended to be larger mammals that might compete with Common Wombat for resources. 
Species composition differed between sites with and without burrows, and burrow sites had higher native mammal species richness. The 
association of several species with burrows persisted or strengthened in areas that burned during the 2019–20 Black Summer bushfires, 
suggesting that Common Wombat burrows may act as ecological refuges for animals following severe wildfire. Our findings have rele-
vance for understanding how animals survive, persist, and recover following extreme wildfire events.

Key words: allogenic engineer, Black Summer bushfires, ecological facilitation, eucalypt forests, fire refuge, fire severity.

Ecosystem engineers modify their environment by influencing 
resources available to other organisms (Jones et al. 1997; Coggan 
et al. 2018). Modification by ecosystem engineers occurs via 2 
pathways: autogenic engineers, which alter the environment by 
modifying themselves (e.g., trees and coral; Jones et al. 1994); and 
allogenic engineers, which alter the environment by mechani-
cally changing the form of biotic and abiotic materials (e.g., dam- 
building beavers; Jones et al. 1994). Ecosystem engineers are  
distributed across terrestrial, freshwater, and marine environments 
(Jones et al. 1994), and include species from an array of taxonomic 
groups, including invertebrates, reptiles, birds, and mammals.

Species that displace soil through burrowing, digging, and for-
aging—known as bioturbators—play an important role as ecosys-
tem engineers and often provide resources for co-occurring species 

(Whitford and Kay 1999; Coggan et al. 2018). Bioturbation modifies 
soil by changing water run-off and erosion (Halstead et al. 2020) and 
increasing water infiltration (Fleming et al. 2014; Davies et al. 2019), 
which alters the chemical properties of soils (Guy and Kirkpatrick 
2021) and can enhance seed germination (Eldridge and James 2009; 
Fleming et al. 2014). For example, in Australia, the bioturbation 
activity of Quenda (Isoodon fusciventer) increases soil nutrients and 
microbial activity, promoting seedling growth (Valentine et al. 2018). 
In addition, well-digging by feral equids in North American deserts 
increases water availability and vertebrate richness (Lundgren et al. 
2021). Such engineering activities can provide important resources 
and enhance local biodiversity.

Burrow engineers are a subset of bioturbators that combine 
bioturbation with the creation of often large and complex burrow 
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systems. Burrow creation is a facilitative interaction whereby com-
mensal species exploit resources offered from burrows, including 
the provision of shelter from predators and extreme conditions, 
as well as foraging and breeding opportunities. For instance, 
American Badger (Taxidea taxus) burrows are exploited by 31 spe-
cies, including numerous mammal species that use the bur-
rows for shelter (Andersen et al. 2021). Similarly, Gopher Tortoise 
(Gopherus polyphemus) burrows are used by over 60 vertebrate spe-
cies (Dziadzio and Smith 2016), and Giant Armadillo (Priodontes max-
imus) burrows are visited by over 50 vertebrate species (Desbiez and 
Kluyber 2013). In northern Australia, deep nesting warrens created 
by Sand Goanna (Varanus gouldii) provide shelter for at least 28 ver-
tebrate species (Doody et al. 2021). Hence, the habitat created by 
burrow engineers can result in hotspots of animal activity through 
ecological facilitation.

Refuges are features that facilitate survival or persistence of spe-
cies during and following disturbance (Keppel et al. 2012; Reside et 
al. 2019). There is some evidence that burrow engineers can create 
refuges for other species: for instance, burrows of Southern Hairy-
nosed Wombat (Lasiorhinus latifrons) and Desert Tortoise (Gepherus 
agassizzi) are used by birds to escape extreme heat (Attwood 1982; 
Walde et al. 2009). The increased use of burrows by commensal spe-
cies during disturbance events is consistent with the stress-gradi-
ent hypothesis, which predicts that facilitative interactions between 
species are most important in harsh ecological conditions (Bertness 
and Callaway 1994; Lowney and Thomson 2021).

Fire is a global driver of environmental change (Pausas and 
Keeley 2021) and has shaped the evolution of species over millions 
of years (Pausas and Parr 2018; Nimmo et al. 2021). Retreating to 
“fire refuges”—features that allow for the survival, persistence, 
and reestablishment of populations during and following fire 
(Robinson et al. 2013)—is 1 strategy that animals deploy dur-
ing and after fire (Nimmo et al. 2019; Jolly et al. 2022). The occur-
rence of refuges created by ecosystem engineers has rarely been 
considered within this context (Dawson et al. 2019; Reside et al. 
2019), but could theoretically enhance the resistance of wild-
life to a range of disturbances, while resources provided by these 
engineers could hasten recovery. Knapp et al. (2018) provides 
some support for the importance of burrow engineers in fire-
prone landscapes, showing that vertebrate use of Gopher Tortoise  
(G. polyphemus) burrows increased >8-fold at sites that experienced 
prescribed burns compared to unburned sites. Given that the fre-
quency of large, severe wildfires is predicted to increase as a result 
of climatic change (Wu et al. 2021), fire refuges created by ecosys-
tem engineers could play a particularly critical role in the future.

The 2019–20 Australian Black Summer bushfires were a series of 
megafires and gigafires (fires >10,000 and 100,000 ha, respectively; 
Linley et al. 2022) that were unprecedented in their scale (Nolan 
et al. 2020) and severity (Collins et al. 2021). These fires burnt >10 
million ha of southeastern Australian forests (Wintle et al. 2020), 
including a record amount (1.8 million ha) burnt at high severity 
(Collins et al. 2021), impacting nearly 3 billion native vertebrate ani-
mals (van Eeden et al. 2020). During these bushfires, viral stories 
emerged on social media of wombats herding native wildlife into 
their burrows to protect them from fire. While these stories were 
ultimately dismissed (Nimmo 2020), an element of truth could still 
be gleaned from them.

Wombats (family Vombatidae) are the largest burrowing marsu-
pials on earth (Evans et al. 2006). There are 3 extant wombat species, 
all of which occur in Australia. The Common Wombat (Vombatus 
ursinus; Fig. 1), also known as a Bare-nosed Wombat, has the larg-
est distribution of the 3 species (Taylor 1993; Evans 2008; Baker 
and Gynther 2023), which coincides with several of the 2019–20 

bushfires (Fig. 2). Despite being listed as Least Concern by the IUCN 
(2008), the species has undergone substantial decline across its 
range since European colonization (Roger et al. 2007), with climate 
change predicted to cause further range contractions (Graham et 
al. 2019). Common Wombat are active in forests after fire (Lunney 
and O’Connell 1988), thus having an ability to maintain burrows 
in burnt habitat. Wombats excavate and use multiple burrows 
(Thornett et al. 2017), which consist of a large network of under-
ground tunnels (Swinbourne et al. 2016b). Common Wombat bur-
rows can be upwards of 15 m long, with multiple entrances—and 
can be deep, complex, and multichambered (Triggs 2009; Browne et 
al. 2021). Soil turnover from burrow construction can vary from 2.8 
to 9.8 t/ha (Triggs 2009) and the soil in mounds contain increased 
nitrogen, which supports higher herb cover (Guy and Kirkpatrick 
2021).

Wombat burrows are exploited by a range of species: a study 
showed that Common Wombat burrows were visited by 11 other 
species including possums, rodents, and birds (Old et al. 2018). 
Similarly, Thornett et al. (2017) recorded 11 vertebrate species that 
used burrows of Southern Hairy-nosed Wombat. The internal tem-
peratures of wombat burrows are typically cooler and more stable 
than aboveground temperatures (Finlayson et al. 2003; Evans 2008; 
Swinbourne et al. 2016b), which can allow them to act as thermal 
refuges during heatwaves (Attwood 1982). Fossorial South-eastern 
Slider (Lerista bougainvillii) have also been observed exploiting the 
soil mounds around burrows, suggesting that burrows might offer 
increased thermoregulatory opportunities (Hodgson and Ritchie 
2023). This prompts the question: could Common Wombat burrows 
also provide refuge to animals from the impacts of fire?

In this study, we monitored the activity (i.e., the number of detec-
tion events separated by >30 min) of a range of native vertebrates 
around Common Wombat burrows in habitats that burned at vary-
ing severity during the 2019–20 bushfires, and at nearby unburned 
sites. We hypothesized that: (i) if Common Wombat are ecological 
facilitators via their bioturbation, then animal activity will be higher 
around burrows compared to nearby sites without burrows—the 
affinity of species with burrows will differ depending on their shel-
ter and resource requirements, and hence community composition 
will differ between burrows and ecologically similar areas lacking 
burrows; and (ii) if Common Wombat burrows are acting as fire ref-
uges, then the negative impacts of fire on animal activity—which 
we expect to be widespread given the severity of the 2019–20 bush-
fires—will be reduced at burrows located in burned habitat, and 

Fig. 1.  An adult and juvenile Common Wombat (Vombatus ursinus).
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these buffering effects should be most apparent at sites that burned 
at high severity, consistent with the stress-gradient hypothesis.

Materials and methods.
Study area.
We conducted this study at Woomargama National Park (24,185 
ha) and Woomargama State Forest (7,120 ha), New South Wales, 
Australia. Geology consists predominantly of steeply sloping 
Silurian Koetong granite, with soils consisting of yellow to red 
podsolics (NSW National Parks and Wildlife Service 2009). The 
average annual rainfall is 886 mm, with the majority of rainfall 
occurring in winter and spring (Bureau of Meteorology 2023). The 
area consists of continuous eucalypt forest and woodland com-
munities. Dominant canopy species consists of a mix of Eucalyptus 
spp., primarily Broad-leaved Peppermint (E. dives), Narrow-leaved 
Peppermint (E. radiata), and Brittle Gum (E. mannifera; NSW National 
Parks and Wildlife Service 2009). Both mid and ground stories 
consist of a mix of shrubs and grasses (NSW National Parks and 
Wildlife Service 2009). The area has undergone historical land 
use changes including mining, forestry, and agricultural activities 
(NSW National Parks and Wildlife Service 2009). During the 2019–20 
bushfires, the Green Valley/Tunnel Road fire complex was part of a 
larger gigafire (Linley et al. 2022) in which 6 fires merged and burned 
632,315 ha. The fire burned ~18,119 ha of Woomargama National 
Park and Woomargama State Forest at mixed severities, occurred 
predominantly on the eastern side of the park, started by lightning 
strike on 29 December 2019, and was extinguished by 18 February 

2020. Fires in these environments can have long-lasting impacts on 
ecosystems (Bradstock 2008; Williams et al. 2008).

Site selection.
We used a paired design to assess the use of Common Wombat 
burrows in differing fire severity treatments, in comparison to 
nearby areas with the same fire severity but without a burrow. 
Common Wombat burrows were selected from ground searching 
the study area in conjunction with fire severity maps. Ground-
truthing revealed the extreme impact of the fires on vegetation 
throughout the study area, with many large trees killed and under-
story regrowth and canopy resprouting occurring postfire (Fig. 2). 
Using the Australian Google Earth Engine Burnt Area Map of the 
2019–20 bushfires (Aus GEEBAM; Department of Agriculture 2020) 
fire severity maps were used to classify the change in vegetation. 
Aus GEEBAM fire classes were derived from changes in a vegeta-
tion index following fire, in comparison to nearby ecologically sim-
ilar areas that escaped the fire (Department of Agriculture 2020). 
Aus GEEBAM fire classes are: unburnt, where little or no change 
in the vegetation index was observed; low and moderate severity, 
where moderate change to reference unburnt area was detected; 
high severity, where the vegetation was mostly scorched; and very 
high severity, where vegetation was consumed (Department of 
Agriculture 2020).

In total, 28 site pairs (i.e., 56 sites in total) were selected. Site 
pairs consisted of a Common Wombat burrow (Fig. 2) and a paired 
site approximately 50 m away in the same fire severity class and 
in similar habitat (i.e., vegetation type, topography), to act as an 

Fig. 2.  (A) The Australian distribution of the Common Wombat (Vombatus ursinus; dark gray; IUCN 2008) in relation to the areas burned in the 2019–20 
Black Summer bushfires (red; Department of Agriculture 2020), and the study location (black); (B) a Common Wombat burrow; (C) the early stages of 
postfire regrowth; and (D) landscape impacts of the 2019–20 Black Summer bushfires at Woomargama National Park, New South Wales, Australia (images 
in C and D courtesy of Kylie Durant).
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experimental control (Coggan et al. 2018). Fire severity classes 
were ground-truthed to ensure the classification from maps 
matched the burn severities on the ground and canopy layers. 
We reclassified the Aus GEEBAM fire severity classes listed above 
to include: unburnt areas outside of the fire scar; unburnt areas 
within the fire scar; low and moderate severities; and high sever-
ities that encompasses both high and very high burned areas, 
as differences between these 2 classes were not obvious on the 
ground. Seven sites were established within each of the fire sever-
ity classes. Preliminary analysis suggested few differences in ani-
mal activity in unburned areas outside of and within the fire scar, 
and so all unburned sites were classified simply as unburned. All 
sites were located within Eucalypt woodlands with shrubby or 
grassy understory. Vegetation at sites within the fire scar exhibited 
significant regrowth, manifesting at various stages depending on 
the fire severity at each location.

Animal activity.
We surveyed the activity of terrestrial mammals at each site using 
wildlife cameras (Reconyx HC600 Hyperfire, Reconyx Inc., Holmen, 
Wisconsin). Each of the 28 site pairs consisted of 2 cameras (56 
sites), 1 placed at a Common Wombat burrow and the other at the 
paired control site. To capture smaller mammals, cameras were fas-
tened to a stake at a 20° downward angle. At burrows, cameras were 
placed approximately 2 m from the burrow entrance, facing the 
entrance. Camera orientation was consistent between burrows and 
control sites, with the only difference being that control sites were 
oriented toward bare ground. Cameras operated day and night, 
recording 5 images per burst, with no time delay between bursts, 
and sensitivity set to high. Cameras were deployed 16 months after 
the 2019–20 bushfires and operated continuously between June 2021 
and April 2022, totaling 16,645 trap-days. Our study followed guide-
lines (Sikes et al. 2016) and all applicable international, national, 
and/or institutional guidelines for the use of animals. Research was 
conducted in accordance with the Charles Sturt University Animal 
Ethics Committee (permit number A21049) and permissions from 
relevant management authorities.

Image tagging and data extraction.
Images from 56 cameras were tagged and processed using Wildlife 
Insights (Ahumada et al. 2020). When present, animals were iden-
tified to species level, if species-level identification was not fea-
sible, identification was made to the highest possible taxonomic 
resolution (typically genus level). This was achieved using Wildlife 
Insights’ artificial intelligence, which automatically detects and 
identifies species in images (Ahumada et al. 2020), although every 
image and species identification was independently reviewed 
by wildlife experts. Behaviors evident in images were manually 
recorded where possible, including number of individuals and 
the occurrence of specific behaviors around burrows includ-
ing: bathing, referring to an animal using water in the burrow 
to clean themselves; drinking, referring to an animal consuming 
water from the burrow; entering or emerging, referring to an ani-
mal entering or exiting the burrow entirely; inspecting, referring 
to an animal investigating the burrow entrance but not entering 
the burrow completely; foraging, referring to animals feeding in 
or directly around the lip of the burrow; and geophagy, referring 
to animals consuming soil from the burrow. Classifying behaviors 
was not always possible due to the small size of some species—e.g., 
House Mouse (Mus musculus) and Agile Antechinus (Antechinus agi-
lis), making it difficult to assign a specific behavior to some images. 
We also recorded dates when burrows were filled with water to 
assess how often Common Wombat burrows provide a water 

source to other wildlife. We extracted the tagged image metadata, 
including site information, date, and time using camtrapRdelux 
package (https://github.com/carlopacioni/camtrapRdeluxe, an 
extension of camtrapR (Niedballa et al. 2016) and the exiftool add 
on (Harvey 2020). We treated all detections as independent events 
when more than 30 min separated detections of the same species 
(Cunningham et al. 2018).

Data analysis.
To test our hypothesis that animal activity will be higher around 
burrows, we fit Bayesian mixed-effects models using the package 
brms (Bürkner 2017), which fits Bayesian models in stan which 
compiles models to sample from posterior distributions (Stan 
Development Team 2022). We included site pairs as random effects 
and used 2,000 iterations and 4 chains, with a 2,000-iteration  
warm-up. We used default priors, which are weakly informative, 
to improve convergence and sampling efficiency, with minimal 
impact on estimations. Model parameters are regarded as show-
ing evidence of an effect when the 89% credible interval did not 
overlap zero (McElreath 2020). We used 89% credible intervals 
as they are commonly used in Bayesian statistics (Samaš et al. 
2021), and due to their relative stability compared to 95% cred-
ible intervals (Kruschke 2014). Our response variables were: the 
number of independent events for each species; species richness 
(i.e., count of all species detected at a site) of all species (total 
richness); native mammal species only; and native bird species 
only. Individual species were modeled if recorded by at least 10 
camera traps.

We modeled our response variables as a function of whether the 
site was a burrow or a control (“site type”). Control sites were used 
as the reference category. If the 89% credible intervals of the mixed 
models did not overlap zero, it was considered evidence that the 
response variable at burrows was substantially different from the 
control sites (McElreath 2020). To test for compositional differences 
between species assemblages at burrows and control sites, we used 
a permutational multivariate analysis of variance (PerMANOVA). 
We used the Bray–Curtis index to calculate dissimilarities based on 
a square root transformation of our activity data. PerMANOVA was 
fit using the adonis2 function from the vegan package (Oksanen et al. 
2013). We permuted dissimilarities 999 times to assess significance. 
Community composition was visualized using nonmetric multidi-
mensional scaling (nMDS: Legendre and Legendre 1998). To deter-
mine which species most influenced dissimilarities at burrows and 
control sites, we performed indicator species analysis using the mul-
tipatt function from the indicspecies package (De Cáceres et al. 2016).

Finally, to examine if associations were most pronounced in 
areas that experienced high-severity fires, we again used Bayesian 
models in brms (Bürkner 2017) to model response variables as a 
function of site type and fire severity class. We combined site type 
and fire severity to create a 6-level categorical variable (unburned 
burrow, unburned control, low–moderate burned burrow, low–
moderate burned control, high severity burrow, high severity 
control) and used unburned controls as the reference category. 
Because some categories had few detections for some species, we 
used weakly informative priors with a Student’s t-distribution to 
aid in model convergence. Specifying unburned controls as the 
reference allows both a comparison between burrows and con-
trol sites, which reveal whether burrows experience increased or 
decreased activity relative to controls—as well as a comparison 
between unburned and burned controls, which reveal the impacts 
of fire severity on each response variable. This allows the impact 
of burrows to be contextualized in terms of the background influ-
ence of fire.

https://github.com/carlopacioni/camtrapRdeluxe
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Results
Camera traps recorded 746,674 images containing 370,845 wildlife 
images. Images were compressed into 14,580 events that repre-
sented 15,723 individual animals. Fifty-six species were identified 
(47 native species, 9 introduced), consisting of 19 mammal, 33 
bird, and 4 reptile species. Common Wombat were present at all 
sampled burrows, which had an average burrow opening height 
of 19.18 cm (±2.77 SE) and width of 22.66 cm (±3.21 SE). Excluding 
Common Wombat, 48 species were identified at burrows and 43 
at control sites (Supplementary Data SD1). Species found only at 
burrows included Common Ringtail Possum (Pseudocheirus peregri-
nus), Grey Fantail (Rhipidura albiscapa), Spotted Pardalote (Pardalotus 
punctatus), and White-throated Treecreeper (Cormobates leuco-
phaea). Species only observed at control sites included Australian 
Raven (Corvus coronoides), Common Bronzewing (Phaps chalcoptera), 
and Eastern Rosella (Platycercus eximius). A total of 31 species were 
recorded interacting with burrows (Supplementary Data SD2), 
including several species inspecting (30 of 31 species), foraging 
(11/31), and entering and emerging (10/31) from burrows—while 
less common behaviors included drinking (4/31) and bathing (1/31) 
in flooded burrows, and geophagy (1/31; Supplementary Data SD2; 
Fig. 3). From 16,645 trap-days, images containing animals occurred 
over 8,384 trap-days, of which burrows contained pooled water for 
207 days. From 28 burrows, 19 filled with water at least once for an 
average total time of 10.89 days (±3.74 SE). From 207 days where 
burrows were filled with water, 109 days occurred in spring, 54 in 
winter, and 44 in summer.

Several species showed increased activity around burrows 
when compared to control sites (i.e., 89% CIs did not overlap 
zero; Fig. 4; Supplementary Data SD3), including several native 
species such as Bush Rat (Rattus fuscipes), Agile Antechinus, Lace 
Monitor (Varanus varius), Painted Button-quail (Turnix varius), Grey 
Shrike-thrush (Colluricincla harmonica), and introduced Black Rat 
(Rattus rattus; Fig. 4; Supplementary Data SD3). Several native 
species including Swamp Wallaby, Red-necked Wallaby, Eastern 
Grey Kangaroo, Australian Magpie (Gymnorhina tibicen), Satin 
Bowerbird (Ptilonorhynchus violaceus), Crimson Rosella (Platycercus 
elegans), White-winged Chough (Corcorax melanorhamphos), and 

introduced Feral Pig (Sus scrofa) were more active at control sites 
(Fig. 4; Supplementary Data SD3). The activity of all other spe-
cies did not differ substantially between burrows and control 
sites. Native mammal richness was greater at burrows than con-
trol sites (Fig. 4; Supplementary Data SD3), whereas total rich-
ness and bird richness did not substantially differ (i.e., 89% CIs 
overlapped zero). For mammals, there was a tendency for smaller 
species to be positively associated with burrows and for larger 
species to be negatively associated with burrows (Fig. 5). A linear 
regression comparing the effect size from Bayesian mixed-effects 
models to the natural logarithm of body mass revealed a strong, 
negative relationship for mammals (Coefficient ± 89% CI = −0.494 
[−0.638 to −0.350], t = −6.026, R2 = 0.784). This relationship was far 
weaker when considering birds and reptiles in addition to mam-
mals (Coefficient ± 89% CI = −0.295 [−0.502 to −0.089], t = −0.621, 
R2 = 0.052), suggesting that this size-dependent relationship with 
burrows was specific to mammals.

Species composition varied between burrow and control sites 
(PerMANOVA, F1,55 = 2.188, P = 0.003; Fig. 6). Indicator species analy-
sis identified several species associated with burrows: Bush Rat (stat 
= 0.849, P = 0.001); Agile Antechinus (stat = 0.773, P = 0.001); Lace 
Monitor (stat = 0.602, P = 0.003); White-throated Treecreeper (stat 
= 0.463, P = 0.023); and Yellow-footed Antechinus (Antechinus flavi-
pes; stat = 0.463, P = 0.026). Indicator species for control sites were 
the Red-necked Wallaby (stat = 0.799, P = 0.022) and Feral Pig (stat = 
0.639, P = 0.037; Fig. 6).

The association between Agile Antechinus and burrows was 
most apparent at burrows burned at high severity, remained 
evident at burrows burned at low–moderate severity, and was 
least evident (89% CIs overlapping zero) at unburned burrows 
(Fig. 7; Supplementary Data SD4). Bush Rat were more active 
at burrows burned at high severity, low–moderate severity, and 
unburned burrows. Painted Button-quail were more active around 
burrows that burned at high severity compared to unburned 
control sites (Fig. 7; Supplementary Data SD4). The association 
of Lace Monitor with burrows was only evident in unburned 
sites (Fig. 7; Supplementary Data SD4). Feral Pig, Spotted Quail-
thrush, Common Brushtail Possum, and Australian Magpie were 

Fig. 3.  Examples of animals and behaviors observed at Common Wombat burrows: (A) a Lace Monitor foraging in the burrow entrance; (B) a Short-beaked 
Echidna inspecting the lip of the burrow; (C) a Swamp Wallaby drinking from a burrow full of water; (D) a Red-necked Wallaby inspecting the burrow 
entrance; (E) a Grey Shrike-thrush foraging at the burrow entrance; and (F) a Pied Currawong drinking from a partially filled burrow.
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all less active around unburnt burrows (Fig. 7; Supplementary 
Data SD4). Native mammal richness was higher at burrows that 
were either burned at high severity or remained unburnt (Fig. 7; 
Supplementary Data SD4). Swamp Wallaby, Feral Pig, and feral 
Domestic Cat (Felis catus) were the only species for which activity 
varied depending on fire severity, all being more active in areas 
that burned at high severity during the 2019–20 bushfires (Fig. 7; 
Supplementary Data SD4).

Discussion
Ecological facilitation by Common Wombat increases the activity 
of numerous native species, alters community composition, and 
boosts native mammal richness. Body size determined whether 
mammals were positively or negatively associated with burrows, 
with smaller species being more active and larger species being 
less active around burrows. The association of several species with 
burrows persisted—and in some instances was strengthened—after 
severe wildfire, consistent with the stress-gradient hypothesis. Our 
results add to a growing literature underscoring the significance of 
burrowing engineers as ecological facilitators.

Wombat burrows affect animal community 
composition.
The presence of Common Wombat burrows alters the local envi-
ronment sufficiently to elicit clear changes in local animal com-
munities. Of particular interest is an apparent size dependency 
in species interactions with burrows, with smaller mammals 
being more active and larger mammals less active at burrows. The 
capacity of a species to enter Common Wombat burrows appears 
to be linked to the size of the species, with larger animals being 
excluded from utilizing the available shelter and foraging poten-
tial due to the size of the burrow openings. We detected numer-
ous examples of smaller species using Common Wombat burrows, 
including Bush Rat, Black Rat, Short-beaked Echidna, Grey Shrike-
thrush, White-throated Treecreeper, and Lace Monitor. Our survey 
method may have even underestimated the activity of some of 
these species, as camera traps are often less effective at captur-
ing smaller species of mammals, birds, and reptiles (Jumeau et al. 
2017). Other researchers have documented small mammals enter-
ing and exiting burrows: Triggs (2009:33) mentions antechinus 
and bush rats seen “scurrying away from burrow entrances,” that 
antechinus “emerge from small crevices in the walls of Bare-nosed 

Fig. 4.  Coefficients and credible intervals from Bayesian models comparing species activity in burrows versus control sites (controls specified as the 
reference category), and examples of species activity predicted from those models. In activity plots: colored dot = point estimate; thick bars = 66% CIs; and 
thin bars = 89% CIs.
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Wombat burrows,” and that goannas “have also been found in 
wombat burrows,” while McIlroy (1973) found Bush Rat in Common 
Wombat burrows. One of our authors (DRM) has observed ante-
chinus and bush rats escaping to Common Wombat burrows not 
far from our study region. Even relatively larger species, like the 
Swamp Wallaby and Red-necked Wallaby, were observed entering 
burrows, although these were rare events (relative to other behav-
iors). Common Wombat are large-bodied and stocky mammals 
with occasional displays of aggression, and they are known to 
compete with macropods for resources (Tamura et al. 2021). Thus, 
it is plausible that Common Wombat actively deter larger compet-
itors away from their burrows, or that macropods avoid burrows to 
reduce the risk of a negative encounter, as Common Wombat vig-
orously defend their territories against unwanted intruders (Triggs 
2009).

Aside from providing shelter, Common Wombat burrows could 
affect animal communities via changes in soils, vegetation, and 
topography around the burrow. Soil around Common Wombat 
burrows has greater nitrogen than surrounding soil due to the 

deposition of wombat feces, while vegetation in the vicinity of bur-
rows typically includes more bare ground and herbaceous plants, 
with less shrub cover (Guy and Kirkpatrick 2021). These variables 
could affect the foraging opportunities for small herbivores and car-
nivores alike. Common Wombat burrows may increase the activity 
of ground-dwelling insectivores and omnivores such as Bush Rat, 
Agile Antechinus, Grey Shrike-thrush, and Painted Button-quail, by 
providing increased foraging opportunities. While little is known of 
invertebrate communities present at Common Wombat burrows 
(and was not a specific subject of our research here), high diver-
sities of invertebrates have been recorded at the burrows of other 
species. For instance, Gopher Tortoise burrows support hundreds of 
arthropod species (Jackson and Milstrey 1989), while burrows and 
mounds from Gunnison’s Prairie Dog (Cynomys gunnisoni), Black-
tailed Prairie Dog (C. ludovicianus), and Banner-tailed Kangaroo Rat 
(Dipodomys spectabilis) increase arthropod abundance and richness 
compared to surrounding areas without mounds and burrows 
(Davidson and Lightfoot 2007). Additionally, native Australian pred-
ators including Western Quoll (Dasyurus geoffroii), Sand Goanna  

Fig. 5.  Effect size from Bayesian mixed-effects models of treatment (burrow vs. control) against the natural logarithm of body mass for mammals at 
Woomargama National Park: black line = fitted relationship from linear regression model; black dots = coefficients ± 89% credible intervals; effect sizes > 0 
indicate a positive association with burrows, and effect sizes < 0 indicate negative associations.
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(V. gouldii), and Mulga Snake (Pseudechis australis) use burrows from 
European Rabbit (Oryctolagus cuniculus) that concentrated prey spe-
cies (Dean et al. 2023). The increase in activity of small vertebrates 
around Common Wombat burrows may cascade through the sys-
tem, as these species attract and are exploited by larger native 
predators such as Lace Monitor. These large, generalist, ectother-
mic carnivores may also derive additional benefits from Common 
Wombat burrows, because burrows provide a thermal refuge, buff-
ering against extreme environmental conditions (Pike and Mitchell 
2013).

Finally, we observed several instances of Common Wombat bur-
rows filling with water including during summer, signaling that 
water provision may be another ecological role that they provide. 
Macropods including Eastern Grey Kangaroo, Red-necked Wallaby, 
and Swamp Wallaby were all captured drinking from burrows, and 
Pied Currawong were observed bathing. These observations sug-
gest that burrows could provide an important water resource to 
animals, although they may only provide critical services during 
periods of low water availability. For example, well-digging by feral 
equids in North American deserts increases water availability and, 
probably due to the scarcity of water in this system, vertebrate 
richness (Lundgren et al. 2021). While water was not scarce during 
our study period, or compared to other drier ecosystems, it does 
play a vital role in regulating and maintaining ecosystem services, 
especially in the drier months (Pepper et al. 2008). As such, water 
provision via Common Wombat burrows, especially during warmer 
periods, presents an interesting observation that warrants further 
investigation.

Wombat burrows as fire refuges.
We found that associations between species and burrows 
persisted, and often strengthened in fire-impacted habitat, 

particularly in areas that burned at high severity. Smaller-sized 
animals including Agile Antechinus, Bush Rat, and Painted Button-
quail all retained positive associations with burrows in areas that 
were subject to high-severity fire, and all 3 were most active at 
burrows subject to high-severity fire. By contrast, the association 
of Lace Monitor with burrows was only evident at unburned bur-
rows. These findings suggest that the association of species with 
Common Wombat burrows is highly context-dependent, and that 
fire plays a significant role in determining the nature of this rela-
tionship in Australian forests.

For small vertebrates that are vulnerable to predators, many 
flammable refuges such as logs are consumed by severe fires 
(Bassett et al. 2015). Wombat burrows—which survive fire and can 
persist for decades (Taggart and Temple-Smith 2008)—potentially 
provide important postfire shelter. Our study suggested that the 
2019–20 bushfires had relatively negligible impacts on the activity 
of species that were relatively similar between burnt and unburnt 
habitat. However, it did indicate that the impacts of fire might 
concentrate the activity of small vertebrates within the vicinity of 
burrows, providing a locus from which foraging and intraspecific 
interactions can occur in relative proximity to predictable shel-
ter and protection from predators. Disturbances in other regions 
likely shape associations between other ecosystem engineers and 
the co-occurring species. Allospecific use of Gopher Tortoise bur-
rows dramatically increases during and after a fire (Knapp et al. 
2018), and European Rabbit warrens support greater densities of 
Mediterranean lizards in unfavorable habitat (Gálvez Bravo et al. 
2009), further highlighting the context-dependent importance of 
burrows in disturbed landscapes.

Our results have important implications for conservation. The 
geographic range of Common Wombat has declined since European 
colonization of Australia (Buchan and Goldney 1998; Triggs 2009; 

Fig. 6.  The difference in species composition at burrows and control sites in Woomargama National Park. Ordinations show nMDS plots of square root 
transformed activity indices: (A) sites (points) colored by treatment (burrow vs. control)—distances between sites indicate community dissimilarity, and 
shaded areas are ellipses based on a multivariate t-distribution; and (B) the location of species in ordination space with indicator species highlighted in 
bold.
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Baker and Gynther 2023), and is predicted to substantially contract 
from climate change (Graham et al. 2019). The 2 other species of 
wombat are vulnerable to extinction (Swinbourne et al. 2016a), and 
numerous other burrowing Australian marsupials have been driven 
to extinction since European colonization (Woinarski et al. 2019). 
Throughout the forests of eastern Australia, Common Wombat are 
the only extant species of native mammal capable of excavating 
wide, deep, and elaborate burrows, and our research suggests that 
they play a critical role for a host of other species. The importance of 
ecosystem engineers for providing critical shelter for other species 
highlights the often-overlooked risk of co-extinctions due to the loss 
of burrowers. For example, endangered pygmy Blue-tongued Skink 
(Tiliqua adelaidensis)—presumed extinct for 33 years (Armstrong and 
Reid 1992; Armstrong et al. 1993)—are entirely reliant on burrows 

constructed by lycosid and mygalomorph spiders (Hutchinson et 
al. 1994). Changed land use has caused declines in these ecosystem 
engineering spiders and the near extinction of the lizards (Souter et 
al. 2007). The value of burrowers as providers of shelter and refuge 
likely increases after disturbance across a range of ecosystems. The 
occurrence of larger and more severe wildfires around the world has 
placed a premium on understanding how animals survive, persist, 
and recover following extreme wildfire events. Our research has 
revealed that Common Wombat burrows play a valuable and under-
appreciated role in the fire-prone forests of Australia.

Supplementary data
Supplementary data are available at Journal of Mammalogy online.

Fig. 7.  Coefficients and credible intervals from Bayesian models comparing species activity in burrows versus control sites in sites that vary in fire severity 
(controls specified as the reference category), and examples of species activity predicted from those models. In activity plots: colored dot = point estimate; 
thick bars = 66% CIs; and thin bars = 89% CIs.
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Supplementary Data SD1.—Species which were identified at 
burrows and controls.

Supplementary Data SD2.—Number of images per behavior 
observed from species interacting with wombat burrows.

Supplementary Data SD3.—Results of coefficients, with 89% 
confidence intervals, from Bayesian models comparing species 
activity in burrows versus controls.

Supplementary Data SD4.—Results of coefficients, with 89% 
confidence intervals, from Bayesian models comparing species 
activity in burrows versus controls in sites that vary in fire severity.
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