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Pre-Bötzinger complex (PBC) is a necessary condition for the generation of respiratory rhythm. Due to the existence of synaptic
gaps, delay plays a key role in the synchronous operation of coupled neurons. In this study, the relationship between syn-
chronization and correlation degree is established for the first time by using ISI bifurcation and correlation coefficient, and the
relationship between synchronization and correlation degree is discussed under the conditions of no delay, symmetric delay, and
asymmetric delay.,e results show that the phase synchronization of two coupling PBCs is closely related to the weak correlation,
that is, the weak phase synchronization may occur under the condition of incomplete synchronization. Moreover, the time delay
and coupling strength are controlled in the modified PBC network model, which not only reveals the law of PBC firing transition
but also reveals the complex synchronization behavior in the coupled chaotic neurons. Especially, when the two coupled neurons
are nonidentical, the complete synchronization will disappear. ,ese results fully reveal the dynamic behavior of the PBC neural
system, which is helpful to explore the signal transmission and coding of PBC neurons and provide theoretical value for further
understanding respiratory rhythm.

1. Introduction

Synchronous in the neuronal network, a complex pop-
ulation-firing pattern, is believed to play a critical role in
many brain functions and many fundamental biological
functions. For example, it has been implicated in sensory
processing [1], the generation of sleep rhythms [2], the
generation of respiratory rhythms [3, 4], Parkinsonian
tremor [5], epileptic seizures [6–8], and motor activity [9].
Synchronous arise through interactions between three
network components. ,ese are the intrinsic properties of
neurons within the network, the synaptic properties of
connections between neurons, and the topology of network
connectivity. Neurons with intrinsic properties can be de-
scribed by a large number of mathematical models. One kind
of the well-known and biologically plausible models are the
Hodgkin–Huxley equations and their simplified versions,
which are widely used to analyze the synchronous in the

neuronal network [10–12]. When a large number of con-
ducted neuron models are considered, the number of
coupled differential equations can be often a problem for
computer simulations. ,erefore, some models that are
simpler but keep some of the dynamical features are con-
sidered, such as a discrete-time two-dimensional map
proposed by Rulkov, and the integrate-and-fire neural
models or hybrid neuron models [13, 14]. Protachevicz et al.
investigated how the excitatory and inhibitory connectivities
from one brain area to another influence the phase angle and
neuronal synchronization, in which the neuron dynamics is
given by the adaptive exponential integrate-and-fire model
[15]. Borges et al. also used this model to study how spiking
or bursting synchronous behavior appears as a function of
the coupling strength and the probability of connections
[16]. Reis et al. investigated the synchronization properties
of a neuronal synchronization model inspired by the con-
nection architecture of the human cerebral cortex using the
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Rulkov two-dimensional discrete-time map [17]. Recently,
functional neuron models were used to connect and couple
neural circuits to form a reliable neural network, which
could be applied to predict and regulate the collective be-
haviors of neural networks and neural circuits [18–20]. For
example, the synchronization approach between thermo-
sensitive neuron and light-dependent neuron are helpful to
detect the changes in environment and heat source exactly
[21]. And two piezoelectric sensing neurons (PSNs) were
driven by the same external voice for detecting possible
synchronization approach without any synapse coupling,
which found that two identical PSNs driven by the same
periodical stimuli (external forces) could reach synchronous
bursting, spiking, and periodical firings, and the synchro-
nization stability was dependent on the external forcing
applied on the two PSNs in case of chaotic firing [22]. Except
for functional neuron models, field coupling was also
considered in the neural circuits recently. Yin et al. used
Josephson junction to build a coupling channel for con-
necting two FitzHugh–Nagumo neural circuits; the hybrid
synapse could estimate the effect of the external magnetic
field by generating additive phase error between the junction
[23]. Yao et al. coupled two Chua circuits via an induction
coil coupling, which could benefit the realization of syn-
chronization between two chaotic Chua systems [24].

In the early nineteenth century, a focus of what we now
call neuroscience was to discover the noeud vital, that is, the
site where the rhythm of breathing originates; 200 years
later, the pre-Bötzinger complex (PBC) in the medulla was
believed to be the kernel for breathing [25]. Network syn-
chronized activity in the PBC in the mammalian respiratory
brainstem controls the inspiratory phase of the respiratory
rhythm [26]. To explore the primary kernel for respiratory
rhythm in the PBC, Butera et al. presented two minimal
models of the PBC and investigated the control and syn-
chronization of coupled neurons [27, 28]. Toporikova and
Butera presented a two-compartment mathematical model
(TB model) of isolated neurons with two independent
bursting mechanisms [29]. Park and Rubin modified the TB
model and proposed a single-compartment model (still
known as the TB model) [30]. In order to analyze the
synchronized activity in a coupled network, we simplify the
TB model by considering a parameterized path in a plane,
which is of the form of an ellipse with the principal axis along
the intracellular calcium concentration axis and the fraction
of IP3 (inositol triphosphate) channels axis, to obtain a
modified TB model.

A subset of cells within the PBC are able to engage in
rhythmic bursting when parameters are adjusted appro-
priately [31]. Using the methods of dynamical theory, the
complex bursting dynamics and their transitionmechanisms
in the PBC neuron model have been studied widely [32–36].
Recently, Wang et al. considered a model of an isolated
embryonic PBC neuron featuring two distinct bursting
mechanisms and uncovered mechanisms underlying several
different types of intrinsic bursting dynamics observed ex-
perimentally including several forms of plateau bursts,
bursts involving depolarization block, and various combi-
nations of these patterns [37]. Lü et al. found mixed bursting

(MB) could also be driven by the sole action of intracellular
calcium oscillations originating from the dendrite based on
Park and Rubin’s model for a single PBC neuron, which MB
was called the dendritic mixed bursting (DMB) [38].

A single neuron exhibits complex nonlinear dynamics
behavior, while a group of neurons can show more com-
plicated patterns. In order to understand the dynamics of the
neural network, the effects of various forms of coupling
connection [39–41] and the time delay [42, 43] are also
researched extensively. Synchronization of inspiratory
neurons in PBC has an important effect on respiratory
rhythm [44]. Gaiteri and Rubin investigated how the dy-
namics of individual neurons (quiescent/bursting/tonic) and
the betweenness centrality of neurons’ positions within the
network connectivity graph interact to govern network burst
synchrony, by simulating heterogeneous networks of PBC
neurons [45]. Ashhad and Feldman showed that the in-
spiratory rhythm emerges as the network reorganizes from
random tonic activity toward periodic short-term syn-
chronization [46]. Duan et al. studied the bursting dynamics
of the two-coupled PBC complex neurons and explored the
possible forms of dynamics that the model network could
produce as well the transitions of in- and anti-phase
bursting, respectively [47]. ,ey also observed a new type of
mixed burst similar to a depolarization block bursting (DB-
bursting) in the model of PBC neurons and studied the types
of mixed burst and their transition mechanisms by using the
multi-time-scale dynamics and one- and two-parameter
bifurcation analysis, as well as investigated the effects of
persistent sodium conductance on the anti-phase syn-
chronization pattern in coupled PBC neurons [48]. In this
paper, using a modified TB model, the relationship between
synchronization and correlation degree is established by
using ISI bifurcation and correlation coefficient based on the
analysis of synchronization and synchronous transition.

,e structure of this paper is as follows. Section 2 first
introduces the modified single atrioventricular neuron
model under the action of stimulation current, and then the
firing interval of this neuron model is determined by using
the interspike interval (ISI) bifurcation and phase plane
analysis, and the chaos phenomenon in this interval is
judged by combining the maximum Lyapunov exponent. At
the same time, it is also suspected that the addition period of
ISI sequence is related to special bifurcation, which proves
that the transition from period 2 to period 3 corresponds to
Hopf bifurcation. In Section 3, coupling PBC neural network
is considered, and synchronization transition caused by
stimulus current, coupling strength, and delay parameters is
discussed in three cases: identical and no delay coupling,
symmetric time-delay coupling, and asymmetric time-delay
coupling. A large number of two-parameter coloring graphs
are calculated, which more vividly summarizes the change
rule of the synchronization process and proves the con-
tinuous dependence of delay equation on coupling strength
under weak time delay. In Section 4, the most complex
asymmetric nonidentical coupling is considered. In this case,
it is difficult for two coupled neurons to achieve complete
synchronization. ,is section mainly analyzes the weak
phase synchronization and calculates the similarity function
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of the membrane potential of two coupled neurons by
software simulation (see Appendix for simulation envi-
ronment). Finally, in Section 5, the relevant conclusions of
this paper are summarized.

2. Single Compartment PBC Neuron Model

In 2011, Toporikova and Butera [29] established a two-
compartment PBC neuronmodel based on experiments, and
then Park and Rubin [30] modified the model to obtain a
single-compartment PBC model (still known as the TB
model). In this paper, an improved TB model is adopted,
which is composed of two parts: the somatic subsystem and
the calcium subsystem. ,e somatic subsystem is affected by
calcium-activated nonspecific cationic (CAN) current, while
the calcium subsystem is independent of the former. In this
paper, we consider a parameterized path in the plane
([Ca], l), which is of the form of an ellipse with the principal
axis along the [Ca] axis and l axis (see also [49] for similar
ideas). ,e variation along the ellipse can also be regarded as
the solution of the equation, as follows:

Cm
_V � − INa − INaP − ICAN − IK − IL − Iexc, (1)

_n �
n∞(V) − n( 􏼁

τn(V)
, (2)

_h �
h∞(V) − h( 􏼁

τh(V)
, (3)

[Ca]
.

� − ε · d · l − lc( 􏼁, (4)

_l � ε ·
1
d

· [Ca] − [Ca]c( 􏼁, (5)

where [Ca] is the intracellular calcium concentration, l is the
fraction of IP3(inositol triphosphate) channels in the en-
doplasmic reticulum membrane that have not been inacti-
vated, [Ca]c and lc define the center of the ellipse, d is its
aspect ratio, and ε is the speed with which the ellipse is
traced. See Appendix for the other expression and parameter
description of the function in the formula.

,e stimulation current Iexc is an important parameter
that causes PBC neurons to produce complex firing be-
havior. Figure 1 is the ISI bifurcation diagram of Iexc. With

the increase of parameters, the number of peaks in the
cluster gradually increases, and the ISI sequence of neurons
changes from period 1 to period 2 and then increases one by
one. However, when the stimulation current increases to
11.5, the ISI sequence disappears, which means that neurons
enter a resting state. As shown in Figure 2(a), Iexc � 8.5, the
time history diagram shows the period 3 bursting, and the
phase diagram corresponding to the plane (h, V) is shown in
Figure 2(b).

It is worth noting that the threshold value of period-
adding bifurcation may correspond to a special bifurcation
type, and the relationship between them is discussed from
the perspective of bifurcation. ,e bifurcation diagram of
the system with respect to parameter Iexc is shown in Fig-
ure 3. ,e solid line is the bifurcation curve of the equi-
librium point, and its trend is classical cubic, in which red
and black represent stable and unstable equilibrium points,
respectively. ,e lower branch of the curve consists of a
stable node and an unstable saddle point, which changes
through Hopf bifurcation point (HB2); then turns to the
middle branch via first fold bifurcation (LF), which is an
unstable equilibrium point; and finally turns to the upper
branch of the equilibrium point curve through the second
fold bifurcation (RF), which is basically the same as the lower
branch. With the decrease of parameters, it changes from
unstable to stable, and the limit cycle bifurcation occurs at
HB1, in which green and blue represent stable and unstable
periodic orbits, respectively, and the limit cycle changes
from unstable to stable through saddle node on the invariant
cycle (SNIC) and finally disappears into the equilibrium
bifurcation curve, and the end point is homoclinic bifur-
cation (HC). According to this idea, the limit cycle bifur-
cation can also be extended in HB2(Iexc � 8.073), and the
enlarged figure is shown in the upper right corner. Although
the structure type is basically the same as that at HB1, it is a
small change, and there are pitchfork bifurcation (BP, Iexc �

8.0805) and period doubling bifurcation
(PD, Iexc � 8.08193), which is similar to the period in
Figure 1. It can be judged that the change of neuron peak has
a great relationship with the type of bifurcation point, es-
pecially HB2. Now calculate the first Lyapunov coefficient at
this point to judge the direction of Hopf bifurcation as
follows:

A �

zf1

zV

zf1

zn

zf1

zh

zf2

zV

zf2

zn

zf2

zh

zf3

zV

zf3
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|x0
�

0.00010974 − 0.00283353 1.18619

0.000718508 − 0.869859 0
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(L1), (6)
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Figure 1: ISI bifurcation diagram of single neuron with parameter Iexc.
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Figure 2: (a) Time history diagram of membrane potential when Iexc � 8.5. (b) ,e phase diagram corresponding to the plane (h, V).

-500 0 500
Iexc (mA)

-70

-60

-50

-40

-30

-20

-10

0

10

20

V
 (m

V
)

8.075 8.08 8.085
Iexc (mA)

-55

-50

-45

-40

Figure 3: Bifurcation diagram of a single PBC neuron with respect to parameter Iexc. ,e upper right corner shows the local enlarged view.
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B(x, y) �

0.0135x1y1 − 0.0016x1y2 − 0.0016x2y1 + 0.1619x1y3 + 0.1619x3y1 − 0.0023x2y2

0.1080x2y2 + 0.1080x1y1

0.00005 · 0.3918x3y1 + 0.3918x1y3( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠(L2), (7)

C(x, y) �

x1 0.0012y1z1 − 0.0009y1z2 − 0.0009y2z1 + 0.0184y1z3 + 0.0184y3z1 − 0.0001y2z2( 􏼁

+x2 − 0.0009y1z1 − 0.0001y1z2 − 0.0001y2z2 − 1.4077y2z2( 􏼁 + x3 0.0184y1z1( 􏼁

x1 − 0.0136y1z2 − 0.0136y2z1( 􏼁 + x2 − 0.0136y1z1( 􏼁

l1x − 0.0047y1z1 − 0.1074y1z3 − 0.1074y3z1( 􏼁 + 0.00005x3 − 0.1074y1z1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(L3). (8)

,e equilibrium point of the original system at HB2 is
xHB � (− 51.8239, 0.003315, 0.6824, 0.1, 0.9), but because the
calcium subsystem is independent, we only need to fix [Ca]

at the equilibrium ([Ca] � 0.1) and discuss the somatic
subsystem. ,e Jacobian matrix at the point is (6), and the
expression of function F � (f1, f2, f3)

T is shown in Ap-
pendix. ,e matrix has a pair of conjugate complex roots
λ1,2 � ±ωi,ω � 0.0023475; the other eigenvalue is
λ � − 0.869856; and the eigenvector corresponding to the
positive imaginary root is

q � (1, 0.000826 − 2.2291e − 6i, − 0.000090541 + 0.001979i)
T
.

(9)

Take another vector p satisfying ATp � − ωip and
〈p, q〉 � 1 and get

p � (0.000090542 − 0.001979i, − 3.1233e − 7 + 6.4457e − 6i, 1)
T

.

(10)

Consider system _x � Ax + F(x), x ∈ Rn. A is the Jaco-
bian matrix at the equilibrium point, which can be written as
follows:

F(x) �
1
2

B(x, x) +
1
6

C(x, x, x) + O ‖x‖
4

􏼐 􏼑, (11)

where B(x, y) and C(x, y, z) are multiple-linear functions
with component form, and the expression is

Bi(x, y) � 􏽘
3

j,k�1

z2Fi(ξ)

zξjzξk

|ξ�0xjyk, i � 1, 2, 3,

Ci(x, y, z) � 􏽘
n

j,k,l�1

z3Fi(ξ)

zξjzξkzξl

|ξ�0xjykzl, i � 1, 2, 3,

(12)

where ξ � (ξ1, ξ2, ξ3) is the equilibrium of the system, which
can be obtained from equations (7) and (8).

It can be calculated accordingly:

g20 � 〈p, B(q, q)〉 � 3.4149e − 08 + 2.6785e − 05i,

g11 � 〈p, B(q, q)〉 � 1.4659e − 05 + 3.2040e − 04i,

g21 � 〈p, C(q, q, q)〉 � − 0.0047.

(13)

,e first Lyapunov coefficient is

l1(0) �
1

2ω2 Re ig20g11 + ωg21( 􏼁 � − 1.0025. (14)

,erefore, the direction of Hopf bifurcation is super-
critical. ,e detailed derivation of the first Lyapunov co-
efficient can be referred to reference [50].

3. Chaotic Coupled PBC Model

,e dynamic behavior of two electrically coupled (linearly
coupled) PBC neurons consists of eight differential equa-
tions including Eqs. (4) and (5) and the following equations:

CmVi

.

� − INai
− INaPi

− ICANi
− IKi

− ILi
− Iexci

− Ici
,

(15)

ni

.
�

n∞ Vi( 􏼁 − ni( 􏼁

τn Vi( 􏼁
, (16)

hi

.

�
h∞ Vi( 􏼁 − hi( 􏼁

τh Vi( 􏼁
, (17)

where i � 1, 2 stands for neurons 1 and 2. Because the two
subsystems have unidirectional influence, they act on the
same calcium subsystem (4, 5) when coupling two neurons.
,is section mainly studies the synchronization behavior of
two identically coupled chaotic PBC neurons. By calculating
the ISI bifurcation, correlation coefficient, and maximum
synchronization difference of the two coupled neurons, it
shows the rich synchronization transition modes of PBC
neurons. Fixed Iexc1 � Iexc2 � 8.5, the correlation coefficient
R and the maximum synchronization difference max (e) are
defined as follows:

R �
􏽐

N
k�1 V

k
1 − V1􏼐 􏼑 V

k
2 − V2􏼐 􏼑

�����������������������������

􏽐
N
k�1 V

k
1 − V1􏼐 􏼑

2
· 􏽐

N
k�1 V

k
2 − V2􏼐 􏼑

2
􏽱 , (18)

max(e) � V1 − V2
����

����∞ � max
1≤i≤N

V1 − V2( 􏼁, (19)

where N is the total number of samples, Vi is the membrane
potential of the neuron i, Vi is the corresponding average
value, and ‖ · ‖∞ is the infinite norm.

3.1. Complete and Incomplete Synchronization. In this sec-
tion, the synchronous transition caused by coupling strength
is mainly analyzed when there is no delay coupling, as shown
in equation (15).

Here, gc is the coupling strength. When two neurons
start to couple, a single neuron will also show different firing
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patterns, as shown in Figure 4, which shows the relationship
between the ISI of the first neuron and the coupling strength
gc. When gc ∈ (− 0.5, − 0.3), neuron 1 will always period-3
bursting, which is the same as the action potential of neurons
in Figure 2. With the increase of coupling strength, the size
of the attractor of coupled neurons tends to increase. In this
case, the coupling strength of the chaotic system destroys the
attractor with three cycles in a single neuron, resulting in
more complex attractors. When the two neurons are posi-
tively coupled, this situation becomes more obvious, and the
peak value in the corresponding bursting becomes more
irregular.

In addition, the ISI bifurcation diagram has obvious high
and low parts. ,e higher ISI sequence corresponds to the
resting state, and it will gradually decrease with the increase
of coupling strength.

,e coupling strength is not only an important factor
affecting the firing patterns of neurons but also a key pa-
rameter affecting the synchronous transition of neural
networks. It can be observed from Figures 5(a) and 5(b) that
when the coupling strength is between (− 0.5, − 0.3), the
correlation coefficient of membrane potential between the
two neurons is always 1, and the maximum synchronization
difference is always 0, which means that the two coupled
neurons are completely synchronized, but with the increase
of the coupling strength, they start to become incompletely
synchronized. Complete synchronization and incomplete
synchronization are two extreme cases, which can be directly
judged by a correlation coefficient, while there are other
types of synchronization under incomplete synchronization.
As shown in Figure 6(a), when gc � − 0.5, the phase diagram
of the coupled system on the (V1, V2) plane coincides with
the 45-degree bisector, which again indicates that the
coupled neurons are in-phase synchronous state, that is,
complete synchronization. With the increase of coupling
strength, the degree of synchronization gradually weakens
(the correlation coefficient drops sharply in Figure 5(a)). In
Figure 6(b), when gc � − 0.24, the action potentials of the
two coupled neurons are almost identical, but in the phase
diagram on the (V1, V2) plane, a small disturbance around
the 45-degree bisector can be clearly observed, which in-
dicates that the firing sequences of the two neurons are
almost coincident but also completely overlapped, so it is
called almost in-phase synchronous state.

In addition, in Figure 5(b), the maximum value of
synchronization difference jumps rapidly with the increase
of coupling strength to gc � − 0.3, which also indicates that
complete synchronization is lost and remains basically
unchanged in a certain range. When the positive coupling is
achieved, the maximum synchronization difference tends to
increase monotonously. If the synchronization difference is
nonzero, it only means that the two neurons are not fully
synchronized, and it is not certain that the coupled neurons
are out of synchronization, such as phase synchronization,
lag synchronization, and chaotic synchronization, which
may occur. As shown in Figure 7(a), the periodic bursting of
two coupled neurons occur at the same time, and the
neurons generate irregular electricity, and the corresponding
phase diagram is in an irregular state, and there is no fixed

phase between the two firing sequences, indicating that the
coupled neurons are in an asynchronous state (Figure 7(c)).

When gc � 0.4, the phase diagram is symmetrical about
the 45-degree bisector, and the coupled neurons are out-of-
phase synchronization. Both neurons produce almost the
same bursting, but the oscillation time of action potential is
inconsistent, which is one of the neuron action potentials,
another in the resting state, and the time history diagram of
poor synchronization also shows periodic phenomenon
(Figure 7(f)). In the respiratory system, when the expiratory
neurons produce exhalation, the inspiratory neurons are
usually resting, and when the inspiratory neurons operate,
the expiratory neurons are also in the resting state. In the
respiratory system, when the expiratory neurons produce
exhalation, the inspiratory neurons are usually resting, and
when the inspiratory neurons operate, the expiratory neu-
rons are also in the resting state. ,is phenomenon has also
been found in other biological behaviors, such as the walking
of limb animals, the formation of a central pattern generator
(CPG), and the alternating arm swinging behavior of
runners.

3.2. .e Continuous Dependence on the Coupling Strength
under Weak Delay. In the real biological system, because
the information transmission is carried out at a limited
speed, the time delay is inevitable in the process of infor-
mation transmission, which makes the dynamic system
exhibit rich dynamic characteristics, such as phase locking,
synchronization, and multi-stability, which shows that the
time delay is of great significance in information processing
based on neural movement.

In equation (15), Ici
satisfies Ici

� gc · (Vτ
j − Vi), where τ

is the time delay, and i, j ∈ 1, 2{ }, and i≠ j.
,is section mainly discusses the synchronization be-

havior caused by time delay. According to the relationship
between two coupled neurons without time delay in the case
of identical coupling, the synchronization effect of time
delay on the coupled system is considered when the coupling
strength gc � − 0.5 and gc � 0.4, respectively. As before, the
infinite norm of correlation coefficient and synchronization

0

500

1000

1500

2000

2500

3000

3500

4000

4500

IS
I

0 0.5-0.5
gc

Figure 4: ISI bifurcation diagram of coupling strength gc.
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difference is still used to judge the synchronization between
coupled neurons.

When gc � − 0.5, according to definitions (18) and (19),
the relationship between the correlation coefficient and the
maximum synchronization difference with time delay is
shown in Figure 8. When the time delay is 0, it is the sit-
uation discussed above. ,e two coupled neurons are
completely synchronized and remain in a complete syn-
chronization state with the increase of the small range of
time delay. When the delay increases to 10, the maximum
synchronization difference is not 0 and basically remains
unchanged, and the corresponding correlation coefficient is
also very small. When the correlation coefficient is less than
0.3, it can basically be considered that there is no correlation
between the two statistics, which can also be used to explain

that the two coupled neurons are not completely synchro-
nized at τ < 10. Combined with Figure 8(c), the amplitudes
of the two neurons in this range are also inconsistent, thus
judging that the two neurons are asynchronous. However,
when the time delay is large, the correlation coefficient is
close to 1, and the corresponding maximum synchroniza-
tion difference fluctuates in a low amplitude state, which
means that the two neurons transform between complete
synchronization and approximate synchronization and are
infinitely close to complete synchronization. When the
τ ∈ (10, 14), the fluctuation of correlation coefficient in-
creases and the corresponding maximum synchronization
difference gradually decreases, indicating that the asyn-
chronous state disappears and the coupled neurons reach the
transitional stage of synchronization.
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Figure 5: (a) ,e variation between the correlation coefficient and coupling strength gc of two coupled neurons. (b) Change diagram
between maximum synchronization difference and coupling strength gc.
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In order to better observe the effect of the time delay
on the synchronization, the release sequences of two
neurons are obtained when τ1 � 5, as shown in
Figure 9(a). ,e release sequences of two neurons is
consistent basically, and resting and active stage of
bursting synchronization is achieved. However, through
the difference of synchronization in Figure 9(c), it is not
difficult to find that in the firing sequence of membrane
potential, the firing time of two coupling neurons is
different, which indicates that the two neurons are
bursting synchronization with unrelated peaks, and the
situations in Figures 9(b) and 9(c) are completely con-
sistent, indicating that two coupling neurons remain
chaotic when the delay is increased. Figure 9(d) is the
phase diagram of the system on the (V1, V2) plane when
τ � 17, which coincides with the 45 degree, which means
that the two neurons are completely synchronized.

When gc � 0.4, the ISI sequences of the two neurons are
as shown in Figure 10, which consists of two parts. ,e
higher sequence is the resting period, and the resting state
increases slightly with the change of time delay. ,e lower
sequence corresponds to the firing state of the action po-
tential, and the peak number in the bursting changes ob-
viously in the middle lag. On the whole, the ISI sequences of
the two neurons are deviated, indicating that the membrane
potential is not completely synchronized. Figure 10 shows
that the system will show chaos under time delay coupling,
which is also illustrated by the maximum Lyapunov expo-
nent in Figure 11, but the chaos at this time is completely
caused by time delay, instead of the transition from period to
chaos in Figure 4. In this complicated situation, the cor-
relation coefficient and the maximum potential difference
are still used to judge. As shown in Figure 12, the maximum
synchronization difference is kept around 65mV, and the

corresponding correlation coefficient is also small, and the
fluctuation decreases with the increase of τ. It will be shown
that although the two coupling neurons are not completely
synchronized in this case, they can achieve weak
synchronization.

When discussing identical coupling no delay, the syn-
chronization phenomenon caused by coupling strength gc

has been analyzed. When gc � − 0.5, the coupled neurons are
completely synchronized, which changes from no delay to
symmetric time delay. Whether there is a mutation or
continuous dependence on parameters needs further anal-
ysis. In Figure 8, it is found that in the case of weak delay
(τ ∈ (0, 0.02)), the coupling neurons have a high degree of
synchronization, which can be understood as the continuous
dependence of the equation on the parameters. ,e con-
tinuous dependence is mainly for ordinary differential
equations, but the time delay system is not fully sure. Now,
we analyze the dependence of the system on the coupling
strength under weak delay.

First, the coupled system is considered as follows:

_ui � f ui( 􏼁 + 􏽥C u
1
j − u

1
i􏼐 􏼑, ui ∈ R

n
, (20)

where 􏽥C(u1
j − u1

i ) is the feedback strength, i, j � 1, 2{ }, i≠ j,
􏽥C � (C, 0, 0, . . . , 0􏽼√√√√􏽻􏽺√√√√􏽽

n− 1
), and f is a nonlinear differentiable

function.,e commonmethod to study the synchronization
problem of the coupled system is to deal with the syn-
chronization error, which can be obtained from (20) by
making e � u2 − u1

e
·

� f u2( 􏼁 − f u1( 􏼁 − 2􏽥C u
1
2 − u

1
1􏼐 􏼑. (21)

,e system is linearized at e � 0; we have
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Figure 8: When gc � − 0.5: (a) correlation coefficient of membrane potential of coupled neurons with time delay, (b) a graph showing the
relationship between the maximum synchronization difference and the change of τ, and (c) the relationship between the amplitude of two
PBC neurons and τ.
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_e � (Df(u) − M)e, (22)

where M �

2C 0 · · · 0
0 0 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, if Df(u) is the Jacobian

matrix of f(u); it is assumed that there exists Lyapunov

function L(e), which satisfies (23). ,e coupling system (20)
is said to be synchronized.

∀e≠ 0⇒L(e)> 0,

dL

dt
< 0; if and only if L(e) � 0⇔ e � 0, (L4)

(23)

ui

·
� f ui( 􏼁 − C

Vi

0
0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ + C

Vj

0
0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ − τ f uj􏼐 􏼑 − C

ei

0
0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, i, j ∈ 1, 2{ }, i≠ j. (24)
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For the system used in this paper, τ1 � τ2 � τ ≠ 0, under
weak time delay, x(τ − t) Taylor expansion is obtained as
follows:

x(τ − t) � x(t) − τx(t)
·

+ O τ2􏼐 􏼑. (25)

Since τ is in a small range, the higher-order term in the
formula can be ignored and can be obtained equation (24).
Hence,

_e � u2
·

− u1
·

� (1 + τC) f u2( 􏼁 − f u1( 􏼁( 􏼁 − 2C(1 + τC)

e1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(26)

Linearize at e � 0 and get

_e � (1 + τC)(Df(u) − M)e, (27)

where _e � (1 + τC)(Df(u) − M)e. From the point of view
of dynamics, the stability of the system (20) depends only
on M, that is, C. On the other hand, the synchronization
dynamics of a system with weak time delay can be
transformed into the stability of the system (20), so the
synchronization in this small range can be determined by
the coupling strength.

,e correlation coefficient and the maximum synchro-
nization difference are observed in the two-parameter space
(τ, gc) (Figure 13). When gc > 0, the correlation coefficient is
low, and the maximum synchronization difference is too
large. At this time, for any time delay, the coupled system
will not achieve complete synchronization, which means
that the time when the two neurons’ membrane potential
firing sequence is always inconsistent in the case of positive
coupling, and it will not achieve bursting synchronization
with the change of τ, which is obvious in negative coupling.
It is mainly divided into two parts, τ < 10 and τ > 10. When
τ > 10, the correlation coefficient is on the high side, and the
transition from approximate synchronization to complete
synchronization is gradually realized with the influence of
coupling strength. When τ < 10, the correlation coefficient is
low, and the maximum synchronization difference is always
nonzero, which indicates that the two coupling neurons are
asynchronous. In the local neighborhood of time delay and
coupling strength, their similarity functions by defined (30)
are mostly 0 (Figure 13(c)), indicating that neurons are
completely synchronized. ,is phenomenon can also be
explained as the continuous dependence of the delay
equation on parameters, which is completely consistent with
the previous derivation.

3.3. .e Relationship between Phase Synchronization and
Weak Correlation under Asymmetric Time-Delay Coupling.
For different neurons, the speed of information transmission
is also different, so it is necessary to discuss the asymmetric
time-delay coupling system. ,e emergence of asymmetric
time delays makes the finite-dimensional system become an
infinite-dimensional system, thus inducing more complex
dynamic characteristics.

Ici
� gc · V

τi

j − Vi􏼐 􏼑, (28)

where τ1 ≠ τ2, i, j ∈ 1, 2{ }, and i≠ j.
,e correlation coefficient of two neurons coupled with

asymmetric time delays on the two-parameter plane (τ1, τ2)
is shown in Figure 14, and the correlation degree of the
diagonal part is obviously higher than that of other places,
which is caused by the complete synchronization caused by
the strong symmetric time delay discussed in the previous
section, which again conforms to the continuous depen-
dence of the time-delay equation on parameters mentioned
above, and this is applicable not only to weak time delay but
also to strong time delay. However, in the nondiagonal
region, the correlation coefficient is obviously low, which
means that the complete synchronization of the two coupled
neurons is lost from symmetric time delay to asymmetric
time-delay coupling. When the correlation coefficient R� 1,
it means that the coupling neurons are completely syn-
chronized. When the correlation coefficient is high but not
equal to 1, it indicates that the neurons may be from a certain
degree of approximate synchronization to complete syn-
chronization. When the correlation coefficient is high but
not equal to 1, it indicates that the neurons may be from a
certain degree of approximate synchronization to complete
synchronization. ,e former case of incomplete synchro-
nization is mainly judged by phase plane analysis, which has
obvious limitations and cannot explain the characteristics in
the general state.

A complete synchronization is a kind of synchronization
behavior achieved by two identical chaotic systems, but the
interacting chaotic systems usually are not identical in real
life, which makes it difficult for coupled chaotic systems to
achieve complete synchronization, but other synchroniza-
tions cannot be excluded. ,erefore, it is necessary to study
weak synchronization behavior, and phase synchronization
is one of them. In order to study phase synchronization, it is
necessary to define the phase of chaotic systems. At present,
there are many known methods, and the commonly used
method is an analytical signal approximation and Poincaré
mapping, there we use the Poincaré mapping definition
phase.

ϕ(t) � 2π
t − tn

tn+1 − tn

+ 2πn, tn ≤ t≤ tn+1, (29)

where tn is the time for the trajectory to cross the Poincaré
graph for the n time, if the phase difference
Δϕ � |ϕ1(t) − ϕ2(t)|< const, the two coupled neurons are
said to be in phase synchronization. ,is paper limits
const≤ 2π.

First, fixed gc � − 0.5, as shown in Figure 14, the cor-
relation coefficient in the nondiagonal region shows a
symmetrical decreasing trend, and the vertical line τ1 � 5 is
taken in the figure, and the phase difference about τ2 is as
shown in Figure 15, most of which lies above the baseline
(2π), mainly corresponding to the part where R< 0.1 in
Figure 14, which indicates that the coupled neurons are
asynchronous, and the diagram corresponding to the phase
plane is similar to that in Figures 7 and 9. Jumping near the
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Figure 13: Correlation coefficient and maximum synchronization difference of coupled neuron membrane potential in two-parameter
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baseline means that neurons transform between asynchro-
nous and phase synchronization. When the correlation
coefficient is greater than 0.2 (i.e., τ2 > 14), the two coupled
neurons are always in phase synchronization.

When τ1 � 10, the coupled neurons were still within a
certain range of asynchronous, but the scope was obviously
smaller than τ1 � 5, and then they are always in phase
synchronization. When τ1 increases to 17, this situation is
more prominent, and it is asynchronous in a small range of
time-delay changes, while the remaining ranges are all phase
synchronization. ,e Poincaré mapping is used to analyze
the period and frequency. Figure 16 shows the period and
frequency of different τ1, and red and blue correspond to cell
1 and cell 2, respectively. Obviously, the period and fre-
quency are inversely proportional. In Figure 16(a), when
τ2 > 14, the period and frequency of the two neurons are
almost coincident, which is consistent with the phase syn-
chronization obtained when τ1 � 5 in Figure 15, while when
τ2 < 14, this is the same. Although the change trend is the
same, the deviation is large, which means that the two
neurons are asynchronous.

When τ1 � 10, the period and frequency (Figure 16(b))
of the two coupled neurons are almost consistent with the
conclusion in Figure 14, and the coupled neurons produce
certain errors in some areas.,e figure shows that the period
and frequency do not coincide and then start to coincide
after a sharp decline, and the variation amplitude is obvi-
ously reduced, which corresponds to the phase synchroni-
zation when τ1 � 10 in Figure 14.

4. Lag Synchronization under
Nonidentical Coupling

In the previous section, the influence of coupling strength
and time delay on the model under identical coupling was

discussed. In this section, the synchronization phenomenon
of two coupled neurons under nonidentical coupling was
mainly discussed. For the coupled nonidentical chaotic
system, if the coupling strength is weak, the amplitudes of
the coupled neurons are irrelevant, and the chaotic system
will achieve phase-locking. With the increase of the coupling
strength, the amplitudes will start to build a relationship, and
there will be a lag synchronization phenomenon, that is, the
two states are almost the same, only the time difference
exists, and one system lags behind the other. At this time, the
lag synchronization can be observed through the dynamic
characteristics of the amplitudes. When the coupling
strength exceeds a certain critical value, the system states will
remain almost the same.

When the coupling strength exceeds a certain critical
value, the state of the system will keep almost the same, but
there will be a time delay τ, which makes x(t + τ) ≈ y(t). In
order to describe the lag synchronization, a similar function
is introduced as follows [51]:

S(τ) �

���������������

(x(t + τ) − y(t))
2

����������

x
2
(t) · y

2
(t)

􏽱

􏽶
􏽴

, (30)

where x, y represents the average value, and if S(τ) is
sufficiently small, it means that the two chaotic systems have
achieved lag synchronization with a lag time of τ. In which a
represents the average value, and if S(τ) is sufficiently small,
it means that the two chaotic systems have achieved lag
synchronization with a time delay τ.

,is sectionmainly studies the synchronous transition of
neurons under nonidentical and asymmetric time-delay
coupling. First, we consider the relationship between the
firing state of coupled neurons. At that time, Figure 17(a)
shows the relationship between ISI and coupling strength.
,e blue concentric points and red solid points in the figure
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Figure 15: ,e phase difference between the two coupled neurons and τ2 when different τ1.
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correspond to neurons 1 and 2, respectively. It can be ob-
served from the figure that under negative coupling strength,
the ISIs of two coupled neurons are almost the same, but
with the increase of coupling strength, they show great
differences, especially. In fact, under the condition of
nonidentical coupling, the amplitude of two neurons is
different, and it is also obvious in frequency. Figure 17(b)
shows the relationship between the similar function S(0) and
the coupling strength. It can be clearly seen that in the
positive coupling, S(0) monotonically increases, while in the

negative coupling, the value of S(0) is relatively small, that is,
the correlation degree of the membrane potential of two
neurons is relatively low, which indicates that the two
coupled neurons have achieved lag synchronization.

Second, the firing sequence of neurons with nonidentical
coupling is significantly different, which is much more
complex than that of a single neuron, which means that the
stimulation current is an important factor affecting the firing
pattern of neurons and also affects the synchronous be-
havior. As shown in Figures 17(a) and 17(b), the coloring
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Figure 16: ,e relationship between period and amplitude with τ2 when different τ1.
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diagram of S(0) in the parameter space (Iexc1, Iexc2) under
different coupling strengths is irregular in both cases; the
correlation degree of coupling strength gc � − 0.5 is higher
than that of gc � 0.4.,e results show that different stimulus
currents are easier to achieve lag synchronization under
negative coupling.

Finally, the synchronization effect of time delays on
coupled neurons is discussed, and the asymmetric time
delays are discussed from two aspects. On the one hand, the
similar function between time delays and coupling strength
gc is shown in Figure 18(c). ,e effect of time delays is
obviously greater than that of coupling strength, and S(0)
gradually increases with the increase of time delays, indi-
cating that a single time delay cannot effectively increase the
degree of synchronization, and the effect of negative cou-
pling is more obvious than that under positive coupling. On

the other hand, given the coupling strength gc � − 0.5, the
relationship between similarity function and asymmetric
time delays is shown in Figure 18(d), which means that the
lag increases at any time and the degree of synchronization is
gradually enhanced, which indicates that the time delays
effectively increases the lay synchronization of coupled
neurons.

5. Conclusion

In this paper, the synchronization of two linearly coupled
PBC neurons is analyzed. By calculating the ISI, correlation
coefficient, maximum synchronization difference, and
similarity function of the coupled chaotic system, it is found
that there is a complex synchronous transition behavior in
the coupled PBC network, including asynchronization, weak
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Figure 18: Similar functions on different two-parameter planes: (a) when gc � − 0.5, the similar functions on the plane (Iexc1, Iexc2);
(b) when gc � 0.4, the similar functions on the plane (Iexc1, Iexc2); (c) when τ1 � 0, the similar functions on the plane (gc, τ2); and (d) when
gc � − 0.5, the similar functions on the plane (τ1, τ2).
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synchronization, and complete synchronization. ,e degree
of synchronization between the two coupling neurons is
judged by the correlation coefficient. When the correlation
coefficient is 1, it can be seen that the coupling neurons are
completely synchronized.When the correlation coefficient is
not 1, it is incomplete synchronous.,is situation contains a
variety of possible weak synchronization and requires fur-
ther analysis.

Several common types of synchronization are discussed
based on the effect of time delay on coupled systems in this
study. First, the synchronization and transition caused by
coupling strength are discussed under the condition of no
delay coupling. It is found that when the coupling is
negative (the coupling symbol is determined by the di-
rection of the current), the two coupling neurons undergo
fully synchronous period-3 bursting, and then they get
transit to approximate synchronization. With the increase
of coupling strength, the coupled neurons realize the
transition from asynchronous to out-of-phase synchroni-
zation. ,en, symmetric time-delay coupling is discussed.
Numerical simulation shows that two coupled neurons are
still in complete synchronization with weak time delay. It is
proved that the continuous dependence of time-delay
equation on coupling strength with weak time delay
combined with theory. With the increase of time delay,
coupled neurons turn to an asynchronous state, and when
time delay increases to a certain extent, coupled neurons
begin to move repeatedly between complete synchroni-
zation and approximate synchronization (Figure 8). ,is
synchronous transition type is more complex than the weak
to the strong synchronous transition of chaotic coupled
Morris–Lecar neurons [11]. In addition, on the basis of
symmetric time delay, the effects of different coupling
strengths are discussed, and it is found that the synchro-
nous transition phenomenon caused by negative coupling
is obviously richer than that caused by positive coupling.

,en, the asymmetric time-delay coupling is discussed,
and the phase difference is defined by Poincaré mapping
[13]. ,e results show that the firing pattern and synchro-
nous transition of chaotic coupled PBC neurons are robust
to large time delays, and the robustness is more obvious with
the increase of time delays, that is, the asymmetric time
delays always show the phase synchronization of chaotic
firing in a large range. Robustness means that some per-
formance indexes of the system remain unchanged under
disturbance. At the beginning of the article, the influence of
external stimulus current on a single neuron has been
discussed and combined with bifurcation theory (Figure 3);
it is proved that the bifurcation curve of periodic orbit
generated from HB bifurcation is an important factor
causing the increase of the peaks number. Finally, based on
the previous related results, the nonidentical asymmetric
time-delays coupling is discussed, and the delayed syn-
chronization caused by stimulus current, time delays, and
coupling strength is analyzed with the help of similarity
function. ,e results show that the neurons are more likely

to achieve lay synchronization under negative coupling and
further show that the increase of time delays effectively
improves the degree of synchronization of coupled neurons.
In contrast, the role of stimulation current in synchroni-
zation is very complex, which needs further study. Generally
speaking, with the increase of coupling strength, the syn-
chronization transition process of two nonidentical coupled
chaotic systems is from phase synchronization to lag syn-
chronization and then to almost complete synchronization
[51]. Although there are differences in the transfer process in
this PBC coupling system, it also shows that the coupling
strength can cause a complex synchronization process.

Physiological experiments have shown that neuronal
synchronization is closely related to many clinical diseases
[5, 6]. ,erefore, it is necessary to discuss the synchronous
transition of neurons. ,is study shows that even if it is a
simple linear coupling, by controlling the coupling strength
and time delay, all kinds of synchronization can be achieved
effectively.

Appendix

,e ion current Ix in models (15–17) can be expressed as
follows:

INai
� gNa · m

3
∞ Vi( 􏼁 · 1 − ni( 􏼁 · Vi − VNa( 􏼁,

INaPi
� gNaP · p∞ Vi( 􏼁 · hi · Vi − VNa( 􏼁,

ICANi
� gCAN · f([Ca]) · Vi − VNa( 􏼁,

IKi
� gK · n

4
i Vi − VK( 􏼁,

ILi
� gL · Vi − VL( 􏼁,

(A.1)

where Cm is membrane capacitance, membrane potential,
and opening probability of Na+ channel and K+ channel,
which is an index of neurons.,e maximum conductance of
the ion channel is reversal potential, which indicates that
sodium, persistent sodium, and calcium activate nonspecific
cations, potassium, and leakage, respectively.

,e state function X∞ of gated variables is composed of
the sigma function

X∞ Vi( 􏼁 �
1

1 + exp Vi − VX( 􏼁/sX( 􏼁( 􏼁
, X ∈ m, p, n, h􏼈 􏼉,

(A.2)

where VX is the half inactivation voltage of the gate
channel and sX is the corresponding slope.

τn Vi( 􏼁 �
τn

cosh Vi − Vn( 􏼁/ 2 · sn( 􏼁( 􏼁
,

τh Vi( 􏼁 �
τh

cosh Vi − Vn( 􏼁/ 2 · sn( 􏼁( 􏼁
,

(A.3)

where τn(Vi) and τh(Vi) are voltage-dependent time
functions and τn and τh are the maximum time constants.
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For convenience, make

f1(V, n, h) � −
IL + IK + INa + INaP + ICAN + Iexc( 􏼁

Cm

,

f2(V, n) �
n∞(V) − n( 􏼁

τn(V)
,

f3(V, h) �
h∞(V) − h( 􏼁

τh(V)
.

(A.4)

,ere are many parameters in this model including Eq.
(4), Eq. (5), and Eqs. (15–17), and the values used in this
paper are listed in Table 1.

f is the hill function related to calcium concentration:

f([Ca]) �
1

1 + KCAN/[Ca]( 􏼁
nCAN( 􏼁

. (A.5)

,e description of the somatic subsystem can be re-
ferred to references [29, 30], and the derivation and ex-
planation of the imposed path about the calcium
subsystem are shown in reference [49]. ,e numerical
software in this paper is mainly XPPAUT and MATLAB,
and the fourth-order Runge–Kutta algorithm is used with
a step size of 0.1.
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