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Abstract

Background Unlike linear models which are traditionally used to study all-cause mortality,

complex machine learning models can capture non-linear interrelations and provide oppor-

tunities to identify unexplored risk factors. Explainable artificial intelligence can improve

prediction accuracy over linear models and reveal great insights into outcomes like mortality.

This paper comprehensively analyzes all-cause mortality by explaining complex machine

learning models.

Methods We propose the IMPACT framework that uses XAI technique to explain a state-of-

the-art tree ensemble mortality prediction model. We apply IMPACT to understand all-cause

mortality for 1-, 3-, 5-, and 10-year follow-up times within the NHANES dataset, which

contains 47,261 samples and 151 features.

Results We show that IMPACT models achieve higher accuracy than linear models and

neural networks. Using IMPACT, we identify several overlooked risk factors and interaction

effects. Furthermore, we identify relationships between laboratory features and mortality that

may suggest adjusting established reference intervals. Finally, we develop highly accurate,

efficient and interpretable mortality risk scores that can be used by medical professionals and

individuals without medical expertise. We ensure generalizability by performing temporal

validation of the mortality risk scores and external validation of important findings with the

UK Biobank dataset.

Conclusions IMPACT’s unique strength is the explainable prediction, which provides insights

into the complex, non-linear relationships between mortality and features, while maintaining

high accuracy. Our explainable risk scores could help individuals improve self-awareness of

their health status and help clinicians identify patients with high risk. IMPACT takes a con-

sequential step towards bringing contemporary developments in XAI to epidemiology.
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Plain language summary
This study identifies characteristics

that will make a person more likely to

die sooner than expected based on

life expectancy for the population.

We developed a computer program

and applied it to information obtained

about the characteristics and medical

history of people from the USA. We

identified previously unidentified

characteristics that impact how likely

it is someone will die sooner than

expected, for example the cir-

cumference of the arm. We also

identified combinations of character-

istics that interact to increase the

likelihood of death sooner than

expected. By adding a person’s char-

acteristics to the program, the like-

lihood of death over the next 5 years

can be calculated and characteristics

identified that a person could modify

to improve their health and reduce

their chance of death during this

period.
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Identification of risk factors and prediction of all-cause mor-
tality have long been important issues in epidemiology. Most
prior studies identify risk factors using associations between

each predictor and mortality1–3; only a few papers use multi-
variate linear models to predict mortality and identify risk
factors4,5. In terms of prediction, a variety of linear mortality risk
scores have been proposed to help characterize unhealthy
individuals6–8. Although linear models have historically been
popular because they are interpretable, modern complex machine
learning (ML) models often achieve higher predictive accuracy
because they can capture interactions among variables in addition
to non-linear relationships (e.g., “U-shaped” relationships).

The field of artificial intelligence (AI) has seen considerable
advances in supervised learning problems, which involve pre-
dicting an outcome variable (e.g., all-cause mortality) based on a
set of features (e.g., individual-level characteristics). Notable
applications of AI in healthcare include diabetic retinopathy
detection in ophthalmology images9, red blood cells
classification10, Alzheimer’s disease prediction11, lung cancer
classification from histopathology images12, and skin cancer
classification13. Despite this progress, a major obstacle to the
adoption of AI applications in healthcare is that many of them are
considered “black box,” which refers to their lack of interpret-
ability. The inability to understand why a model makes a pre-
diction is especially harmful in healthcare applications, where the
patterns a model discovers can be even more important than its
predictive accuracy. This is especially true in epidemiology, which
aims to identify important variables to guide public health policy
or detect risk predictors that warrant further study. To address
this need, we turn to a variety of techniques to help us better
understand complex ML models from the emerging area of
explainable AI (XAI)14–16.

In this paper, we present the IMPACT (Interpretable Machine
learning Prediction of All-Cause morTality) framework (Fig. 1),
which improves the interpretability of complex machine learning
models for mortality prediction. We combine an accurate, com-
plex ML model and a state-of-the-art XAI technique to predict
all-cause mortality and conduct a systematic and integrated study
of the relationships among many variables and all-cause mor-
tality. We apply IMPACT to the NHANES (1999-2014) dataset to
reveal important all-cause mortality findings. First, using
explainable complex ML models rather than linear models, we
identify risk predictors that are highly informative of future
mortality. Second, our flexible models capture non-linear rela-
tionships, which provide more comprehensive information about
the relationship between feature values and mortality risk: for
example, the “inflection” points of risk predictors could provide a
unique perspective of reference intervals that has consequential
implications in public health. Third, understanding which fea-
tures are the most important enables us to develop highly accu-
rate, efficient (using less features) and interpretable mortality risk
scores. Furthermore, the individualized explanation of risk scores
can help users understand their most important risk factors and
adjust their lifestyle. In Table 1, we compare the AUROCs
between an existing mortality score or a biological age as reported
in the original paper and the IMPACT-20 model tested for the
corresponding follow-up time and age ranges in the NHANES
dataset. We find that IMPACT risk scores (Supplementary
Methods) have higher predictive power than popular mortality
risk scores5–8 and biological ages17–20. We ensure generalizability
by performing temporal validation of the mortality risk scores
and external validation of feature importances and important
relationships with the UK Biobank dataset. All our results and
risk scores are available on an interactive website (https://
suinleelab.github.io/IMPACT) to encourage exploration of
important risk predictors and support the use of interpretable

individual risk scores for individuals with and without medical
expertise. The IMPACT framework can also be applied to other
health outcomes and diseases to improve the predictive accuracy
and interpretability of complex ML models in epidemiological
studies.

Methods
Data cohorts. This study primarily focuses on NHANES21–23

(http://www.cdc.gov/nchs/nhanes.htm) data based on samples
collected between 1999 and 2014. We include demographic,
laboratory, examination, and questionnaire features that could
be automatically matched across different NHANES cycles. The
National Center for Health Statistics Research Ethics Review
Board approved all NHANES protocols, and all participants
gave informed consent. After data preprocessing (Supplemen-
tary Methods), 47,261 samples with 151 features (Supplemen-
tary Data 1) remain. Follow-up mortality data is provided from
the date of survey participation through December 31, 2015. We
predict all-cause mortality for two broad categories: (1) follow-
up times of 1-year, 3-year, 5-year, and 10-year, and (2) age
groups of < 40, 40–65, 65–80, and ≥ 80 years old. For mortality
prediction with different follow-up times, we use samples of all
ages. For different age groups, we fix the follow-up time to
predict 5-year mortality and divide all samples for 5-year
mortality prediction into four sets based on age. The dataset is
randomly divided into training (80%) and testing (20%) sets.
Demographic characteristics and sample size of the data for
different tasks are shown in Supplementary Fig. 1 and Supple-
mentary Table 1. The histogram of the the samples’ age in
different data collection cycles are shown in Supplementary
Fig. 2.

In additioin, we use UK Biobank (https://www.ukbiobank.ac.
uk/) samples as an external validation dataset. Ethics approval for
the UK Biobank study was obtained from the North West -
Haydock Research Ethics Committee (21/NW/0157). Informed
consent was obtained from all UK Biobank participants (the
consent form is available at https://www.ukbiobank.ac.uk/
consent). For UK Biobank data, we include the 51 features that
overlap (Supplementary Data 1) between the NHANES and UK
Biobank datasets and have 384,762 samples with confirmed
5-year mortality status. All-cause mortality included deaths
occurring before May, 2021. The dataset is randomly divided
into training (80%) and testing (20%) sets. More detail about UK
Biobank dataset is in Supplementary Methods and Supplemen-
tary Fig. 3.

IMPACT framework. To achieve high accuracy and explainable
mortality prediction models, we developed the IMPACT (Fig. 1)
framework, which combines tree-based models and
TreeExplainer24. To model all-cause mortality, we use gradient
boosted trees (GBTs). GBTs are nonparametric models composed
of iteratively trained decision trees. The final ensemble of trees
can capture non-linear and interaction effects between predictors.
The hyperparameters are chosen by GridSearch and 5-fold cross-
validation (Supplementary Methods). Model performance is
measured using the area under the receiver operator characteristic
curve (AUROC).

In our previous work, we introduced TreeExplainer24, which
provides a local (i.e., for each subject) explanation of the impact
of input features on individual predictions for GBT models
(Supplementary Methods). Specifically, TreeExplainer calculates
exact SHAP15 (SHapley Additive exPlanations) values for GBT
models, which guarantee a set of desirable theoretical properties.
SHAP values are additive; they sum to the model’s output, i.e., the
log-odds for GBTs. They are also consistent, which means
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features that are unambiguously more important are guaranteed
to have a higher SHAP value. Therefore, SHAP values are
consistent and accurate calculations of each feature’s contribution
to the model’s prediction. TreeExplainer also extends local
explanations to capture pairwise feature interactions directly. In
this work, we utilize TreeExplainer to conduct a systematic and
integrated study of associations between a large number of
variables and all-cause mortality. Here, higher SHAP values imply
large contributions to mortality risk. By showing the impact of
each variable and interactions among variables for local, sample-
specific explanations, we can obtain a comprehensive under-
standing of why the model made a specific mortality prediction.
The foreground samples and the SHAP values of the 1-, 3-, 5-,
and 10-year mortality prediction models can be found in
Supplementary Data 2–9.

In addition to studying the relationships between risk factors
and all-cause mortality, we further propose a technique, “relative
risk percentage”, to identify sub-optimal reference intervals and a
metric, “supervised distance”, to measure feature redundancy and
identify redundant groups of features given a specific prediction
task. Building on supervised distance, we also propose a recursive
feature selection strategy to select feature sets that are both
predictive and less redundant. We additionally propose a
recursive feature selection method to train accurate and efficient
(low-cost) interpretable mortality risk scores.

Supervised distance
Supervised distance and hierarchical clustering. Supervised dis-
tance can accurately measure feature redundancy based on a
specific prediction task. To calculate the supervised distance

Fig. 1 Overview of the IMPACT model and analyses. a We use the NHANES (1999-2014) dataset, which includes 151 variables and 47,261 samples. The
variables can be categorized into four groups: demographics, examination, laboratory and questionnaire. We train the model using different follow-up times
and different age groups. b IMPACT combines tree-based models with an explainable AI method. Specifically, IMPACT (1) trains tree-based models for
mortality prediction using the NHANES dataset, and (2) uses TreeExplainer to provide local explanations for our models. c We illustrate the advantages of
interpretable tree-based models compared to traditional linear models in epidemiological studies. d We further analyze all mortality models and
demonstrate the effectiveness of IMPACT at verifying existing findings, identifying new discoveries, verifying reference intervals, obtaining individualized
explanations, and comparing models using different follow-up times and age groups. e We propose a supervised distance to help us explore feature
redundancy. We further develop a supervised distances-based feature selection method that helps us select predictive and less-redundant features. f We
build mortality risk scores that are applicable to professional and non-professional individuals with different cost-vs-accuracy tradeoffs. The individualized
explanations of IMPACT show the impact of each risk factor for the overall risk score.
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between feature i and feature j, we first train a uni-variate GBT
model to predict the label (e.g. 5-year mortality in our study)
using feature i. Then, we can obtain the Predictioni which is the
output of the fitted uni-variate GBT. Next, we fit another uni-
variate GBT to predict Predictioni using feature j. We define the
output of the new GBT as Predictionji. All hyperparameter values
of the uni-variate GBTs are set to their default values. Following
the same above steps, we can obtain Predictionij. The supervised
distance between feature i and feature j (supervised distance(i,j))
is defined as:

supervised R2ði; jÞ ¼ max 0; 1�mean
ðPredictioni � PredictionjiÞ

2

varðPredictioniÞ

 ! !

ð1Þ

supervised distanceði; jÞ ¼ maxð1� supervised R2ði; jÞ; 1� supervised R2ðj; iÞÞ
ð2Þ

where var(x) is the variance of the vector x, mean(x) is the
average of the vector x. Supervised distance is scaled roughly
between 0 and 1, where 0 distance means the features perfectly
redundant and 1 means they are completely independent.

To explore the redundant feature groups, we hierarchically
cluster all features according to the supervised distance.
Specifically, we use complete linkage hierarchical clustering
which merges in each step the two clusters whose merger has
the smallest diameter.

Supervised distance-based feature selection. We propose a super-
vised distance-based feature selection method to select predictive
and less-redundant feature sets. Firstly, we fit a GBT for 5-year
mortality prediction on all features using the training set and rank
the features by mean absolute SHAP values from TreeExplainer.
We cluster features except age and gender into a specific number
of groups using supervised distances-based hierarchical clustering
and select the most important feature in each cluster. Then, we
add age and gender to the selected feature set and re-fit the
model. Next, we rerun the clustering using the new feature set
except age and gender. This process is repeated until all
remaining features cluster to a single group. In every iteration, we
remove 5 features. The models are evaluated on the testing set
with bootstrapping for 1000 times. We report the average of the
AUROCs and the minimum supervised distance within the
selected feature sets.

5-year mortality risk scores. IMPACT mortality risk scores are
defined to be the prediction of the 5-year mortality prediction
models. To compare with Intermountain gender-specific risk
scores, we evaluate the models on different gender groups. The
models are trained on the whole training set and evaluate on
different gender groups in the testing set. Furthermore, con-
sidering the different feature collection cost for the general public
and medical professionals, we build the risk scores starting from
different feature sets. For the general public, the models are
trained on all demographics, questionnaire features and exam-
ination features that are accessible at home for general public, For
medical professionals, the models are trained on all demographics
and laboratory features. We implement recursive feature selection
to reduce the number of features included in the risk scores.
Recursive feature elimination works by searching for a subset of
features by starting with all features in the training dataset and
successively removing features until the desired number of fea-
tures remains. Firstly, we train a model on the full dataset with all
features. Then we rank features by importance (mean absolute
SHAP values) and remove the least important features. Another
model is trained on the resulting feature set, and the process
iterates until only the desired number of features are left. We
remove 5 features in each iteration. We bootstrap the test set for
1000 times and assess the predictive performance. We report the
average of the AUROCs within the selected feature sets.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Advantages of tree-based models. Linear models are commonly
used in epidemiology because their coefficients indicate each
feature’s contribution to the model’s prediction25. However, more
expressive models, such as tree-based models, can achieve higher
predictive accuracy across many datasets by learning non-linear
relationships between features and the outcome variable. Gra-
dient boosted trees (GBTs) have achieved state-of-the-art per-
formance in many domains26–29. We observe the same trend in
our study: tree-based models outperform both linear models and
neural networks across almost all tasks we consider (Fig. 2a,
Supplementary Fig. 4). The superior prediction performance of
tree models indicates that we can capture signals relevant to
mortality, which alternative approaches could not. Besides

Table 1 Comparing the AUROCs between an existing mortality score or a biological age as reported in the original paper and the
IMPACT-20 model tested for the corresponding follow-up time and age ranges in the NHANES dataset.

Task Age AUROC AUROC of IMPACT-20 AUROC of IMPACT-20
(temporal validation)

Mortality risk scores
Intermountain6 1-year mortality 18+ 0.84 0.92 0.88
Gagne Index7 1-year mortality 65+ 0.79 0.85 0.85
Intermountain6 5-year mortality 18+ 0.87 0.89 0.88
Prognostic score5 5-year mortality 40–70 Male: 0.80 Male: 0.85 Male: 0.80

Female: 0.79 Female: 0.83 Female: 0.80
Schonberg Index8 5-year mortality 65+ 0.75 0.80 0.83
Biological ages
Horvath DNAm Age17,19 10-year mortality 21–84 0.56 0.90 0.89
Hannum DNAm Age18,19 10-year mortality 21–84 0.57 0.90 0.89
DNAm PhenoAge19 10-year mortality 21–84 0.62 0.90 0.89
Phenotypic Age19,67 10-year mortality 20–85 0.88 0.90 0.89

The “AUROC” column shows the AUROCs reported in the original paper. The “AUROC of IMPACT-20” column shows the performance of IMPACT models trained with the selected top 20 features
(Supplementary Tables 2 and 3). The “AUROC of IMPACT-20 (temporal validation)” column shows the performance of the IMPACT-20 models evaluated on the temporal validation set (Supplementary
Methods).
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predictive power, tree-based models have more advantages
compared with traditional linear models. Our study illustrates the
advantages of tree-based models in epidemiology, including
making minimal assumptions, capturing non-linear relationships,
important thresholds, and interaction effects.

Tree-based models make minimal assumptions about the data
distribution. Several assumptions associated with linear models
(e.g., linearity, independence, normality, etc.) constrain the fea-
tures they can use. To satisfy these assumptions, scientists often
manually transform non-linear variables before fitting a model
(e.g., log-transformation, discretization of continuous variables,
etc.). For instance, to explore the effect of blood lead on mortality,
researchers first discretized blood lead using different thresholds.
They observed that individuals with blood lead levels higher than
the threshold had increased mortality risk compared to those with
lower blood lead levels30–32. In comparison, tree-based models
make minimal assumptions about the data distribution and need
no data transformations. Figure 2d shows a positive relationship
between blood lead and 5-year mortality risk. Tree-based models
can capture complex relationships directly without needing to
manually transform the variables.

Tree-based models capture non-linear relationships and important
thresholds. Discovering non-linear relationships is important but
challenging for epidemiological research using traditional linear
models. J-shaped and U-shaped associations are two common
and meaningful non-linear relationships33. However, linear
models must use manually transformed features to capture non-
linear relationships. As an example, Suliman et al.34 used a linear
model to show a J-shaped relationship between uric acid levels
and mortality in patients with stage 5 chronic kidney disease
(CKD) by dividing uric acid level into three categories and

calculating the hazard ratio for each. Unlike linear models, tree-
based approaches can directly capture non-linear relationships.
We observe a U-shaped relationship between uric acid level and
all-cause 5-year mortality predictions in Fig. 2b. This relationship
differs from the J-shaped one in previous work, possibly because
of categorization, which loses essential information about values
within the categories.

Additionally, discovering thresholds (i.e., inflection points
beyond which changing a feature’s value has diminishing returns)
is important in epidemiological analysis. Figure 2c shows that
250 μg/mL is an important threshold: according to our model,
increasing urine albumin generally increases 5-year mortality risk;
however, urine albumin higher than this threshold has almost the
same impact on mortality risk.

Tree-based models capture feature interaction effects. Feature
interaction examines how the effect of one feature on the out-
come differs across strata of another feature, highlighting the
complex relationship of two features on the outcome35. Tree-
based models can naturally capture interaction effects by splitting
on different features in the same tree. As shown in Fig. 2d–f,
SHAP dependence plots can be decomposed into main effects and
interaction effects for each sample. Figure 2f highlights a specific
interaction: the relationship of blood lead level to mortality pre-
sents differently for young and old individuals. Specifically, for
those with blood lead higher than 0.1 μmol/L, younger individuals
have a higher 5-year mortality risk than older individuals. Fig-
ure 2g shows the SHAP interaction effects of gender with blood
lead level: females have a higher 5-year mortality risk than males
with blood lead levels higher than 0.24 μmol/L. The interaction
effects of age and gender with blood lead level cannot be clearly
identified without SHAP interaction values because being male
or older generally increases mortality risk. These findings

Fig. 2 Advantages of tree-based models for mortality prediction. a The area under the ROC curve (AUROC) of gradient boosted tree models outperforms
both linear models and neural networks for seven of our prediction models. ***p-value < 0.001, **p-value < 0.01, and *p-value < 0.05. P-values highlighted
in blue are computed using bootstrap resampling over the tested time points while measuring the difference in area between the curves with n= 1000
independently resampling. b, c Tree-based models can capture non-linear relationships and important thresholds. b The main effect of uric acid on 5-year
mortality. Higher SHAP value leads to higher mortality risk. c The main effect of urine albumin on 5-year mortality. d–g Tree-based models can measure
feature interaction effects. d SHAP value for blood lead level in the 5-year mortality model. Each dot corresponds to an individual. The color corresponds to
the value of a second feature (i.e., age) that has an interaction effect with blood lead. e We can use SHAP interaction values to remove the interaction
effect of age from the model and obtain the SHAP value of blood lead without the age interaction on 5-year mortality. f Plotting just the interaction effect of
blood lead with age shows how the effect of blood lead on mortality risk varies with age. g The SHAP interaction value of blood lead vs. gender in the 5-year
mortality model.
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underscore how being able to detect interaction effects can expose
opportunities for further research.

Discoveries from 5-year mortality prediction. Figure 3a shows a
summary plot that displays the magnitude, prevalence, and
direction of the effect of the top 20 most impactful features on
5-year mortality prediction (Supplementary Methods). This
summary plot provides an integrated explanation of the 5-year
IMPACT model. Several features are known to be associated with
mortality in epidemiological studies. Our results examine and
support these studies’ conclusions and surface additional dis-
coveries, including features, thresholds, and non-linear
relationships.

IMPACT verifies well-studied features associated with mortality.
Some of the top 20 most important features for our 5-year
mortality prediction models have been previously identified. For
example, red cell distribution width (RDW), the second most
important feature of the 5-year IMPACT model, has been shown
to have a strong positive relationship with mortality in many
studies under several conditions36–39. We also find a positive
relationship between RDW and risk of mortality (Fig. 3b);
moreover, 12.7% is an important threshold over which RDW

manifests a positive effect on mortality. Serum albumin level’s
relation to mortality is also well-studied; previous studies show
that serum albumin is negatively associated with mortality
risk40–42. The relationship shown in Fig. 3c matches this trend.
Furthermore, Corti et al.40 showed that serum albumin
level < 35 g/L was associated with an increased risk of mortality
compared to serum albumin levels greater than 43 g/L40. We
observe that 35 g/L and 43 g/L are indeed key inflection points
(Fig. 3c): serum albumin levels lower than 43 g/L have a positive
relationship with mortality prediction, while those around 35 g/L
are associated with a dramatically increased mortality risk.

IMPACT identifies less well-studied features associated with
mortality. Some of the top 20 most important features identified
by IMPACT are less appreciated as mortality risk factors in the
existing epidemiological literature. Three of these are arm cir-
cumference, platelet count, and serum chloride level. Figure 3d
shows a negative relationship between arm circumference and
5-year mortality, especially for older people. This negative rela-
tionship is consistent with previous work43,44. IMPACT ranks
arm circumference as the fourth most important feature for
5-year mortality prediction, with an importance ranking that
greatly exceeds that of BMI (the 56th). This suggests that smaller

Fig. 3 Combining 5-year mortality prediction gradient boosted trees models and local explanations to achieve significant discoveries about the entire
model and individual features. a SHAP summary plot for the gradient boosted trees trained on the 5-year mortality prediction task. The plot shows the
most impactful features on prediction (ranked from most to least important) and the distribution of the impacts of each feature on model output, which
includes a set of plots where each dot corresponds to an individual. The colors represent feature values for numeric features: red for larger values, and blue
for smaller. The thickness of the line comprised of individual dots is determined by the number of examples at a given value. A negative SHAP value
(extending to the left) indicates reduced mortality risk, while a positive one (extending to the right) indicates increased mortality risk. b, c IMPACT can
verify well-studied features associated with mortality. b The main effect of red cell distribution width on 5-year mortality. c The main effect of serum
albumin on 5-year mortality. d–h IMPACT can identify less well-studied features associated with mortality. d The SHAP value for arm circumference in
5-year mortality model. e The main effect of platelet count on 5-year mortality. f The main effect of serum chloride on 5-year mortality. g The SHAP
interaction value of serum chloride vs. age in the 5-year mortality model. h The SHAP interaction value of serum chloride vs. gender in the 5-year
mortality model.
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arm circumference is more predictive than BMI for modeling
mortality, as in45.

Figure 3e shows a negative relationship between platelet count,
the 13th most important feature, and 5-year mortality.
175 × 1000 cells/μL is an important threshold; platelet count
lower than that level is associated with dramatically increased
mortality risk. Serum chloride is also inversely related to 5-year
mortality (Fig. 3f). The normal adult value for chloride is 98-
106 mmol/L. We observe that serum chloride lower than
98 mmol/L is associated with sharply increased mortality risk.
In Fig. 3g–h, we plot the interaction effect of age and sex with
serum chloride level. This analysis reveals that younger people
and females with low serum chloride have a higher mortality risk
than older people and males. The interaction effect of age and
serum chloride shows that early rather than late-onset low
chloride level has a greater effect on the model.

IMPACT can provide an additional perspective to laboratory
reference intervals. A reference interval (RI) is the range of values
that is deemed normal for a physiologic measurement in healthy
persons46. It is the most commonly used decision support tool to
interpret patient laboratory test results. RIs enable differentiation
of healthy and unhealthy individuals47,48. Hence, the quality of
the RIs is as crucial as the quality of the result itself. RIs in use
today are most commonly defined as the central 95% of labora-
tory test results in a reference population. Unfortunately, this
definition does not consider mortality or disease risk, which may
lead to misdiagnosis since RIs are often used to identify unhealthy
individuals. The partial dependence plots (Supplementary
Methods) of IMPACT models directly reflect the effects of the
features on mortality risk, which provides an alternative per-
spective for identifying inappropriate reference intervals with
mortality/disease relevance.

We define the relative risk percentage (RRP; Supplementary
Methods) that measures the relative risk of the feature values
within the reference interval compared to the relative risk of all
values (Table 2). A higher RRP indicates that the feature values
within the reference interval may lead to high mortality risk,
which call for special attention. The first four features in Table 2
have relatively low 5-year mortality RRP. From Fig. 4a–e, we
observe that the values of these features within the reference
interval have a low 5-year relative mortality risk; the values
outside the reference interval may lead to increased 5-year
mortality risk. Therefore, IMPACT confirms the reference
intervals of these four features as optimal for mortality risk. In
contrast, the RRPs of the last four features in Table 2 are high.
Figure 4f–j also shows that the relative 5-year mortality risk of the

values within the reference interval is high compared to the
maximum relative risk of all values. Hence, IMPACT identified
the divergence where reference intervals appear to be poorly
tuned to mortality risk, suggesting that these reference intervals
may in fact be sub-optimal for health. Note that our goal is not to
suggest the optimal reference range: to find the optimal reference
interval, more careful sample and study design need to occur. The
partial dependence plots for the 1-, 3- and 10-year mortality
prediction models are shown in Supplementary Fig. 5.

External Validation of IMPACT on UK Biobank (UKB) dataset.
We validate the key findings of the 5-year mortality prediction
IMPACT model using the UKB dataset. Our external validation
includes two aspects. The first aims to validate the entire
IMPACT framework using a new dataset by checking whether the
explanations from a model trained on the NHANES dataset can
also be found in a model trained on the UKB dataset. The second
aims to test the generalizability of the mortality prediction model
trained on the NHANES dataset.

To validate the IMPACT framework, we train a tree-based 5-
year mortality prediction model on the UKB dataset using the 51
overlapping features between NHANES and UKB. Then, we
calculate the SHAP values of the UKB mortality prediction model
using the UKB samples. Figure 5a shows the relative global
feature importances of the 51 overlapping features of the
NHANES model (trained on all 151 features) and the UKB
model (trained on 51 features). We can see that the top 20 most
important features are largely consistent, where 14 features are
the same for both models. The p-value of the Fisher’s exact test
(p= 0.0004) shows that the overlap between the top 20 most
important features of NHANES (151 features) and UKB (51
features) model is significant. The Spearman’s correlation
coefficient of the NHANES and UKB model’s feature importance
is 0.6654 (p-value < 0.0001), showing the significant positive
correlation between the ranking of the overlapping features in
NHANES and UKB. It is worth mentioning that waist
circumference is more important than BMI in the UKB model,
which further validates that some anthropometric measures (i.e.,
arm circumference in the NHANES model, waist circumference
in the UKB model) are more predictive than BMI for modeling
mortality. Figure 5b–d show the relationship between 5-year
mortality and three important features: red cell distribution
width, serum albumin, and serum uric acid. The trends
discovered by the SHAP main effects in the UKB model
corroborate previous findings from the NHANES model. In
Fig. 5e, f, the values of gamma glutamyl transferase and
lymphocyte percent in the reference interval have a low 5-year

Table 2 Providing additional perspective to laboratory reference intervals.

Feature Reference Interval Relative Risk Percentage (RRP)

1-year 3-year 5-year 10-year

Gamma glutamyl transferase 0–30 U/L 16.93% −4.57% −0.97% −6.04%
Globulin, serum 20–35 g/L 5.39% 7.95% 14.73% 4.59%
Lymphocyte percent 20%–40% 15.63% 7.02% 6.55% 10.81%
Blood urea nitrogen (Male) 2.86–8.57mmol/L 8.12% 2.92% 8.02% 21.08%
Blood urea nitrogen (Female) 2.14–7.50mmol/L −0.15% 3.07% 0.40% 12.16%
Albumin, serum 35–50 g/L 28.56% 49.70% 59.77% 93.48%
Blood lead 0–0.48 umol/L 100.00% 94.71% 100.00% 100.00%
Mean cell volume 80–100 fL 82.80% 75.82% 83.92% 57.26%
Alanine aminotransferase ALT (Male) 7–55 IU/L 100.00% 100.00% 100.00% 100.00%
Alanine aminotransferase ALT (Female) 7–45 IU/L 100.00% 100.00% 100.00% 100.00%

The table lists the reference interval and relative risk percentage (RRP) of the selected laboratory features. RRP measures the relative risk of the feature values within the reference interval compared to
the relative risk of all values. A higher RRP indicates that the current reference interval is relatively more inappropriate. The negative value indicates that the reference interval of that laboratory feature is
optimal for mortality risk. The 100% value suggests that the reference interval may be sub-optimal for mortality risk.
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relative mortality risk, which demonstrates that the reference
intervals of these two features are optimal for mortality risk. In
contrast, Fig. 5g shows that the relative 5-year mortality risk of the
values of serum albumin in the reference interval is high, which
suggests that the reference interval may be suboptimal for health.
These results are consistent with our findings from the NHANES
model trained on 151 features. More validation results of IMPACT
framework on the UKB dataset are in Supplementary Fig. 6.

Furthermore, we would like to validate whether the perfor-
mance and explanations of the NHANES prediction model
generalize to an unseen population (UKB). Training details and
results are described in Supplementary Note 1, Supplementary
Figs. 7, 8. Our external validation results show that the NHANES
mortality prediction model generalizes well to the UKB dataset in
terms of both mortality prediction performance and key
relationships between features and mortality.

Discoveries for mortality prediction using different follow-up
times. The relationship between each feature and mortality may
change for different models. For instance, comparing important
features between IMPACT models using different follow-up times
can reveal features that are predictive only for short-term mor-
tality, not longer-term mortality (and vice versa).

Figure 6a shows the top 20 most important features and
relative importance of input features in IMPACT’s 1-year, 3-year,
5-year, and 10-year mortality prediction models. Feature
importance rankings change greatly between these four models.

Some features are important for all four (e.g., age, RDW, and
urine albumin level). Some features become more important over
time (e.g., platelet count, whose importance ranking is 75 for the
1-year model and 12 for the 10-year model). Other features
become less important over time (e.g., serum potassium, whose
importance ranking is 17 for the 1-year model and 42 for the 10-
year model). These results provide a more comprehensive
understanding of shorter- and longer-term mortality risk, which
can facilitate the investigation of mechanisms underlying risk
predictors and potentially help validate interventions.

The relationship between each feature and mortality may
change for models that predict different mortality outcomes or
utilize different subsamples of the general population. For
instance, Fig. 6b, c show the SHAP value for serum potassium
in IMPACT’s 1-year and 5-year mortality prediction models. The
finding that serum potassium lower than 3.5 mmol/L and higher
than 4.0 mmol/L are associated with increased mortality risk has
been previously observed49–51. Interestingly, for the 1-year model,
hyperkalemia (high potassium) has a higher mortality risk than
hypokalemia (low potassium). For the 5-year model, hypokalemia
has the same or higher mortality risk than hyperkalemia.
Figure 6d shows that serum sodium higher than 139 mmol/L
increases 1-year mortality risk, and low serum sodium with
negative SHAP values decreases mortality risk. However, the
relationship differs completely in the 5-year mortality prediction
model (Fig. 6e): hyponatremia (serum sodium < 135mmol/L) is
associated with a higher 5-year mortality risk. This type of insight,

Fig. 4 Effect of varying laboratory feature values on 5-year mortality risk. The partial dependence plots show the change in relative 5-year mortality risk
for all values of a given laboratory feature. The grey histograms on each plot show the distribution of values for that feature in the test set. The green
shaded region shows the reference interval of each feature. The grey dotted line shows the average value of the model predicted probability (y= 1).
a–e The partial dependence plots of the features whose reference intervals are optimal for mortality risk. f–j The partial dependence plots of the features
whose reference intervals are sub-optimal for mortality risk.
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especially regarding the differences of non-linear trends, is not
apparent using linear models.

Likewise, we can compare models trained on distinct
subpopulations (e.g., samples in different age groups). The
differences between these models can help researchers identify
risk predictors relevant to each subpopulation and provide
epidemiological insights that may guide policy for specific at-risk
populations. The discoveries for mortality prediction using
different age groups are discussed in Supplementary Note 2 and
Supplementary Fig. 9. We further explore explaining the
mortality predictions using different age distributions in Supple-
mentary Note 3, Supplementary Fig. 10.

Exploring feature redundancy using supervised distance. Fea-
tures in datasets are often partially or fully redundant with each
other, such that a model could use either feature and achieve the
same accuracy. It is important to be aware of redundant features
when we interpret a model because these features may include the
same information about the output and thereby split the
importance of this information. To this end, we propose a
supervised distance, which helps us explore and better understand
redundant features (Supplementary Methods). Building upon
supervised distance, we develop a feature selection method to
maximize accuracy and minimize redundancy.

Supervised distances measures feature redundancy and identifies
redundant groups of features. Researchers often use unsupervised

methods, such as some form of correlation-based clustering, to
identify dependent features52,53. However, when we have a spe-
cific prediction task in mind, we would like to measure feature
redundancy with respect to outcome. This can be done using
supervised distance, which measures the similarity of two fea-
tures’ information about the prediction task by training one uni-
variate model to predict the outcome of another (Supplementary
Fig. 11; Supplementary Methods). Supervised distance is scaled
roughly between 0 and 1, where 0 distance means the features are
perfectly redundant regarding the prediction task and 1 means
they are not redundant at all.

To identify groups of redundant features, we hierarchically
cluster all features according to supervised distance (Supplemen-
tary Fig. 12; Supplementary Methods). Redundant features with
the same information about the output group together. For
example, arm circumference, the fourth most important feature of
the 5-year IMPACT model, is grouped with weight-related
features: BMI, waist circumference, weight, etc. These weight-
related features all contain similar information about 5-year
mortality. To further explore the predictive ability of the features,
we train models using one weight-related feature and all non-
weight-related features (reducing redundancy models) and
models using one weight-related feature in addition to age and
gender (single-feature models) (Supplementary Methods). Arm
circumference is the most predictive weight-related feature across
all settings (Fig. 7a), and may be more informative than other
weight-related features with respect to all-cause mortality.
Another example is the cluster that includes many blood test

Fig. 5 External validation of IMPACT framework on the UKB dataset. a Relative importance of 51 overlapping features in the 5-year mortality prediction
models trained on the NHANES (151 features) and UKB (51 features) datasets. For each model, the figure shows the 20 most important features of
prediction (ordered by importance). The purple line indicates that the feature is in the top 20 features of both models. Blue and red lines indicate the
feature is in the top 20 features of one model but not the other. The p-value of the Fisher's exact test examines the overlap between the top 20 most
important overlapping features in the NHANES and UKB models (the contingency table in Supplementary Figure 6F). The Spearman's correlation
coefficient is calculated using the feature importance of the overlapping features in NHANES and UKB (n= 51 featurs). ***p-value < 0.001. b–d The main
effect of red cell distribution width, urine albumin and serum uric acid on 5-year mortality in the model trained on UKB (51 features) dataset. e–g The
relative 5-year mortality risk of gamma glutamyl transferase, lymphocyte percent, and serum albumin in the model trained on the UKB (51 features)
dataset.
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Fig. 6 Understanding important risk factors for mortality prediction from tree-based models based on different follow-up times. a Relative importance
of input features in 1-, 3-, 5- and 10-year mortality models. For each model, the figure shows the 20 most important features of prediction (ordered by
importance). The purple line indicates that the feature is in the top 20 features of two models. Blue and red lines indicate that the feature is in the top 20
features of one model, but not in the top 20 features of the other. b The SHAP value of serum potassium in the 1-year mortality model. c The SHAP value of
serum potassium in the 5-year mortality model. d The SHAP value of serum sodium in the 1-year mortality model. e The SHAP value of serum sodium in
the 5-year mortality model.

Fig. 7 Exploring feature redundancy using supervised distance. a The feature importance ranking of the BMI-related features in original models and
reducing redundancy models (models using one weight-related feature and all non-weight-related features), and the AUC of the single-feature models
controlling for age and gender. b The feature importance ranking of the selected laboratory features in original models and reducing redundancy models,
and the AUROC of the single-feature models confounded by age and gender. c The AUROC of the models using the selected feature sets and minimum
feature redundancy within the selected feature sets when running supervised distance-based feature selection. The purple dashed line shows the AUROC
of the model trained on age and gender. The pink dashed line indicates the feature set we select for further analysis. d The SHAP summary plot for the
gradient boosted trees trained on the selected 90 features for the 5-year mortality prediction.
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features (Fig. 7b). Similar to arm circumference, serum albumin is
the most predictive feature among these blood test features. In
summary, using supervised distance, we can easily identify
redundant feature groups and select the most representative
feature based on predictive power. These selected features can be
the strongest risk predictors because they have strong predictive
power and can represent a number of features.

Supervised distance-based less-redundant feature selection. To
address feature redundancy more rigorously, we propose a recur-
sive feature selectionmethod to select predictive and less redundant
feature sets based on supervised distance (Supplementary Methods;
Supplementary Data 1). Figure 7c shows the predictive power and
minimum supervised distance of subsets of features refined by our
feature selection approach. We observe that as the number of
features declines, the predictive performance drops, and the feature
redundancy reduces (as indicated by an increasing minimum
supervised distance). The figure shows that when using 90 features,
the model can achieve good predictive performance
(AUROC= 0.8845), and the minimum supervised distance within
the features is high (0.9301). Figure 7d shows the summary plot of
the top 10 features in the 5-year mortality prediction model using
the selected 90 features. Since there is less redundancy in the
selected features, we mitigate the issue of redundant features
splitting credit. This lets us explore more richly the effect of
important risk predictors on mortality. In our low redundancy
model, arm circumference is selected to represent the weight-
related features and still receives high importance. Furthermore, we
find that “requiring special healthcare equipment,” a top 10 feature
in the model trained on all features, is removed from the feature list
because it is redundant with “general health condition.” In sum-
mary, our feature selection method helps remove redundant fea-
tures while retaining highly predictive features, thereby balancing
accuracy and interpretability.

Highly accurate and efficient interpretable mortality risk
scores. A mortality risk score can help individuals monitor their
health status, clinicians stratify high-risk patients, and public
health organizations guide policy. Most prior mortality risk scores
are built with linear models, such as logistic regression and linear
hazard models5,6. However, compared with traditional models,
tree-based models achieve higher predictive performance, which
can stratify patients better than linear models (Table 1). Besides
predictive performance, we must also consider the feature col-
lection cost. There is a tradeoff between collecting fewer features
(which is less costly) and model performance (cost-vs-accuracy).
Moreover, the cost of features differs for different users. For
example, blood test features are easily collected by clinicians, but,
for the public, questionnaire features and examination features
are easy to obtain at home. Furthermore, in addition to calcu-
lating their risk scores, users may want to know which features
contributed more or less to their risk. To address these problems,
we build interpretable tree-based mortality risk scores with dif-
ferent cost-vs-accuracy tradeoffs and different types of features
for the general public (demographic, examination, and ques-
tionnaire features) and medical professionals (demographic,
laboratory features and features from common test panels) to use
(Supplementary Methods; Supplementary Data 1). Compared
with previous mortality risk scores, ours are more interpretable,
more accurate, applicable to more users, and flexible with respect
to different cost-vs-accuracy tradeoffs.

IMPACT develops highly accurate and efficient 5-year mortality
risk scores. The predicted probability of IMPACT models can be
directly used as mortality risk scores (IMPACT risk scores). We

did a temporal validation of the risk scores by training and
validating them in samples from NHANES 1999–2008 and
assessing their performances in NHANES 2009–2014. The sample
size, the number of deceased samples and the histogram of age in
the training set with the testing set and the temporal validation set
are shown in Supplementary Fig. 13. For comparison, we train
linear and tree-based Cox proportional hazard models widely
used in previous work (Supplementary Methods). To find less
costly but nearly as accurate models, we select the features using
recursive feature elimination (RFE; Supplementary Methods).
Moreover, we compare IMPACT risk scores with Intermountain
sex-specific risk scores6 (Supplementary Methods). The models
are evaluated on different gender groups.

In Fig. 8a, b, we show the AUROC of the 5-year mortality risk
scores of female samples (Supplementary Fig. 14 for male results)
in the test set and the temporal validation set. We see that the
IMPACT model with only 20 features obtains an AUROC of
0.8971, which is almost as same as the performance of the model
using all features (AUROC= 0.9030); using fewer than 20
features leads to a dramatic accuracy drop. Figure 8a, b also
show that IMPACT models achieve better performance than
linear and tree-based Cox proportional hazard models. Further-
more, we see that the IMPACT risk score using the laboratory
features (AUROC= 0.8881) and the risk score using the
questionnaire and examination features (AUROC= 0.8835) both
achieve acceptable predictive performance. The IMPACT risk
score using the features from common test panels achieves higher
AUROCs than the intermountain risk score, which uses CBC and
BMP panels features. With the models trained with different cost-
vs-accuracy tradeoffs, users who cannot measure certain features
(i.e., high-cost features) can still calculate accurate mortality risk
scores. Figure 8b shows that the performance of our models drops
only a little on the temporal validation set, which can indicate
that our risk scores generalize fairly well. The selected top 20
features and features from CBC and BMP panels are listed in
Supplementary Table 2. In summary, we build IMPACT risk
scores that are applicable to professional and non-professional
individuals with different cost-vs-accuracy tradeoffs.

IMPACT exposes individualized mortality risk score explanations.
TreeExplainer can help researchers analyze the prediction for
each individual and illustrate each features’ contribution to the
mortality risk score. We explain the mortality prediction model in
terms of its probability predictions (risk scores). Figure 8c, d show
individualized explanations for two people in the model using the
top 20 features (Supplementary Methods). The first individual
(Fig. 8c) was alive after 5 years. From the figure, we observe that
IMPACT predicted that the individual’s 5-year mortality risk
score was 0.02, lower than the average predicted risk (i.e., base
value). Certain features can increase mortality risk, such as red
cell distribution width, and others can decrease it, such as urine
albumin level. For this individual, the features that drive down
mortality risk outweigh those that increase it. The second indi-
vidual (Fig. 8d) was deceased after 5 years, and the model’s
predicted mortality probability is 0.61, much higher than the
average predicted risk. The top three features that increase this
individual’s risk are high age, high red cell distribution width, and
high urine albumin concentration. The interpretable risk score
can both help individuals improve health awareness and under-
stand their health status, and it can help health professionals
identify high-risk individuals.

Discussion
IMPACT combines high-accuracy complex ML models and state-
of-the-art local explanation methods to allow the systematic study
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of all-cause mortality. In epidemiology, high accuracy is necces-
sary but insufficient; explaining models to humans is also
essential for drawing epidemiological hypotheses54,55. IMPACT’s
combination of accuracy and explanation aims to optimize
accuracy while also gaining insight into complex interrelations
between mortality and an individual’s features.

Using 151 features in NHANES 1999–2014, we build tree-
based mortality prediction models and explore the effect of those
features on mortality for different follow-up times and age
groups. Importantly, we demonstrate the value and significance of
explaining complex ML prognostic models. IMPACT lets us to
capture both non-linear and interaction effects that are difficult to
uncover with linear models. These results help us verify well-
studied findings (e.g., the relationship of red cell distribution
width and serum albumin with mortality) as well as identify less
well-studied ones (e.g. the important risk predictors arm cir-
cumference, platelet count and serum chloride, and the complex
interactions among the features). One pitfall to inferring rela-
tionships between determinants and an outcome are relationships
between the determinants themselves (redundancy). To address
this, we propose a supervised distance and feature selection
approach, which we utilize to select the minimally redundant
feature sets. Finally, we build easy-to-use and explainable

mortality risk scores for use by both the general public and
medical professionals with different tradeoffs between feature
collection cost and model performance. These scores can help
individuals improve self-awareness of their health status and help
clinicians identify patients with high mortality risk to target with
specific interventions. In this paper, we present only a small part
of our findings. All our results and risk scores are available for
public use in an interactive website (https://suinleelab.github.io/
IMPACT), where associations and interactions can be explored in
detail to generate new research hypotheses.

In terms of epidemiological findings, this study shows a
negative relationship between arm circumference and mortality.
Our clustering method groups arm circumference with BMI and
other weight-related features, indicating that these features share
information about mortality. Several prior studies have found a
U-shaped association between BMI and mortality, where very low
or very high BMI is associated with greater mortality risk43,56.
This U-shaped relationship may be the result of compound effects
from body fat and fat-free mass. Since upper arm circumference
is an indicator of fat-free mass43,44, it may be the case that fat-free
mass is driving the inverse correlation between arm cir-
cumference and mortality risk. Larger arm circumference is
expected to be associated with greater muscle mass, while smaller

Fig. 8 Developing highly accurate and efficient interpretable 5-year mortality risk scores. a, b The AUROC of the models using different feature sets
after recursive feature elimination. Lines are mean performance over 1000 random train/test splits, and shaded bands are 95 percent normal confidence
intervals. a The AUROC of the models tested on the female group in the test set of NHANES 1999–2008. b The AUROC of the models tested on the female
group in the temporal validation set (NHANES 2009–2014). c, d IMPACT can analyze individualized mortality risk scores. c The individualized explanation
for an individual who is alive after 5 years. The output value is the risk score for that individual. The base value is the mean risk score, i.e., the score that
would be predicted if we did not know any features for the current output. The features in red increase mortality risk, and those in blue decrease it. d The
individualized explanation for a sample who is deceased after 5 years.
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arm circumference may reflect muscle deterioration along with
diminished nutritional status or malnutrition57,58. The impor-
tance of arm circumference in IMPACT is consistent with pre-
vious studies, which show that low arm circumference was more
effective than low BMI in predicting follow-up mortality risk in
older people57,59,60.

One limitation of IMPACT is that the relationships and
interactions detected by our model cannot be claimed to be
causal. This is not unique to our method and poses a fundamental
problem in epidemiological studies using observational data. The
purpose of this study is not to address causality, but rather to
conduct a systematic study of mortality associations with the
NHANES population. In particular, a primary obstacle in cap-
turing causal effects with observational data and predictive
models are confounding variables. In order to condition on
confounders (and potential surrogate confounders), it is often
desirable to include as many features as possible in the model61.
Conversely, we may want to remove colliders and mediators that
skew the real effect of treatment features of interest. Our solution
to redundancy, i.e., supervised distance, can potentially help
narrow down related features for which domain experts can
identify colliders, mediators, and confounders. This is a potential
future research question that takes a step in the direction of
making explanations from complex models causal.

Our study is performed on NHANES 1999–2014 data, which is
designed to assess the health status of participants in the United
States. We perform temporal validation within the NHANES
samples to evaluate the performance of our mortality risk scores.
To evaluate the generalizability of important features and rela-
tionships, we implement the IMPACT model on a geographically
distinct dataset with samples exclusively from the United King-
dom (UK Biobank). Although our qualitative findings were
consistent between NHANES and UK Biobank, there are differ-
ences between both populations, primarily in terms of age (37–72
in UKB vs. 18–80+ in NHANES), which also affects the base
rates of mortality in each data set. As such, further external
validation of our mortality models on datasets with similar dis-
tribution of variables and mortality rates should be undertaken to
further increase the generalizability of the findings.

Over the past several years, a variety of ML approaches have
been applied in the field of aging research to develop “clocks”
that can predict the chronological age of an individual based on
different phenotypic features62. The most common of these are
the epigenetic clocks that have identified patterns of methyla-
tion on DNA that change with age and can be used to predict
chronological age with high accuracy across a variety of dif-
ferent species and tissue types63,64. Other clocks based on gene
expression, metabolites, facial features, telomere length, etc.,
have also been described65. Efforts have also been made to use
these clocks to predict an individual’s biological age, which may
differ from their chronological age if they are aging more
rapidly or slowly than the general population. Such “biological
aging clocks” are expected to reflect the underlying health status
of the individual and be useful for predicting future health
outcomes and mortality. Although we have not yet attempted to
validate IMPACT as a tool for assessing biological age, those
individuals with lower IMPACT mortality risk than expected
for their chronological age would be predicted to have a lower
biological age, and vice-versa. Because IMPACT is trained to
predict all-cause mortality rather than fit to chronological age, it
will be of interest to determine how IMPACT compares to these
various clocks in predictive capacity, particularly if done for the
same cohort of individuals.

Prognosis research using complex ML models will likely
increase over the coming years as ML techniques continue to
rapidly develop. However, “black box” ML models that predict

without explaining are difficult for clinicians to trust and difficult
to extract meaningful information from. Therefore, the combi-
nation of complex ML models and ‘explainable artificial intelli-
gence’ (XAI) is necessary and urgent. IMPACT takes a
consequential step towards XAI for mortality prediction. This
study’s improvement in predictive accuracy and explanation of
complex ML models warrants further exploration for other epi-
demiological outcomes.

Data availability
No new data are generated in this study. The NHANES survey is a public-use data files
prepared and disseminated to provide access to the full scope of the data. The NHANES
data for all experiments in the paper is publicly available at https://www.cdc.gov/nchs/
nhanes/index.htm. A downloadable version of the dataset is available at https://github.
com/suinleelab/IMPACT. The UK Biobank data used in this study is obtained via
material transfer agreement as part of Data Access Application 59898. All data is
available by UK Biobank via their standard data access procedure (http://www.
ukbiobank.ac.uk/register-apply). The data underlying all figures are available in
Supplementary Data 2–9.

Code availability
All code for our study, including code to train the mortality prediction models and to
generate all figures included in the manuscript, are available at https://github.com/
suinleelab/IMPACT(archived at https://doi.org/10.5281/zenodo.689954166).
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