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Abstract

The propensity of protein sites to be occupied by any of the 20 amino acids is known as site-specific amino acid preferences (SSAP).

Under the assumption that SSAP are conserved among homologs, they can be used to parameterize evolutionary models for the

reconstruction of accurate phylogenetic trees. However, simulations and experimental studies have not been able to fully assess the

relative conservation of SSAP as a function of sequence divergence between protein homologs. Here, we implement a computa-

tional procedure to predict the SSAP of proteins based on the effect of changes in thermodynamic stability upon mutation. An

advantage of this computational approach is that it allows us to interrogate a large and unbiased sample of homologous proteins,

over the entire spectrum of sequence divergence, and under selection for the same molecular trait. We show that computational

predictions have reproducibilities that resemble those obtained in experimental replicates, and can largely recapitulate the SSAP

observed in a large-scale mutagenesis experiment. Our results support recent experimental reports on the conservation of SSAP of

related homologs, with a slowly increasing fraction of up to 15% of different sites at sequence distances lower than 40%. However,

even under the sole contribution of thermodynamic stability, our conservative approach identifies up to 30% of significant different

sites between divergent homologs. We show that this relation holds for homologs of diverse sizes and structural classes. Analyses of

residue contact networks suggest that an important determinant of these differences is the increasing accumulation of structural

deviations that results from sequence divergence.

Key words: site-specific amino acid preference, thermodynamic stability, biophysical models of protein stability, amino acid

substitution models, protein evolution.

Introduction

A variety of biophysical and evolutionary forces affect the

process of amino acid substitution in protein sequences.

Among these forces are the maintenance of molecular struc-

ture and function (DePristo et al. 2005); thermodynamic sta-

bility (Tokuriki and Tawfik 2009); purifying selection against

aggregation and misfolding (Drummond and Wilke 2008);

protein–protein interactions (Levy et al. 2012); and protein

expression (Rocha and Danchin 2004; Drummond et al.

2005). Over long-time scales, these forces manifest as biases

in the amino acid composition of proteins sequences, or site-

specific amino acid preferences (SSAP).

Evidence for the existence of SSAP comes from studies of

multiple sequence alignments of protein homologs (Göbel

et al. 1994; De Juan et al. 2013). Similar studies have revealed

that the correlation of SSAP between amino acid positions

contains information that is specific to distinct protein families

and folds, can be used to reconstruct protein contacts

(Morcos et al. 2011), are strongly associated to allosteric net-

works of residues responsible for function, and are often con-

served over long evolutionary distances (Lockless and

Ranganathan 1999; Shulman et al. 2004).

Accurate descriptions of the SSAP of a protein, or protein

family, are essential for modeling molecular evolution. Indeed,

models describing the tempo and mode of amino acid sub-

stitutions are the core machinery for the detection of diver-

gent homologs and the construction of accurate phylogenetic

trees (Yang 2014). The simplest of these models assumes that

sites evolve independently of other sites, and that transition

rates between different amino acids at a given site are pro-

portional to the overall amino acid abundance in proteins

(Dayhoff et al. 1978). Attempts to improve this model rely

on the description of multiple parameters, often obtained

from sequence data (Halpern et al. 1998), structural
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information (Koshi and Goldstein 1998), or more recently,

from large-scale mutagenesis experiments (Bloom 2014).

The improvement in phylogenetic fit obtained by these aug-

mented models emphasizes the importance of incorporating

site-specific information, as well as understanding the deter-

minants of the amino acid preference of sites.

Even though it is clear that the SSAP of proteins vary across

different structural folds, it is less clear whether the SSAP of

two protein homologs is conserved, or whether it depends on

sequence divergence. Answering this question has implica-

tions for the development of evolutionary models of protein

evolution. One practical reason is that in the case of largely

conserved SSAP, one would only need to estimate a single

site-specific substitution model per fold (i.e.,�2,000 models);

in contrast, low conservation of SSAP would imply the deri-

vation of models at much larger resolution (e.g., �15,000

protein families). A second important reason to understand

the constancy of SSAP is to assess the degree to which the

fixation of newly arising mutations in a population is influ-

enced by genetic background, a phenomenon generally

known as epistasis (Wolf et al. 2000). In particular, low/high

degrees of intragenic epistasis are expected to translate into

small/large differences between the SSAP of homologous pro-

teins. Despite several theoretical and empirical studies, how-

ever, we currently know little about the strength and

frequency of intragenic epistasis (Starr and Thornton 2016).

Pollock et al. drew interest to the problem of the constancy

of SSAP by using extensive computer simulations of a model

of the purple acid phosphatase protein (Pollock et al. 2012).

Their results suggest that the SSAP of protein homologs is

expected to change substantially as a function of mutations

at other sites in the structure and that the surface accessibility

of protein sites is an important determinant for the rate of

change of SSAP. The authors validated their predictions by

studying changes in thermodynamic stability of ferrodoxin.

They showed that increasing divergent ferrodoxin homologs

show consistent deviations in the reversibility of mutations

(Pollock et al. 2012). Similarly, another study explored the

effect of consecutive mutations under purifying selection for

thermodynamic stability in a model of the lysine–arginine–or-

nithine binding periplasmic protein (Shah et al. 2015). The

study showed that even at sequence distances of 30%, newly

arising mutations can strongly depend on the fixation of pre-

vious mutations, or conversely, determine the fixation of fu-

ture substitutions in a population. These initial observations

have recently gained experimental support (Starr et al. 2018).

Other researchers used mutagenesis experiments to ex-

plore differences in the SSAP of protein homologs. For in-

stance, a large-scale study collected sequence data for a

pair of closely related influenza nucleoprotein homologs and

showed that sequence divergences of 6% translated into 3–

15% changes in SSAP (Doud et al. 2015). Similarly, another

mutagenesis study compared three TIM-barrel domain homo-

logs and suggested that SSAP remained largely correlated at

30–40% of sequence divergence (Chan et al. 2017). Yet an-

other study used a resurrected thioredoxin protein with 42%

sequence divergence with respect to its extant (Escherichia

coli) homolog. The authors showed that exchanging the

amino acid identity at 21 positions by the amino acids at

the equivalent position in the thioredoxin homolog, led to

strongly correlated changes in thermodynamic stability

(Risso et al. 2015). These studies prompted authors to suggest

that, in contrast to simulation results, the SSAP between

homologs must be generally conserved at short, as well as

long evolutionary distances (Ashenberg et al. 2013; Doud

et al. 2015; Chan et al. 2017; Risso et al. 2015); however,

see Pollock and Goldstein (2014).

A limitation of previous studies, however, is that they only

compared site-specific preferences in few, mostly related

homologs (Doud et al. 2015; Chan et al. 2017). Similarly,

due to the difficulty of some experimental assays, recent stud-

ies have only compared the SSAP at few equivalent positions,

or relied on amino acid exchanges between homologs rather

than evaluating the full distribution of SSAP per site

(Ashenberg et al. 2013; Risso et al. 2015). Furthermore,

and more importantly, results from these studies cannot

always be directly contrasted, because the molecular trait

under selection might have a differential impact on the

SSAP. For instance, while some studies have focused on

thermodynamic stability (Pollock et al. 2012; Ashenberg

et al. 2013; Risso et al. 2015), other experiments were

based on selection for a specific function (Doud et al.

2015; Chan et al. 2017).

Here, we seek to provide an alternative perspective on this

problem by developing a computational procedure that

allows us to estimate the SSAP of proteins based on changes

in thermodynamic stability upon mutation. Despite its own

limitations, computational predictions allow us to interrogate

a large and unbiased sample of homologous structures, over

the entire spectrum of sequence divergence, and under selec-

tion for the same molecular trait. Thus, our observations may

help to clarify previous contrasting results between simulation

and experiment, as well as provide clues about sequence and

structure determinants responsible for differences in the SSAP

of protein homologs. Our analyses show that computational

predictions have reproducibilities similar to those observed in

experimental measurements of replicate preference profiles;

and can largely recapitulate the SSAP reported in a mutagen-

esis experiment. Analyses of a diverse sample of structure

homologs reveal a monotonic increase in the difference of

SSAP as a function of sequence divergence. Although our

observations are conservative, they generally support conclu-

sions from previous mutagenesis studies using closely related

homologs, but also suggest that even under the sole contri-

bution of thermodynamic stability, divergent homologs might

have up to 30% of sites with significant differences. Analyses

of residue contact networks suggest that the origin of these

differences lies at the increasing accumulation of structural
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deviations that result from sequence divergence. Finally, we

discuss the limitations and implications of our work.

Materials and Methods

Prediction of Site-Specific Preference Profiles

We predict changes in thermodynamic stability using the

force field implemented in the software FoldX

(Schymkowitz et al. 2005). The computational pipeline con-

sists of three main steps (fig. 1). First, we use the FoldX rou-

tines QualityAssessment and ReconstructSidechains to identify

erroneous side chains, and reconstruct residues with missing

atoms. Reconstructed versions of the input structures are op-

timized using the routine RepairPDB, which carries out a local

optimization by exploring sequential movements of residue

side chains (fig. 1A). Second, we use the FoldX routine

BuildModel to construct comparative models for all single

possible mutations at every site of the protein. Error is esti-

mated by modeling each mutant, five times. Third, we esti-

mate the change in thermodynamic stability (DDG) caused by

a mutation to residue a, at position r, with respect to the input

structure (wt), as: DDG ¼ DGr;a � DGr;wt. We use DDG val-

ues to derive the preference for amino acid at site r, according

to three existing biophysical models. These models relate

changes in thermodynamic stability to organismal fitness by

estimating the effect of mutation on the protein’s folding

probability (Pf Þ (fig. 1C). The reason is that Pf is inversely

related to aggregation and toxicity, which reduce organismal

fitness. Following several previous works (Pollock et al. 2012;

Doud et al. 2015; Echave et al. 2015); we define the propen-

sity of a site r to be occupied by the amino acid a, as:

pr;a ¼
Pf ðaÞP
j2APf ðjÞ

; (1)

where A is the set of 20 amino acids. We use the 20-com-

ponent vector pr
!, to represent amino acid preferences at site

r; while the full SSAP profile, with 20 entries per site, is rep-

resented by the matrix p.

Fitness Models Based on Protein Biophysics

The folding probability, Pf , in equation (1) can be calculated

by using three types of biophysical models that summarize our

current understanding of the relation between changes in

thermodynamic stability (DDG) and folding (Echave and

Wilke 2017; Bershtein et al. 2017). The so-called threshold

stability model accounts for the existence of a threshold of

minimal thermodynamic stability up to which a protein per-

forms optimally. According to this model, mutations that in-

crease stability have no effect on fitness, whereas mutations

that reduce stability below the threshold have an unfavorable

fitness effect, proportional to their decrease in stability. The

threshold stability model can be obtained from Boltzmann

statistics (Dill and Bromberg 2003); and has been derived in

the context of protein fitness, independently, several times

(Tokuriki and Tawfik 2009; Goldstein 2011; Wylie and

Shakhnovich 2011). According to Boltzmann statistics, the

folding probability of a protein can be calculated as:

Pf ¼
1

1þ eDG=kT
¼ e�DG=kT

1þ e�DG=kT
: (2)

In our analyses, DG is the Gibbs free energy associated to the

variant with amino acid a at site r, which can be expressed as:

DGr;a ¼ DDGþ DGr;wt . Thus, substituting DGr;a, and ap-

proximating DGr;wt � 0, equation (2) becomes:

Pf ¼
e�DDG=kT

1þ e�DDG=kT
: (3)

This model can be represented by a sigmoidal curve, such that

mutations causing stabilizing changes (DDG < 0), are mostly

neutral, whereas destabilizing mutations (DDG > 0) reduce

fitness (fig. 1C). In our study, we used equation (3), and by

exploring DGr;wt as a function of error in structural data, we

show that the approximation introduced in equation (2) does

not affect our main conclusions (see Supplementary Material).

A second model of the effect of stability on folding is called

maximum stability (Bloom et al. 2005; Echave et al. 2015;

Echave and Wilke 2017). This model assumes that stabilizing

mutations translate proportionally into a larger propensity to

fold and can be generally expressed as:

Pf ¼ ae�kðDDGÞn : (4)

For n¼ 1 and k ¼ 1=kT , we obtain the maximum stability

model. The constant a vanishes in equation (1). Echave et

al. (2015) studied the maximum stability model and used

structural data to fit the parameter k. They showed that under

the normalization in equation (1), one can safely assume k
¼ 1 (see eq. 13 and fig. 1 in Echave et al. 2015). For further

details on the derivation of the maximum stability model, see

Echave et al. (2015).

Using n¼ 2 in equation (4), we obtain the optimum stabil-

ity model (DePristo et al. 2005; Goldstein 2011; Shah et al.

2015; Echave and Wilke 2017). According to this model, Pf is

described as a Gaussian distribution, where fitness is optimal

at the thermodynamic stability of the reference sequence, and

both positive and negative deviations in stability, reduce Pf

(see Supplementary Material). Scripts to carry out the compu-

tational pipeline described above, using any of the three bio-

physical models, are provided in the Supplementary Material.

Simulations of Replicate Profiles and Correlation between
Profiles

In order to simulate replicates of a profile, with a given cor-

relation with respect to the initial profile, we compared two
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alternative approaches. First, we used the routine selection.-

randomize_xyz of the software Modeller (Sali and Blundell

1993). We construct models of identical sequence with re-

spect to the input structure, but introducing random devia-

tions of 61 to 64 Å in their backbone atomic coordinates

(fig. 1D). Structural deviations were measured as the structure

root-mean squared deviation (sRMSD) over the n pairs of

equivalent sites between the homologs, as:

sRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
di

r
: (5)

With di, the Euclidean distance between equivalent sites. A

pair of sites in two homologous structures is said to be equiv-

alent if their Ca atoms are at distance of 3.5 Å or closer, after

optimal superposition. In a second approach (fig. 1E), we sim-

ulated replicate profiles by generating a random sample of

size n from a multinomial distribution (mr
!), centered at the

amino acid preferences of site r: pr
!. In order to better control

for the degree of error in pr
!, we introduce noise (nr;a) distrib-

uted as a normal random variable centered at mr;a: N ½mr;a;

r�: Then, the new SSAP for amino acid a at site r, is recom-

puted, as:

p�r;a ¼
mr;a þ nr;aP

j2A½mj;a þ nj;a�
: (6)

Replicate profiles with decreasing correlations with respect to

the initial profile were obtained by setting n¼ 100, and vary-

ing the parameter r: Because both of these methods, the

direct modeling of error in atomic coordinates and the intro-

duction of noise, led to similar conclusions, we use the second

approach, which is computationally more efficient, and

should be less dependent on structural error across different

input structures. The correlation between two profiles

(pa;pbÞ, as well as the correlation between a profile and a

replicate, was calculated using the Pearson correlation coeffi-

cient. In order to correct for multiple testing, we used the

method of false discovery rate (FDR) (Benjamini and

Hochberg 1995). MATLAB code to simulate profile replicates,

determine correlations, and calculate FDR is provided as part

of the Supplementary Material.

Data Collection and Curation

We obtained GB1 protein sequencing data from Olson

et al. (2014); and GB1’s SSAP profile using the program

dms_inferprefs.py from the dms_tools software (Bloom

2015). In addition, we collected three additional structure

data sets. In all cases we obtained data from SCOP (version

2.05, February 2015) (Murzin et al. 1995); filtered struc-

tures at the domain family level, larger than 50 amino

acids, and with no DNA, RNA, or any other cocrystallized

ligand in their original PDB entries. The first data set is

composed of 175 homologous pairs of 100% sequence

identity, solved by X-ray crystallography with resolutions

ranging from 1.1 to 3.7 Å, and representative of the four

main SCOP structural classes (supplementary table S1,

Supplementary Material online). The second data set was

obtained from the immunoglobulin binding family (SCOP
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FIG. 1.—Computational prediction of site-specific amino acid prefer-

ences. The procedure consists of three main steps. (A) We use three

routines of the software FoldX to assess the quality of the input structure,

reconstruct missing atoms and optimize thermodynamic stability. (B) The

optimized structure is used as a template to build all (i.e., 19 times the

protein length) possible single-mutant models. Each model is built five

independent times. (C) Average changes in thermodynamic stability are

used to calculate changes with respect to the stability of the input structure

(DDGr,a); and then used to calculate SSAP using three models for the effect

of thermodynamic stability on organismal fitness, according to equations

(3) and (4). We simulate SSAP profiles by either (D) generating comparative

models with random deviations in their atomic coordinates, and then re-

peating steps (B) and (C); or (E) by adding Gaussian noise to a multinomial

distribution centered at the initial distribution of SSAP of each residue, and

repeating the procedure for each residue in the SSAP profile (see Materials

and Methods).
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family id: d.15.7.1) (supplementary table S2,

Supplementary Material online). From this data set, con-

sisting of 95 structure domains, we obtained a subset of

40 domains of high quality, solved by X-ray crystallogra-

phy, with resolution � 2.5 Å; or solved by nuclear mag-

netic resonance, and with initial thermodynamic stabilities

lower than 0.5 kcal/mol. Finally, a third data set is com-

posed of 124 pairs of representative homologs from the

four main structural classes in SCOP, with lengths of 50–

250 amino acids. This data set only included X-ray crystal

structures, and selected alignments that span at least

95% of residues in each structure, and have sequence

divergences of 0–100% (supplementary table S3,

Supplementary Material online). As mentioned above, in

all these data sets we used the software FoldX to assess

structure quality, reconstruct incomplete side chains, and

optimize thermodynamic stability using FoldX’s repairPDB

routine. Lists with structure ids of each data set are pro-

vided as part of the Supplementary Material.

Structural Alignments and Structural Deviations

We collected 4,270 protein families from the 4 main structural

classes of SCOP (version 2.05) (i.e., all-a, all-b, aþ b, and a/b).

We used the software TopMatch (Sippl and Wiederstein

2012), to perform pairwise structural alignments between

pairs of protein domains that belonged to the same SCOP

domain family, in an all-against-all manner. Because largely

diverged proteins accumulate short insertions and deletions,

we only studied alignments with sequence coverage larger

than 95% of the structures under comparison. A pair of sites

in two homologous structures is said to be equivalent if their

Ca atoms are at distance of 3.5 Å or closer, after optimal

superposition (Sippl and Wiederstein 2012). Structural devia-

tion between pairs of structures was measured as the sRMSD

over the equivalent Ca-carbons (eq. 4). Alignments output by

TopMatch maximize the number of equivalent sites between

query and target structures. Because largely divergent homo-

logs might be prone to misalignments, we identified alterna-

tive alignments with equally large coverage. All protein

sequences, structures, SCOP ids, and structural alignments

used in this work are provided as part of the Supplementary

Material.

Distance Metric and Exact Randomization Test

In order to identify sites with statistically significant amino acid

preferences, we used the method described in Doud et al.

(2015). The method is based on the Jensen–Shannon (JS)

metric, a theoretic information measure for calculating the

distance between discrete distributions (Lin 1991). The JS

metric between the SSAP of two sites is calculated as the

squared root of the JS divergence, and ranges between 0

and 1 for the minimum and maximum distance, respectively.

Given two data sets, each consisting of a set of replicate

preference profiles: [pa
1; pa

2; pa
3; . . . ; pa

n� and

[pb
1; pb

2; pb
3; . . . ; pb

m�; the method accounts for measure-

ment error by comparing the RMSD of pairs of equivalent

SSAP between profiles within and between data sets. To de-

termine whether a site r has significantly different SSAP be-

tween two profiles (paðrÞ and pbðrÞ), the method first

calculates the RMSD of the JS distance for all pairwise com-

parisons of SSAP at site r, in each separate data set (i.e., all

pairwise comparisons of paðrÞ over the n replicates of the pa

data set; and all pairwise comparisons of pbðrÞ between the m

replicates in the pb data set). This quantity is called

RMSDwithin(r). Second, the method calculates the RMSD of

the JS distance for all pairwise comparisons of SSAP at site

r, for replicate profiles between the two data sets (i.e., mxn

comparisons). This quantity is called RMSDbetween(r). Finally,

the method calculates a normalized RMSD value for the

site, or: RMSDcorrected(r) ¼RMSDbetween(r) - RMSDwithin(r). A

null distribution for RMSDcorrected for site r, can be obtained

through an exact permutation test, by exchanging replicates

of preference profiles between the pa and pb data sets, and

recalculating RMSDcorrected(r) (e.g., and detailed explanation,

see Doud et al. 2015). MATLAB code that implements Doud

et al.’s method, and the permutation test is provided in the

Supplementary Material.

Residue Contact Networks and Structural Analyses

To construct a residue contact network for the GB1 protein

we estimated the fraction of times (E) two residues were ob-

served in contact across all 1,064 single-mutant models. Two

residues were defined in contact if at least one of their side

chains atoms were at an Euclidean distance � 3.5 Å; from

each other (supplementary fig. S2, Supplementary Material

online). Shortest path lengths were calculated using the

Dijkstra algorithm, as implemented in MATLAB

(MathWorks 2005). In addition, we constructed residue

contact networks for 1mi0 and two of its Ig-binding

homologs. In the case of this second network, we defined

two residues in contact if any of their atoms were at a

distance � 3.5 Å; and distinguished among contacts per

site (r), that were conserved (Cr , observed in both homo-

logs); gained (Gr , only in the 1mi0’s homolog); or lost (Lr ,

only in 1mi0 and not in the homolog). We calculated the

fraction of rewired contacts (f r ) by distinguishing between

the set of contacts at a given site r, in the first (Ha
r ) and

second (Hb
r ) homolog, such as:

f r ¼ 1� J Ha
r ;H

b
r

� �
¼ Gr þ Lr

Gr þ Lr þ Cr
; (7)

where J Ha
r ;H

b
r

� �
is the Jaccard index between the sets: Ha

r

and Hb
r . Amino acid volumes were obtained from the litera-

ture (Richards 1977; Wimley and White 1996); GB1 structure

was illustrated using PyMol (DeLano 2002); surface accessibil-

ity was calculated using Naccess version 2.1.1 (Hubbard and
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Thornton 1993); and residue contact networks using the soft-

ware Cytoscape (Shannon et al. 2003).

Results

Computational Prediction of SSAP

We start by implementing a computational procedure to es-

timate the SSAP of a protein. The procedure only uses struc-

tural information and is based on the computational modeling

of single mutations followed by predictions of changes in

thermodynamic stability (DDG) (fig. 1). SSAP can be estimated

by using models of protein biophysics that relate DDG values

to cellular fitness. The central idea is that mutations causing

changes in thermodynamic stability affect a protein’s propen-

sity to fold (Pf ), a property strongly associated with fitness, via

pathways leading to aggregation and toxicity (Drummond

and Wilke 2008).

Three main alternative biophysical models have been

proposed to explain the effect of stability on protein fold-

ing (Bershtein et al. 2017; Echave and Wilke 2017). The

maximum stability model simply assumes that (de)stabiliz-

ing mutations contribute (un)favorably to folding. This

model emerged from observations of strong selection for

thermodynamic stability, and can be mathematically

expressed by assuming that changes in stability result on

an exponential decay of the protein’s folding propensity

(eq. 4; fig. 1C, red curve). In contrast, the threshold stabil-

ity model accounts for the existence of a critical level of

thermodynamic stability up to which a protein performs op-

timally. This model arose from experimental evidence showing

that proteins are often marginally stable and therefore, under

some circumstances, the relation between stability and folding

might follow a sigmoidal function (eq. 3; fig. 1C, black curve).

Finally, the optimum stability model, accounts for constraints on

functional performance. The main assumption of this model is

that protein function is optimized at a particular value of ther-

modynamic stability, such as both stabilizing and destabilizing

mutations are unfavorable. The model can be mathematically

expressed as a Gaussian function centered at the protein’s op-

timal stability (eq. 4; fig. 1C, blue curve). We use equation (1) to

compute site-specific preferences according to these three

models (see Materials and Methods). SSAP for an entire protein

are summarized by a matrix p that we call preference profile (or

SSAP profile).

Reproducibility and Comparison of Computationally
Predicted Amino Acid Preference Profiles

Predictions of SSAP profiles are subject to error. In the case of

SSAP profiles obtained experimentally, error is estimated by

measuring replicate profiles for the same protein, multiple

times. Then, differences between the profiles of two proteins

are quantified by taking into account variation in the respec-

tive replicates (Doud et al. 2015). The computational pipeline

presented above allows us to predict a protein’s SSAP profile

based on structural data. However, because protein structures

are rarely resolved more than once, we cannot use our com-

putational pipeline to directly calculate replicate profiles from

empirical data. We solve this problem by devising a method to

simulate replicate profiles with an arbitrary degree of correla-

tion with respect to the initial profile.

First, we reason that profiles predicted from structures of

identical sequences are expected to have undetectable differ-

ences, or maximum similarity. We identified 175 pairs of

structures with 100% sequence identity, and representative

of the four main SCOP structural classes (supplementary table

S1, Supplementary Material online). Second, for each of these

structure pairs, we predicted preference profiles using our

computational pipeline. Error in our predictions can arise

from different sources such as variation in the quality of struc-

tural data, the intrinsic conformational flexibility of proteins,

or from the limited accuracy of molecular force fields at pre-

dicting thermodynamic stability. In a pair of structures of iden-

tical sequences a combination of these factors should be

reflected in the structural variation between pairs. Indeed,

the set of structure pairs of identical sequences revealed a

strong association between the correlation coefficient of their

predicted SSAP profiles and structural variation, measured as

the sRMSD (eq. 5) (Pearson’s r ¼ –0.55, P-value¼
1.95� 10�15) (fig. 2A).

Third, we devised a method to simulate replicate pro-

files with an arbitrary degree of correlation with respect to

the initial profile. The method generates variation on an

SSAP by introducing noise distributed as a normal random

variable centered at the values of amino acid preferences

of a site (pr;aÞ (eq. 6). By repeating such procedure for each

site of a profile, and for each of the 175 pairs of structures,

we simulated replicates with correlations ranging from a

Pearson’s r of 1.0–0.5. Finally, we used the method imple-

mented in Doud et al. (2015) to identify the correlation

between replicates so that the error rate for the detection

of significant differences between SSAP in the 175 null

pairs was approximately 5%. We found that, under the

null hypothesis that homologs of identical sequence have

identical SSAP profiles, replicate profiles with Pearson cor-

relation coefficients of 0.60 led to an error rate of less than

5% in nearly 100% of comparisons (fig. 2B). Alternative

biophysical models led to similar conclusions (supplemen-

tary fig. S2, Supplementary Material online).

We note that a Pearson correlation coefficient of 0.60 is a

conservative definition. The reason is that structures of iden-

tical sequence do not necessarily lead to identical SSAP pro-

files (i.e., our null hypothesis is not always true) (fig. 2A). In

particular, our control set of proteins (N¼ 175 pairs) includes

structures of diverse folds and sizes, and with resolutions

ranging from 0.8 to over 3.0 Å (supplementary table S1,

Supplementary Material online). However, an overall

Pearson correlation coefficient of 0.60 is not very different
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from replicate profiles obtained in large-scale mutagenesis

studies, which show average correlations of 0.67 [e.g., 0.78

and 0.83 in human influenza nucleoprotein (Doud et al.

2015); 0.55–0.62 in human influenza hemaglutinin

(Thyagarajan and Bloom 2014); 0.66 in Tn5 transposon

(Melnikov et al. 2014)]. Indeed, 80% of the protein pairs in

this control set shows at most 2% of sites misclassified as

different (fig. 2B); and smaller correlation coefficients lead

to similar differences (see below). Thus, in order to evaluate

the similarity between SSAP profiles, we proceed as follows:

For each profile under comparison we simulate pairs of rep-

licates with an average Pearson’s correlation coefficient of

0.60, then we use the Doud et al. method to identify signif-

icant differences between SSAP profiles at a significant level

of 5%.

Computational Predictions Recapitulate the SSAP
Observed in a Large-Scale Mutagenesis Study

We first tested the performance of the computational pipeline

introduced above by focusing on a single protein structure,

the domain B1 of the immunoglobulin-binding protein G

(GB1) (Sauer-Eriksson et al. 1995). GB1 is 56 amino acid

long with an a þb fold, for which large-scale mutagenesis

(Olson et al. 2014), as well as extensive structure, kinetic and

thermodynamic data are available (Sauer-Eriksson et al. 1995;

Malakauskas and Mayo 1998; McCallister et al. 2000;

Wunderlich et al. 2007).

We obtained mutagenesis data for all single mutations of

GB1 from Olson et al. (2014), and used it to derive an SSAP

profile. We refer to this profile obtained experimentally, as

observed profile (fig. 2C, upper panel). In addition, we

A B D

C

FIG. 2.—The effect of structural deviations on the prediction of amino acid preferences and comparison of observed versus predicted preference profiles

for the GB1 protein. (A) Association between structural deviations and the correlation coefficient for a set of 175 structure pairs with 100% sequence identity

using the threshold stability model. Structural deviations were measured as the residual root-mean square error (sRMSD) between Ca carbons. Correlations

between the predicted preference profiles, for each structure in the set of 175 pairs, were calculated according to the Pearson coefficient. (B) Cumulative

distribution of the fraction of different sites per pairwise comparison versus the fraction of comparisons in the set of 175 structure pairs of identical

sequences. Comparisons of SSAP profiles were carried out using the method of Doud et al. at a significance level of 5%. For each structure in the

comparison, replicate profiles were simulated with Pearson correlation coefficients of 0.9 (purple), 0.8 (yellow), 0.7 (red), 0.65 (green), and 0.60 (blue). Data

were calculated using the threshold stability model (cf. supplementary fig. S2, Supplementary Material online). (C) Top panel shows the GB1 observed profile,

obtained from Olson et al. (2014). Bottom panel shows the predicted profile using GB1 crystal structure (PDB: 2gi9), and the pipeline described in figure 1.

Profiles were calculated using the maximum stability model (cf. supplementary fig. S3, Supplementary Material online). Sites were sorted according to their P-

value (**P-value<0.05). Sequence logos were constructed using the program dms_plotlogo (Bloom 2015). (D) Average fraction (and number) of sites with

significantly different SSAP (P-value <0.05), between observed and predicted GB1’s profiles, as a function of the average correlation coefficient among

replicates. Predicted profiles were calculated using three alternative models for the effect of thermodynamic stability on fitness: Maximum (red); threshold

(black); and optimum (blue) stability models (see Materials and Methods).
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identified a crystal structure with 100% sequence identity

with respect to the protein used in Olson et al. (2014) (PDB:

2gi9); and derived an SSAP profile through the computational

procedure described above. We refer to the SSAP profile

obtained computationally, as predicted profile (fig. 2C, lower

panel). Finally, in order to compare observed versus predicted

preference profiles, we simulated replicate profiles with an

average Pearson’s correlation of 0.60, and identified sites

with significant differences in amino acid preferences using

the Doud et al. method (Doud et al. 2015).

The computational procedure implemented here identifies

the most salient differences between observed versus pre-

dicted profiles (fig. 2C). A small fraction of sites shows a

strong departure from their observed/predicted preferences.

By definition, most of these sites are easily classified as having

either very different (e.g., sites 22, 27, and 31); or very similar

(e.g., 39, 41) SSAP. In addition, a large fraction of sites shows

highly uniform amino acid preferences, and as in the case of

large deviations in SSAP, their preferences are often predicted

correctly. In contrast, sites with intermediate departures from

uniformity are more difficult to predict. Most of these sites

seem to have mild to strong biases toward a particular amino

acid, often with physicochemical properties similar to the

equivalent site in the observed profile (e.g., sites 5, 9, and

54) (fig. 2C).

As expected, the fraction of sites with significant differ-

ences in SSAP depends on the correlation coefficient of the

simulated replicate profiles (fig. 2D). Replicate profiles with

larger correlation coefficients (i.e., less measurement error),

translate into a larger fraction of different sites. Replicates

with an average Pearson’s correlation coefficient of 0.60

translate into six sites with statistically significant differences

in SSAP (10%); and as suggested by our previous analysis, a

smaller correlation coefficient lead to very similar differences

(fig. 2D).

Interestingly, the use of alternative biophysical models for

the effect of thermodynamic stability on fitness has little im-

pact on the classification of sites with significantly different

SSAP (fig. 2D and supplementary fig. S2, Supplementary

Material online). The same six sites were identified as signifi-

cantly different in all three models. The exponential model,

however, seems to provide with a slightly better matching

between predicted and observed profiles (fig. 2C and supple-

mentary fig. S3, Supplementary Material online).

Protein Sites Involved in GB1 Molecular Function Explain
Unexpected Deviations in Amino Acid Preferences

Because the computational pipeline presented above is ag-

nostic to the functional constraints experienced by GB1, and

only can aspire to capture the contribution of thermodynamic

stability in an isolated structure, we hypothesize that sites

showing significant departures from the observed SSAP, are

directly involved in the molecular function of GB1. We test this

hypothesis using a crystal structure of GB1 bound to its nat-

ural ligand: The Fc domain of the immunoglobulin protein

(PDB: 1fcc). This crystal structure provides direct information

about the residues involved in GB1-binding function, as

assayed in the mutagenesis experiment of Olson et al. (2014).

According to the crystal structure of GB1 in complex with

the immunoglobulin subunit (Fc), the binding interface lies

along the external face of GB1’s alpha helix (fig. 3, residues

in red); and encompasses five main residues that interact at

distances closer than 3.0 Å with residues in the Fc chain.

Notably, the binding interface includes sites 27, 31, and 35;

which are among the sites most significantly deviated with

respect to the observed GB1 preference profile (figs. 2C and

3). However, the other two residues, part of the binding in-

terface at positions 28 and 43, are not among the sites with

significant differences in SSAP detected through our

procedure.

We collected additional evidence in support of the impact

of GB1-binding function on sites with significantly deviated

SSAP (see Supplementary Material). Firstly, previous studies

suggest that site 22 is most likely involved in GB1’s folding

kinetics, which might explain why, in contrast to other sites

showing significant deviations, preferences at position 22 de-

viate strongly in the predicted but not in the observed profile

(fig. 2C). Secondly, we used all single-mutant structure mod-

els of GB1 to construct a residue contact network and dem-

onstrated that sites with significant deviations in their amino

acid preferences (i.e., 5, 54; or 5, 22, 54) are significantly

closer than expected to residues involved directly in GB1-bind-

ing function when compared with any other sets of two or

three randomly chosen residues in the structure (see

Supplementary Material).

Overall, our results suggest that significant differences be-

tween predicted and observed SSAP profiles are strongly

influenced by GB1’s binding function, and therefore their de-

viation is unlikely to be explained by effects on thermody-

namic stability alone. Overall, analyses of GB1’s crystal

structures reveal that out of the six sites (10%) with significant

differences between the observed and predicted preference

profiles, three sites (5%) are directly involved in the function

under selection in the large-scale mutagenesis experiment;

whereas the remaining three sites are significantly compro-

mised by functional (and possibly kinetics) constraints. More

importantly, our analyses suggest that thermodynamic stabil-

ity can substantially contribute to the SSAP of proteins, and

that the computational procedure implemented here can re-

capitulate such contribution.

The SSAP of Homologous Proteins Depends on Sequence
Divergence

In order to investigate differences in the SSAP of homologous

proteins, we collected 95 homologous structures of the GB1

protein, which according to the SCOP classification, belong to
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the Ig-binding domain family (supplementary table S2,

Supplementary Material online). GB1 homologs show an

a þb fold, and despite of high-sequence divergence, they

have a conserved function: The binding of the Fc immuno-

globulin domain (Sauer-Eriksson et al. 1995). We aligned all

possible pairs of structures in the GB1 family, selected 870

alignments that span on average 95% or more residues per

structure, and have sequence divergences that range from 0

to over 90%. Finally, we applied our prediction pipeline to

each structure; and used the Doud et al. method to estimate

significant differences in the SSAP of pairs of profiles, as de-

scribed above.

We first explored the average JS distance between profiles

as a function of sequence divergence. In the case of Ig-

binding domain homologs there is a monotonic increase of

up to 5–10% (supplementary fig. S5A, Supplementary

Material online). Increasing JS distances between profiles are

accompanied by a substantial fraction of sites with statistically

significant differences (fig. 4A). Consistent with findings

reported by experimental studies, sequence divergences of

up to 40% lead to changes of over 15% percent of sites

(Doud et al. 2015; Chan et al. 2017). In addition, we also

observe that increasing sequence divergences lead to larger

fractions of sites with significant differences in SSAP. In the

case of the Ig-binding domain family, these differences reach

up to 25–30% of sites (fig. 4A).

In order to discard effects of structure quality on our

results, we selected a subset of Ig-binding domain homologs

with resolutions better than 2.5 Å, and conservative initial

thermodynamic stabilities (see Materials and Methods). The

effect of sequence divergence was also observed in this more

conservative set of Ig-binding domains (supplementary fig. S6,

Supplementary Material online). In addition, we tested alter-

native models for the effect of thermodynamic stability on

fitness. In both, the optimum and threshold stability models

we observed significant differences in SSAP reaching up to

30% of sites (supplementary fig. S7, Supplementary Material

online).

Next, we wanted to explore whether the observed depen-

dency of SSAP on sequence divergence is a peculiarity of the

Ig-binding family, or whether it also holds for homologs of

larger size and different folds. To answer this question, we

identified 124 pairs of homologs across the four main struc-

ture classes of fold architectures compiled by SCOP (Murzin

et al. 1995) (supplementary table S3, Supplementary Material

online). For each of these pairs, we carried out structural align-

ments, predicted preference profiles, and identified significant

differences using the method of Doud et al. as described

above. As in the case of the Ig-binding family, changes in

thermodynamic stability predict a significant monotonic in-

crease in the fraction of sites with significant differences as

a function of sequence divergence (fig. 4B). As observed ear-

lier, alternative models for the effect of thermodynamic sta-

bility on fitness lead to similar results (supplementary fig. S7,

43
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5

45
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FIG. 3.—Spatial distribution of sites with significant differences be-

tween observed versus predicted site-specific amino acid preferences of

the GB1 protein. GB1 crystal structure (PDB: 2gi9) illustrating the spatial

distribution of sites with significantly different SSAP detected through the

comparison between observed and predicted preference profiles. Residues

were colored according to P-values calculated according to the Doud et al.

method. Residues with significant differences in SSAP, were classified as

directly involved in GB1 binding interface (red): 27, 28, 31, 35 (dotted); 43

(sticks); and indirectly involved (blue): 5, 22, and 54 (sticks). Panels show

the structure observed from three different angles of 45� of rotation

around the vertical axis.
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Supplementary Material online). Our analyses revealed that

the relation between sequence divergence and SSAP also

holds for protein homologs of varying sizes, and diverse struc-

tural folds.

Structural Deviations and the Amino Acid Preferences of
Protein Homologs

Our analyses show that despite large structural diversity be-

tween pairs of homologs, there is a consistent degree of dis-

similarity in the SSAP as a function of sequence divergence.

Here, in order to gain insights on the structural determinants

of these differences, we study a single member of the Ig-

binding family (PDB: 1mi0), and two of its homologs at short

(PBD: 1uwx), and long (PDB: 1hez) sequence distances. The

homologous pair 1mi0/1uwx has a sequence divergence of

23%, with only three sites (5%) having significant differences

in SSAP. In contrast, the homologous pair 1mi0/1heze has a

sequence divergence of 89%, with 17 (29%) significantly

different sites (fig. 5A and B). To gain insights on the molec-

ular determinants of these differences, we constructed
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FIG. 4.—The site-specific amino acid preferences of homologous proteins depend on sequence divergence. Fraction of sites with significant differences

in SSAP between pairs of homologous structures, as a function of sequence divergence. (A) Comparisons of pairs of Ig-binding domain homologs. The Ig-

binding domain family is composed of 95 structures. We compared 870 significant alignments that span on average 95% of residues in each structure and

show sequence divergences that range from 0 to over 90%. (B) Comparisons of pairs of structurally diverse homologs. We compared 124 pairs of

representative homologs of the 4 main structural classes in SCOP, spanning sequence divergences of 0–90%, and ranging from 50 to 250 residues in

length (see Materials and Methods).
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residue contact networks. We identified differences between

equivalent sites by distinguishing between gained, lost and

conserved contacts (edge coloring); substituted and

conserved sites (node label colors); and in the case of sites

with amino acids substitutions, we calculated absolute

changes in volume (node size) (fig. 5C and D).

C D

A

B

Fig. 5.—Sequence divergence and the site-specific amino acid preference of pairs of immunoglobulin-binding protein homologs. We compared two

pairs of Ig-binding protein homologs of known structure. The first pair (SCOP ids: 1mi0, A and 1uwx, A) has 23% sequence divergence (A, C). The second

pair (SCOP ids: 1mi0, A and 1hez, E) has 89% sequence divergence (B, D). (A, B) Preference profiles were predicted according to the pipeline described in

figure 1. Sites were sorted according to their P-values. Sequence alignments show substituted (orange) and conserved (blue) sites. Sequence logos were

constructed using the program dms_plotlogo (Bloom 2015). (C, D) Residue networks were constructed by connecting any two at �3.5 Å, including side

chain atoms. In the case of conserved residues, node size is proportional to the volume of amino acid side chains. If the residue was substituted, node size is

proportional to the absolute difference in volume between the residues. Red circled nodes represent significant differences in SSAP; dark gray to light blue,

decreasing nonsignificant differences. Node labels were colored according to their conservation between substituted (orange) and conserved (blue). Edges

were classified as conserved (solid gray, observed in both homologs), gained (dashed green, only in the 1mi0’s homolog), and lost (dashed purple, only in

1mi0 and not in the homolog).
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A first striking effect of sequence divergence is a substan-

tial reorganization of the contacts between residues. The frac-

tion of rewired contacts (f r ) at site r can be calculated as the

ratio between gain and lost contacts, with respect to the total

contacts (eq. 6; see Materials and Methods). Indeed, 25% of

the contacts were either lost or gained in the pair of close

homologs (16 gained, 23 lost, 118 conserved); whereas f r

increased to 39% in the more divergent pair (31 gained, 36

lost, 105 conserved). Notably, most rewired regions of the

networks seem strongly associated to sites with significant

changes in SSAP. For instance, sites 24–27, as well as 46–

59–48 in the 1mi0–1heze pair (fig. 5D). In addition, as sug-

gested by the peripheral distribution of sites with nonsignifi-

cant differences in SSAP (e.g., sites 40, 41, 37, 33, 29 in

fig. 5B and D); sites with on average larger surface accessibil-

ities probably have more uniform SSAP. To test this hypothe-

sis, we compared the entropy of the distribution of amino acid

preference per site of buried (surface accessibility<25%) and

exposed residues. We found that exposed sites have signifi-

cantly more uniform SSAP (supplementary fig. S8,

Supplementary Material online).

A third observation relates to the combined effect of con-

tact density and the fraction of amino acid substitutions in the

neighborhood of a site. The residue networks suggest that

most significant differences are associated with absolute

changes in the volume of substituted amino acids (e.g., sites

14, 19 in fig. 5C; sites 35, 46, 48 in fig. 5D); and/or the

number of amino acid changes in neighboring sites (e.g., 14

in fig. 5C; site 57 in fig. 5D). A combination of these two

effects can be seen at site 8, which in the closest pair of

homologs (fig. 5A and C), is a conserved tyrosine, has a pre-

dominant preference for aromatic residues, no significant dif-

ferences in SSAP, and interacts with other 9 (mostly

conserved) sites, 2 of which were lost in the 1uwx homolog.

In contrast, site 8 in the more divergent pair of homologs

(fig. 5B and D), has been substituted for an isoleucine residue;

four of its nine original contacts were lost, one gained, and

consequently the site has significantly shifted its preferences.

In order to generalize our observations and quantify the

impact of structural rearrangements on a site’s amino acid

preferences, we calculated the fraction of rewired contacts

(f r ) between pairs of equivalent sites at position r. Our anal-

yses included 14,460 comparisons of SSAP, collected from

124 homologous pairs, distributed across the four main struc-

tural classes in SCOP (supplementary table S3, Supplementary

Material online). As expected, we find that pairs of sites with

significant differences in SSAP reshape on average 40% of

their contact shell, which is two times the expected fraction of

changes at sites with nonsignificant differences in SSAP

(Wilcoxon’s Rank Sum test, P-value¼ 1.7� 10�92).

Most changes in the number of contacts at a particular site

must be due to both, the amino acid substitution at the site,

as well as the substitutions at other positions in the structure.

In order to tease these factors apart, we distinguished

between sites that have been substituted and sites with con-

served amino acids, and calculated f r as a function of se-

quence divergence. Our results reveal that, regardless of the

sequence divergence between homologs, substituted sites ex-

perience relatively constant f r values, with an average of 30–

40% of rewired contacts (fig. 6). In contrast, conserved sites

reveal a monotonic increase in f r , such as, at sequence dis-

tances of approximately 70%, changes in their contact shells

are as large as the expected changes in f r at substituted sites

(fig. 6). In other words, at sequence divergences of >70%,

the effect of genetic background on the contact shell of con-

served sites vanishes, becoming undistinguishable from the

contact shell of substituted residues.

Discussion

A currently debated question is whether the SSAP of protein

homologs is conserved, or depends on sequence divergence

(Pollock and Goldstein 2014). Here, we developed a compu-

tational procedure to estimate the SSAP of a protein based on

structural information and the effect of point mutations on

thermodynamic stability. Predictions were able to largely re-

capitulate the SSAP reported in a mutagenesis experiment of

the GB1 protein, suggesting that our approach is relatively

accurate and that thermodynamic stability can substantially

contribute to the SSAP of proteins. We used our computa-

tional procedure to study a large sample of diverse
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Fig. 6.—The fraction of rewired contacts at conserved sites depends

on the sequence distance between homologous proteins. Fraction of

rewired contacts at equivalent sites (fr ) between homologous proteins at

increasing sequence distances. All pairs of equivalent sites (14,460) were

divided between substituted (gray; N¼6,134) and conserved (blue;

N¼8,326), and classified according to the sequence distance between

the corresponding pair of homologs. For each site, in each sequence dis-

tance class, we calculate the average fr ; and estimate 95% confidence

intervals using the bootstrap (n¼10,000).
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homologous structure pairs, and showed that the contribu-

tion of thermodynamic stability alone can lead to a monotonic

increase of up to 25–30% of significant differences between

SSAP, as a function of sequence divergence. Our conservative

analysis revealed that differences in SSAP are consistent across

a structurally diverse set of homologous proteins; and identi-

fied structural rearrangements as an important force driving

differences in SSAP.

Thermodynamic stability is a universal biophysical force

known to impact the viability of proteins in the intracellular

media, and is therefore, a strong determinant of protein

evolutionary rate (DePristo et al. 2005; Tokuriki and Tawfik

2009). Thermodynamic stability might be strongly promoted

under environmental conditions, such as high temperatures

(Sterner and Liebl 2001); or in populations of large size

(Goldstein 2011). Under such conditions, the relation be-

tween stability and fitness is well explained by a model of

maximum stability (Goldstein 2011). However, thermody-

namic stability might not necessarily be under strong selec-

tion. In fact, several authors have reported cases in which a

protein seems only marginally stable, suggesting the exis-

tence of a critical level of stability up to which proteins can

afford to remain folded (i.e., threshold stability model).

Marginal stability might be simply the result of genetic drift

(Goldstein 2011); or the effect of purifying selection on con-

flicting molecular traits such as function and flexibility

(Arnold et al. 2001; Tokuriki et al. 2008). Notably, our

work shows that under alternative biophysical models simu-

lating these regimes of selection for stability, the contribution

of thermodynamic stability is sufficient to induce significant

changes in the SSAP of divergent homologous proteins.

The case has been made that, due to the conservation of a

protein’s structure and function, amino acid substitutions at

equivalent sites should preserve changes in the thermody-

namic stability of closely, as well as distant homologous pro-

teins (Ashenberg et al. 2013; Risso et al. 2014; Doud et al.

2015). Indeed, our results support this observation by show-

ing that regardless of sequence divergence, a large fraction of

sites shows relatively similar effects on thermodynamic stabil-

ity. However, our results also revealed that a significant frac-

tion of equivalent sites, as large as 	30%, can be strongly

impacted by sequence divergence (i.e., genetic background).

Why does selection for thermodynamic stability lead to

significant changes in the SSAP of divergent homologous

proteins? A well-known result from classic comparative stud-

ies of protein structures is that amino acid substitutions be-

tween homologs can lead to the exponential accumulation of

structural deviations (Chothia and Lesk 1986). These devia-

tions are most likely the result of amino acid substitutions at

buried sites, which in turn are more likely to contribute to

changes in thermodynamic stability, and at sequence distan-

ces of 70%, are predicted to induce deviations larger than

2.0 Å (Chothia and Lesk 1986). Indeed, structural analyses of

pairs of homologous structures revealed that regardless of

sequence divergence, sites with amino acid substitutions

rewire on average 30–40% of their surrounding contacts.

Furthermore, most sites with significant differences in SSAP

are buried and substituted by bulkier amino acids, and most

sites responsible for the conservation of stability should be at

buried positions. Overall, our observations support recent

comparative analyses on the influence of contact density on

protein evolutionary rate (Marcos and Echave 2015); and sug-

gest that the rewiring of residue contacts due to structural

deviations between homologs is an important determinant of

differences in the amino acid preference of proteins.

Our work suffers from several limitations. On the one

hand, our predictions rely extensively on the accuracy of

force fields for the estimation of thermodynamic stability.

Indeed, calculations performed by FoldX only optimize the

atomic coordinates of amino acid side chains, while leaving

backbone atoms constant. It has been shown, however,

that methods such as Rosetta or Modeller, which account

for variation in both side chains and backbone atoms, do

not perform better (Kellogg et al. 2011). In addition, meth-

ods that could potentially lead to better predictions are of-

ten slow and computationally costly, making a large-scale

analysis like ours, unfeasible. Consequently, we used the

force field implemented in FoldX and sought to minimize

the influence of factors that affect predictions of thermody-

namic stability by focusing on a representative sample of

high-resolution, single-domain crystal structures, with no

cocrystalized ligands, modified, or incomplete residues.

Although computational predictions do not need to fully

capture deviations in thermodynamic stability to be infor-

mative about the overall effect of sequence divergence in

the SSAP of proteins, the prediction of multiple mutations

per site improves the accuracy of force fields (Capriotti et al.

2008; Tian et al. 2010). Similarly, mutations of large-effect

are more likely to be correctly predicted, suggesting that

SSAP with nonuniform distributions can counteract the ef-

fect of wrongly predicted thermodynamic stability at a given

site. Consequently, our computational pipeline was able to

recapitulate to a large extent an SSAP profile obtained ex-

perimentally (Olson et al. 2014).

Another limitation of our predictions relates to the use of

the JS distance for the measurement of differences between

SSAP. This metric does not account for the fact that some

amino acid substitutions would be more prone to preserve the

physicochemical properties of a site. Thus, our predictions

might be overestimating changes in the magnitude of amino

acids with similar properties, and underestimating smaller

deviations toward amino acids with strong differences in their

physicochemical properties. Although the goal of the JS dis-

tance is not to directly assess the effect of SSAP on the en-

trenchment of mutations, deviations in the conservation of

physicochemical properties might have a large impact in

assessing the performance of experimentally derived substitu-

tion models for phylogenetics.
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Overall, our analyses revealed that sequence divergences of

up to 40% translate into 10–15% significant differences in

SSAP, which is in relative agreement with experimental stud-

ies reporting differences in SSAP of the order of 3–15% be-

tween closely related homologs (Doud et al. 2015; Chan et al.

2017). In addition, our analyses suggest that divergent homo-

logs (i.e., sequence distances >70%) can reach up to 25–

30% of sites with significantly different SSAP. Our observa-

tions find support in simulation studies demonstrating the

existence of strong epistatic effects between mutations

(Pollock et al. 2012; Shah et al. 2015; Starr and Thornton

2016). Similarly, a recent experimental study that recon-

structed the deep evolutionary history of the N-terminal do-

main of HSP90 found a large fraction of epistatic interactions

(Starr et al. 2018). In particular, the study showed that more

than 80% of all amino acid substitutions in HSP90 ancestral

sequences, spanning up to 30% in divergence, are deleterious

in the genetic background of the extant HSP90 sequence of

Saccharomyces cerevisiae. These findings suggest that both

epistasis as well as differences at SSAP should be fairly com-

mon (Starr et al. 2018). In this regard, we note that our anal-

yses were conservative, and that although we only focused on

thermodynamic stability, several other factors might contrib-

ute to differences between the SSAP of homologs, such as,

selection for function, or insertions and deletions at nonequi-

valent sites. For instance, at least 5% of the significant differ-

ences between observed and predicted profiles of the GB1

protein are due to mutations at sites involved in GB1’s mo-

lecular function (figs. 2C and 3). Similarly, several epistatic

substitutions in the HSP90 experiment described above

were shown to be due to functional constraints, as well as

interactions between residues of different structural domains

of the HSP90 (Starr et al. 2018).

Even though close homologs can have significant differen-

ces in SSAP (	10–20%), experimentally derived substitution

models might still be able to substantially outperform the phy-

logenetic fit of traditional models of amino acid substitution

(Bloom 2014). As reported previously, however, even differ-

ences in SSAP of the order of 3–15%, can have a detectable

impact on the use of experimentally derived substitution mod-

els for phylogenetics (Doud et al. 2015). Consequently, our

results suggest that, the use of this type of models for phylo-

genetic analyses of largely divergent homologs might be sub-

ject to significant, unforeseen deviations. Future work should

explore the extent and consequences of the variation in pref-

erence profiles for the accurate estimation of phylogenetic

trees and other applications, as well as more sophisticated

models that integrate both the biophysics and evolutionary

aspects of amino acid substitutions in proteins.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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