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Abstract

Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving
growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of
genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a
phenomenon known as activation of the ‘‘fetal gene program’’. Here, using a genome-wide approach we systematically
defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse
aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal
development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy
resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may
be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways,
such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found
39UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and
microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and
protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform
regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that
modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload.
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Introduction

The growth of the heart in mammals takes place at embryonic

and postnatal developmental stages, but it can also be induced by

physiological or pathological stimuli in the adult [1]. While cardiac

growth at early developmental stages mostly involves proliferation

of cardiac myocytes, expansion of cell size is chiefly responsible for

growth of the adult heart. The latter is also known as cardiac

hypertrophy, which is a common component of many cardiac

diseases. Cardiac hypertrophy is generally considered as an

adaptive mechanism in response to increased mechanical load;

but hypertrophied heart under sustained pressure can lead to heart

failure [2,3].

Studies have shown that the expression levels of many genes are

regulated during cardiac hypertrophy [4,5,6]. A group of genes

with low expression in the adult but high expression in the embryo

is reactivated in cardiac hypertrophy, a phenomenon widely

known as activation of the ‘fetal gene program’. These genes

typically play roles in metabolic and contractile functions of the

heart [7,8], and are regulated by a set of transcription factors (TFs)

which play roles also in embryonic development, such as NFAT,

NFkB, MEF2, GATA4, and SRF [9,10]. In addition, recent

studies have implicated regulation of several microRNAs (miR-

NAs) in hypertrophy, including miR-1, miR-133, and miR-208

[11,12,13]. miRNAs are small non-coding RNAs (,22 nucleo-

tides) that cause mRNA degradation and/or inhibition of

translation by binding to their target sites in mRNAs, mostly in

the 39 untranslated region (39UTR) [14,15]. miRNAs have been

increasingly found to play important roles in cardiac development

and diseases [16,17,18,19].

Mammalian genes frequently express mRNA isoforms resulting

from alternative initiation of transcription, alternative splicing

(AS), and alternative cleavage and polyadenylation (APA), which

are frequently regulated in temporal- and tissue-specific manners

[20,21]. Studies have shown that the AS pattern of the heart is

distinct from other tissues [22,23,24], and dynamic regulation of

AS takes place at the embryonic and postnatal developmental

stages of the heart [25], during differentiation of cardiac

precursors [26], and in patients with heart failure [27]. Ablation

or overexpression of some splicing regulators, such as SC35, ASF/
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SF2, SRp38, and CELF, have been shown to cause malfunctions

in the heart [28,29,30,31].

Recent studies have indicated that APA plays an important role

in gene regulation. Over half of the human genes have APA

isoforms [32], most of which lead to different 39UTR lengths. The

APA pattern of genes is tissue-specific [33] and is globally

regulated in cell proliferation, differentiation, and development

[34,35,36]. In general, genes tend to express short 39UTR

isoforms more frequently in proliferative or transformed cells than

in quiescent or differentiated cells, presumably due to the

difference in 39 end processing activity [37]. Since 39UTRs

typically contain cis elements that inhibit gene expression at the

post-transcriptional level, such as AU-rich elements (AREs), GU-

rich elements (GREs), and miRNA target sites, regulation of

39UTR length by APA can impact mRNA metabolism. For

example, shortened 39UTRs in cancer cells have been shown to

make mRNAs of a set of oncogenes more stable, leading to higher

protein expression [36].

Here we took a genome-wide approach to systematically define

genes and pathways regulated in cardiac hypertrophy induced by

transverse aortic constriction (TAC), and compared them with

those regulated at different stages of embryonic and postnatal

development. By exon-level analysis we found that cardiac

hypertrophy involves widespread mRNA isoform changes, a

fraction of which is developmentally related. Gene Ontology

analysis indicated that regulated AS events are biased to genes

with functions in cell adhesion and cell morphology, suggesting an

important role of AS in remodeling the heart. Our analysis also

indicated that downregulated expression of Fox-1 protein during

cardiac hypertrophy may be responsible for a set of regulated AS

events. Moreover, we found 39UTRs of mRNAs are generally

shortened through APA in hypertrophy, and microRNA target

genes are generally de-repressed, suggesting coordinated mecha-

nisms to increase mRNA stability and protein production during

hypertrophy. Taken together, our results comprehensively delin-

eated gene regulatory modules at transcriptional and post-

transcriptional levels in cardiac hypertrophy and revealed their

relations to those executed in development, and suggested that

mRNA isoform regulation plays critical roles in remodeling the

heart under pressure overload.

Results

Comparison of gene expression profiles between cardiac
hypertrophy and development defined the fetal gene
program

To systematically examine gene regulation in short- and long-

term cardiac hypertrophy, we used genome-wide exon micro-

arrays to analyze mRNAs expressed in mouse hypertrophied left

ventricle (LVH) induced by 1 week (1 W) or 4 W Transverse

Aortic Constriction (TAC). To reveal how gene regulation in

hypertrophy is related to that in development and to achieve

robustness in our analysis, we collected a set of publicly available

microarray datasets corresponding to murine heart development

at embryonic and postnatal stages, and short- and long-term LVH

(Figure 1A and Table S1). Overall, our LVH data included three

datasets for 1 W TAC, named LVH1, LVH2, and LVH3, one

dataset for 4 W TAC (LVH4), and one dataset for 12 W TAC

(LVH5). All TAC samples were compared with sham samples in

the same dataset. For embryonic development (ED) of the heart,

we divided data into two phases. The first phase, named ED1, was

based on comparison of embryonic day (E) 13.5 + E14.5 with

E10.5 + E11.5; and the second phase, named ED2, was based on

comparison of E16.5 + E18.5 with E13.5 + E14.5. We also

obtained a dataset for comparison of embryonic heart at E17 with

adult heart, named EA, which can reflect postnatal development.

In addition, we included a rat dataset, from which we compared

gene expression for postnatal day (P) 20 vs. P1 and P49 vs. P20,

named PD1 and PD2, respectively. Expression changes were

standardized to make data from heterogeneous sources more

comparable (Figure S1).

Using hierarchical clustering, we found, as expected, that

development samples were separated from hypertrophy samples,

and embryonic development (ED1 and ED2) samples were

separated from postnatal development (PD1, PD2 and EA) ones

(Figure 1B). Interestingly, gene expression differences between late

embryonic stage and adult (EA) in mouse were more similar to

those in postnatal development of rat (PD) than to those in

embryonic development of mouse (ED), indicating that gene

expression changes in rat and mouse at similar developmental

stages are well correlated despite different species and array

platforms. This result also supports the suitability of using the rat

dataset in our analysis.

Among the hypertrophy samples, 1 W TAC samples (LVH1–3)

were clustered together and were separated from 4 W and 12 W

TAC samples despite that the three 1 W TAC datasets were from

different labs and platforms, indicating that genes are distinctly

regulated in short- and long-term hypertrophy conditions. As

evidenced by the overall clustering pattern (Figure 1B) and Pearson

Correlation values (Figure S2), gene expression changes in hypertro-

phy showed a general negative correlation with those in development,

particularly with late embryonic development (ED2) and early

postnatal development (PD1). We then identified genes that were

significantly regulated in hypertrophy and development. As shown in

Figure 1C, more genes were oppositely regulated in hypertrophy vs.

development than consistently regulated (261 vs. 89, see Table S3 for

the full lists), further supporting the overall inverse correlation

between hypertrophy and development (P,2.2610216, Fisher’s

exact test). In addition, a greater number of genes were found to be

regulated in development or hypertrophy only.

We next analyzed Gene Ontology (GO) terms in Biological

Process (BP) and Cellular Component (CC) categories for the

genes regulated in hypertrophy and development (Figure 1D).

Using a new method based on comparison of regulation profiles of

different sets of genes (Figure S3 and Text S1 for detail), we found

that genes with functions in immune response, extracellular matrix

(ECM), cell cycle, and cell morphology tended to be upregulated

in hypertrophy, whereas those with functions in energy generation,

mitochondrion, and peroxisome tended to be downregulated.

Some gene pathways were consistently regulated in hypertrophy

and development (Figure 1D), for example, immune response;

some pathways were oppositely regulated, such as mitochondrion

and cell cycle. The relations were also discernable using gene

density plots which showed how genes were distributed with

respect to regulation in hypertrophy or development (Figure S4).

Taken together, our result systematically defined genes and

pathways regulated in hypertrophy and divided them into

development-related and nonrelated groups. The former group

corresponds to the ‘‘fetal gene program’’, which is presumably

attributed to reversal of the mechanisms involved in development

during hypertrophy.

Regulation of mRNA isoform expression in cardiac
hypertrophy

Alternative usage of exonic regions leads to mRNA isoforms

encoding different proteins and/or UTRs. To understand how

mRNA isoform expression is regulated during hypertrophy, we

analyzed exon-level probe intensity changes using our exon array

Posttranscriptional Control in Cardiac Hypertrophy
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Figure 1. Gene expression profiling in cardiac hypertrophy and development. (A) Schematic of datasets used in our analysis. Top,
hypertrophy data with TAC period indicated (W = week). All hypertrophy samples were derived from the left ventricle and thus were named LVH.
They were compared with Sham samples. Bottom, development samples. E, embryonic day (for mouse samples); P, postnatal day (for rat samples).
ED1 is comparison of E10.5 + E11.5 with E13.5 + E14.5 and ED2 is comparison of E13.5 + E14.5 with E16.5 + E18.5. PD1 is comparison of P1 with P20
and PD2 is comparison of P20 with P49. EA is comparison of E17 with adult. E10.5, E11.5, and EA were based on the whole heart, and others were
based on the left ventricle. All ratios were derived from expression level at a later development time point divided by that at an earlier point. (B)
Clustering of genes and samples using gene expression changes. Expression changes are standardized log2(ratio) or z, which are shown in a heatmap
using the color scale shown at the bottom. A total of 1,945 genes with z .2 in at least one of the samples are shown. Hierarchical clustering is based
on Pearson correlation and the average linkage method. (C) Venn diagram of genes regulated in development (DEV) and hypertrophy (LVH). Genes
were selected from five development datasets, i.e. ED1, ED2, PD1, PD2, and EA, and three 1 W TAC sets, i.e. LVH1, LVH2, and LVH3. A gene was
selected if its z is greater than 2 in at least one sample and the direction of its regulation is consistent across samples. Fisher’s exact test was used to
assess the significance of bias in genes overlapped between DEV and LVH. (D) Significant Biological Process (BP, top) and Cellular Component (CC,
bottom) terms regulated in hypertrophy. Only top 10 terms are shown for BP and CC. The average p-value of three 1 W TAC samples was used to sort
entries. P-values in other samples are also shown for comparison. To remove redundancy, we eliminated GO terms that overlapped by more than
50% of associated genes with another term that had a more significant p-value. P-values are presented in a heatmap according to the color scheme
shown in the graph.
doi:10.1371/journal.pone.0022391.g001

Posttranscriptional Control in Cardiac Hypertrophy
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data for 1 W and 4 W TAC and Sham samples. Using the splicing

index method, which examines exon usage by normalization to

gene expression, and the COSIE method for correction of probe

hybridization bias (see Materials and Methods for detail), we

identified 2,086 and 1,942 exons with significant change of usage

(.3*standard deviation) in 1 W and 4 W TAC samples, respec-

tively (Figure 2A). While a significant fraction of regulated exons

(about 14–16% in each sample) were commonly regulated in both

1 W and 4 W TAC samples, suggesting continuous regulation in

the course of hypertrophy (P,2.2610216, Fisher’s exact test), a

large number of stage-specific regulated events were also identified.

Interestingly, we found a correlation between change of gene

expression and regulation of internal exon usage in the 1 W TAC

samples (Figures 2B and 2C), i.e., genes upregulated at the

expression level were more likely to be regulated at the splicing

level as well, for both inclusion and exclusion of internal exons.

This trend was not discernable in 4 W TAC samples or for 59 or 39

terminal exons (Figure 2B). This result suggests that change of

gene expression and regulation of splicing variants are coupled at

the early stage of hypertrophy (see Discussion).

We next examined GO terms for genes with significant

regulation of alternative usage of exons in hypertrophy. While

genes with regulated first and/or last exons did not appear to be

biased to any GO terms, those with regulated internal exons

were found to be significantly associated with a set of GO terms

(Table 1). With respect to BP, ‘cell adhesion’, ‘cell cycle phase’,

‘sensory perception of mechanical stimulus’, and ‘microtubule-

based process’ were significant for genes with regulated internal

exons in 1 W TAC, and ‘ion transport’ and ‘chromosome

organization’ were significant for those with regulated internal

exons in 4 W TAC. With respect to CC, ‘cytoskeletal part’ was

significant for both 1 W and 4 W TAC conditions, whereas

‘proteinaceous extracellular matrix’ was associated with 1 W

TAC only. Since many of these GO terms were also associated

with regulation of gene expression level (Figure 2), this result

further indicates that there is a connection between transcrip-

tional control and splicing regulation during hypertrophy. In

addition, this result suggests that alternative splicing (AS) of

internal exons can play an important role in remodeling of the

heart under pressure overload.

Figure 2. Global analysis of mRNA isoform regulation in cardiac hypertrophy. (A) Venn diagram of exon-level regulation in 1 W and 4 W
TAC samples (LVH3 and LVH4). Significantly regulated exons are those with splicing index (SI) .3*standard deviation (SD) of all exons. (B) Gene
expression changes in 1 W and 4 W TAC samples. Genes were divided into four quartiles based on log2(ratio). (C) Distribution of regulated exons with
respect to location and gene expression. Exons were divided into four groups based on gene expression changes as shown in (B), and were further
classified into first, internal, and last exons. ‘I’, inclusion; ‘E’, exclusion.
doi:10.1371/journal.pone.0022391.g002
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Correlation of mRNA isoform expression between cardiac
hypertrophy and development

We next asked how the isoform regulation in hypertrophy was

related to that in development. To this end, we compared exon

usage changes in hypertrophy using our exon array data and those

in development using the splicing microarray data (EA) [25]. We

focused on three types of isoform changes, namely skipping of

internal exon (SE), alternative first exon (AFE), and alternative last

exon (ALE) (Figure 3).

For all the 5,192 exons that can be involved in SE, there was

no significant correlation between hypertrophy and development,

based on Pearson correlation (r = 20.07 for 1 W TAC and

r = 0.02 for 4 W TAC), or on comparison with randomly selected

exons (expected value or E = 0.49 for 1 W TAC and E = 0.51 for

4 W TAC, see Materials and Methods for details of the analysis

method). However, when we focused on a set of SE events that

were previously validated for regulation in development (Table

S4) [25], we detected a significant inverse correlation for 1 W

TAC vs. EA (r = 20.46, E = 0.01) but not for 4 W TAC vs. EA

(r = 20.17, E = 0.30), indicating a set of splicing events are both

regulated in hypertrophy and development but in opposite

directions. To further explore this, we used a Venn diagram to

examine highly regulated SE events in hypertrophy and

development. Indeed, more SE events were inversely regulated

than consistently regulated (187 vs. 141, P = 0.014, Fisher’s exact

test) (Figure 3B).

For the 109 AFE events analyzed, an inverse correlation

between development and hypertrophy was clearly discernable

(Figure 3C), with 1 W TAC vs. EA (r = 20.23, E = 0.01) being

more significant than 4 W TAC vs. EA (r = 20.09, E = 0.15).

Several AFE events were highly regulated in LVH and EA with

opposite directions, such as A2bp1, Rtn4, Rbm9, and Phactr1, but

some appeared to be regulated in LVH only, such as Camk2a and

Dusp13. Like AFE events, inverse correlation between develop-

ment and hypertrophy could also be seen for the 205 ALE events

(Figure 3D), and, again, 1 W TAC vs. EA was more significantly

correlated (r = 20.12, E = 0.05) than 4 W TAC vs. EA (r = 20.08,

E = 0.11). Several ALE events were highly regulated in LVH and

EA with opposite directions, such as Asph, Egfr, Pard3, Arpp21, and

some were regulated in LVH only, such as Cux1.

Taken together, our result indicates that cardiac hypertrophy

involves widespread mRNA isoform changes, and some of the

events are oppositely regulated in development, especially for

those regulated at the early stage of hypertrophy. These mRNA

isoform changes can significantly impact expression of protein

isoforms, such as changing protein domains, which are important

for adaptation of heart functions under stress overload (See Tables

S5, S6, and S7 for top most significantly regulated SE, AFE, and

ALE cases in hypertrophy).

Modulation of expression of Fox family genes may play a
role in AS regulation in cardiac hypertrophy

The widespread regulation of AS isoforms prompted us to

examine expression of splicing factors. To this end, we examined

expression changes of genes that were annotated with splicing

activities or previously reported to play roles in AS (193 in

total)[38,39]. A number of genes were found to be highly regulated

at the mRNA level during hypertrophy, some of which were

oppositely regulated in hypertrophy vs. development. Seven genes

that were found to be consistently regulated in all 1 W TAC data

sets are shown in Figure 4A. We found that Pabpc1, Rbmxrt, and

Ptbp1 were upregulated in hypertrophy but downregulated in

development, whereas A2bp1 showed the opposite trend. Notably,

Rbmxrt, Ptbp1, and A2bp1 all encode proteins (hnRNP G, PTB, and

Fox-1, respectively) that have been shown to regulate AS

[40,41,42].

Since A2bp1 is highly expressed in the heart [43] and previous

studies implicated its role in heart development [25], we focused

on its expression regulation and impact on AS in hypertrophy.

A2bp1 belongs to the gene family encoding Fox proteins, which

also includes Rbm9 (Fox-2) and D11Bwg0517e (Fox-3). The Fox

proteins all contain an RRM RNA binding motif and Fox-1 and

Fox-2 have been shown to have high binding specificity to the

consensus sequence UGCAUG [44,45]. Both A2bp1 and Rbm9

contain several exons that are differentially used in a tissue-specific

manner, including alternative usage of the first exon [43,46],

Table 1. Significant GO terms for genes with regulated AS.

GO ID, Name P (1W TAC) P (4W TAC)

Biological Process

GO:0007155, cell adhesion 3.6E-06 5.7E-03

GO:0022403, cell cycle phase 7.8E-06 5.1E-03

GO:0050954, sensory perception of mechanical stimulus 1.2E-05 6.2E-02

GO:0007017, microtubule-based process 9.0E-05 4.8E-04

GO:0006811, ion transport 7.4E-02 9.0E-05

GO:0051276, chromosome organization 2.3E-02 9.8E-05

Cellular Component

GO:0044430, cytoskeletal part 3.7E-07 6.1E-05

GO:0005578, proteinaceous extracellular matrix 1.3E-06 2.1E-02

GO:0000775, chromosome, centromeric region 1.4E-04 3.0E-02

GO:0005694, chromosome 1.5E-04 4.9E-04

GO:0042995, cell projection 2.2E-04 6.1E-02

Fisher’s exact test was used for genes with significant AS (internal exon) regulation, as shown in Figure 2. Significant GO terms (P,0.05 after Benjamini-Hochberg
adjustment) in 1 W and/or 4 W TAC are shown, and are sorted by the p-value of 1 W or 4 W TAC, whichever is more significant. Redundant GO terms (sharing more than
50% of associated genes with another GO term having a more significant p-value) were eliminated.
doi:10.1371/journal.pone.0022391.t001
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which was also observed in our study (see above). In addition,

exons 16 and 17 of A2bp1 and their corresponding exons in Rbm9

(exons 11 and 12) are mutually exclusive exons, which have been

found to be highly used in brain and muscle tissues, respectively

(Figures 4B and S5). Our exon array data indicated that these two

exons were differentially regulated in hypertrophy. To confirm

this, we carried out quantitative real-time reverse-transcription

PCR (qRT-PCR) using primers targeting two isoforms of A2bp1 or

Rbm9. For A2bp1, both isoforms were downregulated, but the

muscle isoform was more downregulated than the brain isoform,

indicating both transcriptional and AS regulation. For Rbm9, the

overall transcript level did not change significantly but the muscle

isoform was mildly downregulated and the brain isoform was

mildly upregulated, indicating AS regulation only.

In order to examine the role of Fox proteins in regulation of AS

in hypertrophy, we selected skipped exons with conserved Fox

binding sites (TGCATG) located either upstream (2200 to 21 nt)

or downstream (+1 to +200 nt) of the exon, and analyzed their

regulation in hypertrophy vs. development (Figure 4D). Interest-

ingly, exons with Fox binding site(s) in the downstream region

were significantly regulated in opposite directions between 1 W

TAC and EA (r = 20.26, E = 0.05, see Table S8 for the exon list).

This trend was not discernable for 4 W TAC samples or for exons

with Fox binding sites in the upstream region.

We next focused on several skipped exons with Fox binding sites

in the downstream intronic region and carried out validation

assays, including exons in Fn1, Itgb1, and Atp2b1. Fn1 and Itgb1

respectively encode fibronectin and an integrin subunit, two cell

adhesion molecules whose interaction modulates contraction of

cardiac myocytes [47,48]. Our microarray data indicated that

both genes were upregulated in hypertrophy, and exon 25 of Fn1

and exon b1D of Itgb1 had increased inclusion and exclusion in

1 W TAC, respectively (Figure 4D). Using qRT-PCR with

primers targeting exon exclusion and inclusion isoforms (Figure

S5), we confirmed microarray results both for their gene

expression and AS regulation (Figure 4E). We also examined

exon 21 in Atp2b1 (Figure S5), which encodes calcium ion

transport ATPase [49,50]. By semi-quantitative PCR, we also

confirmed its regulation in hypertrophy (Figure 4F).

Taken together, our microarray and validation results indicate

that Fox-1 protein is likely to play a role in regulation of AS for a

set of exons in both 1 W TAC and development, especially when

they bind to the downstream intronic region of a skipped exon.

mRNAs tend to have short 39UTRs in cardiac hypertrophy
Regulation of 39UTRs by alternative cleavage and polyadenyl-

ation (APA) has recently been found to be associated with cell

Figure 3. Comparison of mRNA isoform regulation in cardiac hypertrophy and development. (A) Comparison of SI for skipped exons
(SE). Skipped exons were defined by cDNAs/ESTs. Grey dots are all expressed SE events, and blue dots are the ones that are developmentally
regulated and experimentally validated in a previous study [25]. The dotted red line is based on linear regression of blue dots. Pearson correlation
coefficient was calculated for each plot, and its E value was estimated based on random sampling of the same number of exons (see Materials and
Methods for detail). (B) Venn diagram showing the highly regulated SEs in hypertrophy and development. Highly regulated SEs were selected using
1*SD of SI. (C) and (D) Regulation of alternative first and last exons. U and D are upstream and downstream terminal exons, respectively. Alternative
terminal exons were analyzed using difference in log2(U/D) or log2(D/U), where U/D or D/U are ratios of probe set intensities between U and D.
doi:10.1371/journal.pone.0022391.g003

Posttranscriptional Control in Cardiac Hypertrophy
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Figure 4. Regulation of splicing factors and Fox target exons in cardiac hypertrophy. (A) Gene expression analysis of splicing factors.
Splicing factors are those reported in [38,39]. Selected genes had fold change .1.5 and P,0.05 (T-test) in at least one of three 1 W TAC samples and
had the same direction of regulation across samples. Genes are shown in a heatmap with color representing standardized log2(ratio) based on the
color scale shown at the bottom. Grey indicates no detectable expression or not present on microarray. (B) and (C) Regulation of tissue-specific exons
in A2bp1 and Rbm9. ‘B’ and ‘M’ represent brain- and muscle-specific exons, respectively, which are expressed in a mutually exclusive manner.
Constitutive exons are in blue and alternative ones are in red. Arrows indicate forward (F) and reverse (R) primers for qRT-PCR. Expression changes are
based on comparison with Sham samples. Error bars are standard error of the mean (SEM). (D) Splicing regulation for skipped exons with the Fox
binding site (TGCATG) located in the upstream or downstream intronic regions adjacent to the exon. Only conserved Fox binding sites were used (see

Posttranscriptional Control in Cardiac Hypertrophy
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proliferation, oncogenic transformation, and development

[34,35,36]. To examine how 39UTRs are regulated in hypertro-

phy, we took advantage of the fact that a large number of

Affymetrix GeneChip probes hybridize to constitutive 39UTRs

(cUTRs) and alternative 39UTRs (aUTRs) (Figure 5A). cUTRs

and aUTRs are defined by polyA sites located in 39UTRs. We

used a score, named relative expression of mRNA isoforms using

distal polyA sites (RUD), to indicate the 39UTR length as

illustrated in Figure 5A. RUD was based on comparison of probe

intensities for the upstream and downstream regions of a polyA

Figure 5. Regulation of 39UTR isoforms in cardiac hypertrophy and development. (A) Schematic of APA and our method to detect 39UTR
length changes using microarray probes. A hypothetical gene contains three polyA sites, resulting in three 39UTR isoforms. The 39UTR regions
upstream and downstream of the first polyA site are called constitutive and alternative UTRs, or cUTR and aUTR, respectively. Probes mapped to
upstream and downstream of each polyA site were used to calculate the RUD score, which reflects the relative expression of 39UTR isoforms. The RUD
score correlates with 39UTR length. (B) Comparison of ratio of probe intensity for the downstream region of polyA site to that of upstream region (D/
U) of polyA site between Sham and 1 W TAC (LVH3). A total of 4,112 genes were examined. Genes with significant regulation of 39UTR length (P,0.1,
T-test) are colored, with red for genes with 39UTR lengthened in 1 W TAC and green for those with 39UTR shortened. (C) Global RUD changes in
cardiac development and hypertrophy. The median RUD of all genes in each sample was plotted to represent RUD of the sample. All embryonic
samples were compared to E10.5, and TAC samples were compared to Sham. Error bars are standard error of the mean (SEM) based on multiple
samples. (D) Venn diagram showing numbers of genes with UTR lengthened or shortened in development and hypertrophy. We selected genes with
consistent regulation in at least 4 out of 6 ED samples and in at least 2 out of 3 LVH samples. Fisher’s exact test was used to assess significance of the
overlap between development and hypertrophy. (E) qRT-PCR analysis of genes with shortened 39UTRs in TAC. Two sets of PCR primers were
designed to target regions upstream and downstream of the first polyA site as shown in (A). The difference in their ratio was used to indicate 39UTR
length changes. PCR primer sequences are listed in Table S2, and gene structures are shown in Figure S6.
doi:10.1371/journal.pone.0022391.g005

Materials and Methods for detail). Pearson Correlation coefficient and its E value are shown for each graph. (E–F) Experimental validation of skipped
exons with Fox binding sites in the downstream intronic region. See Figure S5 for their exon structures. Exon 25 of Fn1 and exon 17 of Itgb1 were
analyzed by qRT-PCR and exon 21 of Atp2b1 was examined by semi-quantitative PCR.
doi:10.1371/journal.pone.0022391.g004
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site; a higher score indicates relatively higher abundance of

mRNA isoforms resulting from usage of promoter-distal polyA

sites, and thus longer 39UTRs.

As shown in Figure 5B, more genes had higher relative

abundance of short 39UTR isoforms in 1 W TAC as compared to

Sham (211 vs. 104), suggesting genes tend to express short 39UTR

isoforms in hypertrophy. Using median RUD score of surveyed

genes in each sample, we found 39UTR shortening took place in

all TAC samples (Figure 5C). However, no significant GO terms

were found to be associated with genes with shortened 39UTRs

(data not shown), suggesting that 39UTR isoform regulation is a

general feature of hypertrophy affecting all genes.

We next compared 39UTR regulation in hypertrophy vs. in

development. As shown in Figure 5C, compared to E10.5,

embryonic development of the heart generally involved more

expression of long 39UTR isoforms, consistent with our previous

findings [34]. A significant number of genes were regulated in

opposite directions in embryonic development vs. hypertrophy

with respect to 39UTR length regulation (P = 2.461028, Fisher’s

exact test, Figure 5D), further indicating an inverse correlation of

APA isoform regulation between development and hypertrophy.

To validate our microarray results, we selected a number of

genes with 39UTR length changes, including Tia1, Cugbp2, Ube2z,

Anapc2, and Cdk1. Tia1 and Cugbp2 encode RNA binding proteins

that play roles in various aspects of post-transcriptional regulation

[51,52]; Anapc2, and Cdk13 encode proteins involved in cell cycle

control; and Ube2z is involved in the ubiquitin-proteasome

pathway [53,54,55]. Using qRT-PCR with primer sets targeting

upstream and downstream regions of the first polyA site in 39UTR

(Figure 5A and S6), we confirmed 39UTR shortening in 1 W TAC

in all cases. However, this trend was much less obvious in 4 W

TAC except for Cdk13. Taken together, our result indicates that

short 39UTR isoforms are generally more expressed during

hypertrophy, particularly at the early stage. Since mRNAs with

short 39UTRs are generally more stable than long 39UTR

isoforms due to evasion of destabilizing elements, this mechanism

could lead to stabilization of mRNAs in hypertrophy, resulting in

more protein production.

miRNA target genes are globally de-repressed in cardiac
hypertrophy

One of the mechanisms regulating mRNA expression via

39UTRs is miRNA-mediated destabilization of transcripts. To

examine how miRNA target genes are regulated in hypertrophy,

we compared the regulation profile of miRNA target genes as

predicted by TargetScan [56] with that of other genes for every

known miRNA family. As shown in Figure 6A, mRNA targets of

several miRNA families were found to be significantly upregulated

in hypertrophy (false discovery rate (FDR) ,0.05), including those

targeted by miR-29, miR-1, miR-9, miR-30, and miR-133.

Notably, except for miR-9, these miRNAs are all highly abundant

in the heart [17], indicating that our result has the potential to be

physiologically relevant. Interestingly, no miRNAs were predicted

to have an enhanced function in hypertrophy, i.e. more repression

of target mRNA expression, suggesting that miRNA activity is

generally inhibited in cardiac hypertrophy. We also compared

hypertrophy with development with respect to these miRNAs. As

shown in Figure 6A, mRNA targets of all these miRNAs were

downregulated in development, but their significance depended on

the developmental stage. For example, miR-29 target genes were

more downregulated in postnatal development, whereas miR-1

target genes were mainly downregulated in embryonic develop-

ment (Figure 6B). This result indicates that miRNAs might play an

important role in defining the gene expression program in

hypertrophy and contribute to the activation of the ‘fetal gene

program’. In addition, combined with our observation that

39UTRs are generally shortened in cardiac hypertrophy, the

miRNA result suggests that inhibition of mRNA stability and/or

translation is generally avoided in hypertrophy.

Discussion

Our comprehensive analysis of microarray data from multiple

studies identified genes and pathways significantly and robustly

regulated in cardiac hypertrophy. These results, while generally

consistent with previous studies [57,58,59,60], systematically refine

and extend the current understanding of regulation of transcrip-

tome in cardiac hypertrophy. Comparison of hypertrophy with

embryonic and postnatal development enabled us to systematically

define the fetal gene program. In addition, our genome-wide exon-

level analysis indicates that regulation of mRNA isoform is

widespread during cardiac hypertrophy. While some isoform

changes are hypertrophy-specific, other events are negatively

correlated with those in development, particularly for the events

regulated at the early stage of hypertrophy, suggesting activation of

a fetal post-transcriptional program in the heart in response to

pressure overload.

Our GO analysis identified a number of pathways that are

regulated in both development and hypertrophy. For some

pathways, regulation in development and in hypertrophy involves

the same set of genes, for example genes related to mitochondrion

functions. This can be discerned using gene density plots (Figure

S4). However, for some other pathways, regulation of a pathway in

hypertrophy involves a different set of genes than in development.

For example, despite cell cycle genes as a set are upregulated in

hypertrophy and downregulated in development, regulation of

individual genes is quite different in these two conditions, as

indicated in the gene density plot (Figure S4). This is consistent

with the notion that development involves cell proliferation

whereas hypertrophy involves expansion of cell size. In addition,

gene regulation for some pathways is quite complex, particularly

genes related to ECM (for example, proteinaceous extracellular

matrix). They are globally upregulated in hypertrophy, but in

development only a subset of them is downregulated and another

subset is upregulated.

We found that genes upregulated at the expression level are also

more likely to be regulated at the splicing level in 1 W TAC,

suggesting coupling splicing regulation to transcription. This

observation is not due to technical reasons, because this coupling

is not discernable in 4 W TAC samples, and we corrected splicing

index values for hybridization biases related to gene expression

changes [61]. Regulation of AS by transcription can be

attributable to difference in recruitment of splicing factors to

RNA polymerase II (Pol II), known as recruitment coupling, or

change in Pol II elongation rate, known as kinetic coupling

[62,63]. On this note, Cdk9, which encodes a Pol II elongation

factor, has been shown to be regulated in hypertrophy [64].

Further studies are needed to unravel this phenomenon.

Our expression analysis indicates that a number of splicing

factors are regulated in hypertrophy, which presumably contrib-

utes to global AS regulation. We focused on the gene encoding

Fox-1, which, interestingly, is significantly regulated at several

levels, including expression, alternative initiation, and AS. While

motif analysis did not reveal an enrichment of the Fox binding site

near regulated exons (data not shown), we did observe a negative

correlation between hypertrophy and development for the skipped

exons with the Fox binding site located in downstream of exon

(Figure 4D). This result suggests that regulation of Fox-1 may play
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a role in establishing the fetal splicing program in the

hypertrophied heart. Interestingly, PTB, which was previously

found to interact with Fox in AS regulation [65,66], is significantly

upregulated at the mRNA level. How these two proteins function

and interact with each other in hypertrophy is to be further

examined. In addition, given that posttranscriptional and

posttranslational regulation of splicing factors is very common, it

is highly possible that other splicing factors may also play roles in

AS regulation in hypertrophy despite that their mRNA levels do

not significantly change as found in this study.

Diversity in 39 end formation of mRNA has recently been

highlighted as an important layer of gene regulation [67,68,69].

Previous studies have reported general 39UTR shortening in

proliferation and oncogenic transformation [35,36]. Here we

extend this phenomenon to cardiac hypertrophy. It is possible that

mechanisms of 39UTR regulation in hypertrophy and prolifera-

tion are related, because 1) a set of cell cycle genes are upregulated

in hypertrophy, and 2) we previously found that pre-mRNA

processing genes typically have binding sites for cell cycle-related

transcription factors in their promoters [37]. Consistent with this

notion, we found that mRNAs of CstF proteins, which have been

shown previously to play a role in regulation of APA [70], were

upregulated after 3 days of TAC (Figure S7). Interestingly, their

upregulation was subdued after 1 week of TAC. Therefore,

39UTR isoform regulation may be executed at a very early stage of

hypertrophy and the effect remains during TAC.

Shortening of 39UTR can lead to more protein production by

avoiding destabilizing cis elements in the 39UTR, such as miRNA

target sites, AREs and GREs. Consistently, despite reports

implicating upregulation of some miRNAs in hypertrophy [18],

we found most miRNA target genes were upregulated during

hypertrophy, indicating a global de-repression of miRNA

targeting. These results suggest coordinated mechanisms to

stabilize mRNAs in hypertrophy, which can be important for

rapid enlargement of heart in response to mechanical stress.

Materials and Methods

Exon array of TAC samples
All animal work has been conducted according to a protocol

approved by the Institutional Animal Care and Use Committee

(IACUC) at UMDNJ-New Jersey Medical School. Protocol

number: 07120. Transverse Aortic Constriction (TAC) was

conducted as described previously [71]. Briefly, aortic constriction

was performed by ligation of the transverse aorta with a 28-gauge

needle using a 7-0 braided polyester suture. Sham operation was

performed without constricting the aorta. Two mice (C57BL/6)

were used for 1 W and 4 W TAC and Sham. Total RNA from left

ventricles was extracted using the RNeasy Fibrous Tissue Mini Kit

(QIAGEN) and was processed by the Whole Transcript (WT)

Sense Target Labeling kit (Affymetrix) for exon array analysis

(Affymetrix GeneChip Exon Mouse 1.0 ST Array). Our data is

deposited in the GEO database of NCBI (GSE: 24242) and is

MIAME compliant. See Table S1 for details on the public datasets

used in this study.

Microarray data analysis
Microarray data normalization was carried out using the robust

multi-chip analysis (RMA) method. To determine whether a gene

was expressed, we used the MAS 5.0 method for 39 arrays and the

detection above background (DABG) method for exon arrays.

Only genes with detectable expression in .50% of samples in a

comparing group were used for further analysis. For the splicing

microarray, we mapped probes to exons of gene models based on

cDNAs/ESTs, as described previously [72]. Gene expression was

calculated using constitutively expressed exons only.

Gene set analysis
Comparison of gene sets for expression changes was based on

the cumulative distribution function (CDF)(See Text S1 for detail).

Gene Ontology information was obtained from the NCBI Gene

database. miRNA target sites were obtained from the TargetScan

database (v5.1) [73]. To evaluate FDR for our selection at a given

p-value, three datasets (LVH1, LVH2, LVH3) were randomized

(sample-wise), and the number of falsely identified entries at a

given p-value was calculated.

mRNA isoform analysis
Exon usage was analyzed using the splicing index (SI) method,

which is based on expression change of a given exon vs. expression

change of its corresponding gene. Since different probes can

Figure 6. Analysis of expression of miRNA target genes. (A) Heatmap of miRNAs whose target genes were significantly regulated in
hypertrophy (FDR,0.05). The color represents p-value which was calculated by comparison of CDF curves (see Materials and Methods for detail). The
p-values for development datasets were also shown for comparison. miRNAs are sorted by their significance in 1 W TAC. (B) Expression changes of
the genes targeted by miR-29 and miR-1. CDF curves of standardized log2(ratio) values are shown for ED, PD, and 1 W TAC samples. ED and PD are
based on averaged values across ED and PD samples, respectively. 1 W TAC is based on averaged values of three samples (LVH1–3). P-values
indicating difference between CDFs of miRNA target genes and other genes were derived from the Kolmogorov–Smirnov test.
doi:10.1371/journal.pone.0022391.g006

Posttranscriptional Control in Cardiac Hypertrophy

PLoS ONE | www.plosone.org 10 July 2011 | Volume 6 | Issue 7 | e22391



respond to transcript changes differently, SI values were adjusted

by the Corrected Splicing Index for Exon Arrays (COSIE) method

[61]. Classification of first, last, and internal exons was based on

the RefSeq database. Skipped exons were identified using cDNAs/

ESTs [72]. Fox binding sites were analyzed by a method similar to

the one previously reported [74]. Expected value (E) for Pearson

Correlation for a given set of exons corresponds to the fraction of

times (out of 1,000 times) that a randomly selected set including

the same number of exons has a better correlation. Analysis of Fox

binding sites was based on the method previously developed [74].

Information about alternative polyA sites was retrieved from

PolyA_DB [72]. Analysis of APA isoforms was carried out by the

RUD method, as previously described [34].

Experimental validation
To validate microarray data, we used real-time reverse

transcription PCR (qRT-PCR) or semi-quantitative RT-PCR (see

Table S2 for primers used in this study). PCR was carried out using

the SYBR Green method with Gapdh mRNA as an internal control.

For semi-quantitative RT-PCR, primer sets targeting constitutive

exons flanking a skipped exon were used and PCR products were

analyzed by ImageJ (http://rsbweb.nih.gov/ij/index.html).

Supporting Information

Figure S1 Standardization of log2(ratio) makes data
more comparable across datasets. (A) Distribution of gene

expression changes (log2(ratio)) of all datasets used in this study.

Development samples are shown in green and hypertrophy

samples are shown in orange. (B) Distribution of gene expression

changes after standardization.

(TIF)

Figure S2 Correlation between hypertrophy and devel-
opment samples. Pair-wise Pearson Correlation coefficients

between samples are shown in a heatmap according to the color

scale shown in the graph.

(TIF)

Figure S3 Analysis gene sets using expression change
profiles. (A) An example of gene set analysis using cumulative

distribution function (CDF). Genes annotated with ‘‘proteinaceous

extracellular matrix’’ form a gene set. The black line is CDF curve

for genes in the set, and the dotted line is CDF curve for other

genes on the microarray. The difference between two CDF curves,

or DCDF, is indicated by color, with green for negative values and

red for positive ones. DCDF was used to examine regulation of a

gene set, which yielded two p-values, one for positive values or

DCDF(+), representing upregulation, and one for negative values

or DCDF(-), representing downregulation (see Supplementary

Materials and Methods, Text S1, for detail). (B) Log2(gene set size)

vs. log2(SD of DCDF). A linear regression line is shown in red, and

its R2 is indicated in the graph. The data is derived from randomly

sampled genes (10,000 times for each gene set size). (C)
Distribution of standardized DCDF follows the exponential

distribution with rate (l) = 1.1. The thick black line is distribution

of standardized DCDF and the dotted red line is exponential

distribution. The two distributions are not significantly different

when the values are .2 (P = 0.29, Kolmogorov-Smirnov test).

(TIF)

Figure S4 Gene density plots for several significant GO
terms. (A) An example of the gene density plot showing

correlation between hypertrophy and development. X-axis is

log2(ratio) in development, and y-axis is averaged log2(ratio) in

three 1W TAC samples. The horizontal and vertical white lines in

each plot mark the point with log2(ratio) = 0. (B) Gene density

plots for top 5 BP (top) and CC (bottom) GO terms. See

Supplementary Materials and Methods (Text S1) for details of the

method.

(TIF)

Figure S5 Information about validated genes with AS
regulation in hypertrophy. For each gene, a gene structure

image is derived from UCSC genome browser. Conservation

based on 17 vertebrate species is indicated in the magnified image.

A schematic indicating splicing pattern is shown at the bottom.

Exon numbers are indicated. Constitutive exons are shown in blue

and alternative ones are in red. PCR primers are shown as arrows.

(TIF)

Figure S6 Information about validated genes with APA
regulation in hypertrophy. For each gene, a gene structure

image is derived from UCSC genome browser. Conservation

based on 17 vertebrate species is indicated in the magnified image.

PolyA site is shown as pA; PCR primers are shown as arrows.

(TIF)

Figure S7 Regulation of Cstf genes in hypertrophy. qRT-

PCR data are shown for Cstf1, Cstf2, and Cstf3 in Sham, 3 day(D) TAC,

and 1W TAC. Error bars are standard deviation based on 3 mice.

(TIF)

Text S1 Supplementary materials and methods and
references for supporting information.

(DOCX)

Table S1 Datasets used in this study.

(DOCX)

Table S2 Primers used in this study.

(DOCX)

Table S3 Genes significantly regulated in hypertrophy
and/or development.

(DOCX)

Table S4 Forty-five developmentally regulated skipped
exons.

(DOCX)

Table S5 Top 50 most significantly regulated exon
skipping events in hypertrophy.

(DOCX)

Table S6 Top 5 regulated AFE events in hypertrophy.

(DOCX)

Table S7 Top 5 regulated ALE events in hypertrophy.

(DOCX)

Table S8 Skipped exons with Fox binding sites in the
downstream intronic region.

(DOCX)
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