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 Background: This study aimed to use three modeling methods, logistic regression analysis, random forest analysis, and fully-
connected neural network analysis, to develop a diagnostic gene signature for the diagnosis of ventilator-asso-
ciated pneumonia (VAP).

 Material/Methods: GSE30385 from the Gene Expression Omnibus (GEO) database identified differentially expressed genes (DEGs) 
associated with patients with VAP. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment identified the molecular functions of the DEGs. The least absolute shrinkage and 
selection operator (LASSO) regression analysis algorithm was used to select key genes. Three modeling meth-
ods, including logistic regression analysis, random forest analysis, and fully-connected neural network analy-
sis, also known as also known as the feed-forward multi-layer perceptron (MLP), were used to identify the di-
agnostic gene signature for patients with VAP.

 Results: Sixty-six DEGs were identified for patients who had VAP (VAP+) and who did not have VAP (VAP–). Ten essen-
tial or feature genes were identified. Upregulated genes included matrix metallopeptidase 8 (MMP8), arginase 1 
(ARG1), haptoglobin (HP), interleukin 18 receptor 1 (IL18R1), and NLR family apoptosis inhibitory protein (NAIP). 
Down-regulated genes included complement factor D (CFD), pleckstrin homology-like domain family A mem-
ber 2 (PHLDA2), plasminogen activator, urokinase (PLAU), laminin subunit beta 3 (LAMB3), and dual-specificity 
phosphatase 2 (DUSP2). Logistic regression, random forest, and MLP analysis showed receiver operating char-
acteristic (ROC) curve area under the curve (AUC) values of 0.85, 0.86, and 0.87, respectively.

 Conclusions: Logistic regression analysis, random forest analysis, and MLP analysis identified a ten-gene signature for the 
diagnosis of VAP.
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Background

Ventilator-associated pneumonia (VAP) is defined as pneumo-
nia that occurs 48 hours or more following mechanical ventila-
tion and extubation [1]. VAP is a hospital-acquired pneumonia 
that occurs in a large proportion of mechanically ventilated pa-
tients (8–28%). Although national surveillance data indicate a 
decline in the incidence of VAP, worldwide, it remains a com-
mon hospital-acquired infection [2]. The mortality rate for pa-
tients with VAP is between 24–50%, and can reach 76% when 
associated with certain pathogens [1]. The mortality associat-
ed with VAP remains high, partly because there are no guide-
lines for prediction of patient susceptibility or risk for VAP [3]. 
The use of antibiotics for suspected VAP in patients is recom-
mended in the 2005 American Thoracic Society (ATS) guide-
lines [4]. Prevention measures include modifying known risk 
factors, but the prediction, prevention, and diagnosis of VAP 
remain challenging [4].

Currently available bioinformatics databases, including the Gene 
Expression Omnibus (GEO) database, allow gene expression 
profiles of human diseases to be studied [5,6]. Differentially 
expressed genes (DEGs) for disease based on data from the 
Gene Expression Omnibus (GEO) database have been increas-
ingly reported. In a previous study on gene expression profil-
ing in VAP, Xu et al. [7], used the expression profile GSE30385 
to identify 69 DEGs that included 36 down-regulated and 33 
upregulated genes in patients with VAP patients. Upregulated 
genes were mainly associated with pathways and functions re-
lated to the mitogen-activated protein kinase (MAPK) signal-
ing pathway and immune response [7]. However, this previous 
study used traditional bioinformatics analysis and showed that 
genes, including ELANE, LTF, and MAPK14 [7]. In 2012, a previ-
ously published study on VAP by Swanson et al. used a cross-
validated logistic regression model to identify five predictive 
genes, including HCN4, ADAM8, PI3, ATP2A1, and PIK3R3 [8]. 
However, there was only one algorithm used in establishing 
the model in this previous study [8].

Therefore, this study aimed to use three modeling methods, 
logistic regression analysis, random forest analysis, and fully-
connected neural network analysis, also known as the feed-
forward multi-layer perceptron (MLP), to develop a diagnos-
tic gene signature for the diagnosis and prediction of VAP.

Material and Methods

Gene Expression Omnibus (GEO) database selection

Gene expression profiles were downloaded as raw data (CEL 
files) from the GSE30385 dataset [8] in the GEO database 
(http://www.ncbi.nlm.nih.gov/geo) [9]. The GPL201 [HG-Focus] 

Affymetrix Human HG-Focus Target Array served as the anno-
tation platform. In this dataset, whole blood from 20 patient 
samples was obtained from patients with serious trauma, 
including ten patients with ventilator-associated pneumonia 
(VAP) (VAP+) and ten without VAP (VAP–). A total of 40 mL of 
whole blood was collected and immediately stimulated with 
1,000 ng/mL of lipopolysaccharide (LPS) solution.

Data processing

The processing of raw downloaded data, including background 
correction, quintile normalization as well as probe summariza-
tion by robust multi-array average (RMA) algorithm [10], the 
affy R package [11] in Bioconductor was used (http://biocon-
ductor.org/packages/release/bioc/html/affy.html). Then, probe 
serials were transformed into gene symbols. Mapping multi-
ple probes to the same gene helped to calculate the median 
probe expression value as the ultimate gene expression value.

Screening for differentially expressed genes (DEGs) for the 
VAP+ and VAP– patient groups

The Linear Models for Microarray Data (limma) package in R [12] 
was used to screen the DEGs of the VAP+ and the VAP– groups. 
DEGs were screened with cutoff values of p<0.05 and |fold 
change (FC)| ³1.5 [7]. The eligible DEGs were classified into 
down-regulated and upregulated DEGs. To ensure two spec-
imen types were in the identified DEGs, a three-dimensional 
principal component analysis (PCA) was performed using the 
ggord R package. An expression heatmap was used with the 
pheatmap R package.

Functional annotation and pathway enrichment analysis

Gene Ontology (GO) term enrichment analysis was performed 
on DEGs using the clusterProfiler R package to identify the 
molecular function [13]. The cellular component (CC), molec-
ular function (MF), and biological process (BP) were selected 
with a cutoff false discovery rate (FDR) of <0.05. For the path-
way analysis, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment was analyzed using KOBAS (ver-
sion 3.0) (http://kobas.cbi.pku.edu.cn/) [14]. An FDR <0.05 was 
considered to be statistically significant.

Protein–protein interaction (PPI) network construction and 
module analysis

The STRING (version 10.5) (http://string-db.org/) [15] database 
was used to establish a PPI network. The parameter of protein 
interactions was set at a medium confidence level. Cytoscape 
(version 3.6.1) software (http://www.cytoscape.org/) [16] was 
used for the visualization and analysis of the PPI network. 
The key modules of the entire network were screened using 
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the MCODE plug-in. The ClueGO [17], and CluePedia [18] plug-
ins of the Cytoscape software were used to perform GO enrich-
ment analysis of the module, with the parameters set to default.

Data preprocessing and manifold learning before building 
a predictive signature

The range of expression data of all genes was evaluated in 
the VAP data and was 0–13 without notable outliers. The min-
max scaling method was suitable for this type of data. For all 
patient samples, min-max scaling was used to transform the 
expression data of a given gene (i) to the range (0, 1), using 
the following formula:

genei_scaled=(genei–min(genei))/(max(genei)–min (genei))

The intrinsic geometry of the data structure of VAP data was 
investigated and was easily visualized in the lower dimensions, 
and a robust projection method was used to extract essen-
tial data. For this type of task, manifold learning algorithms, 
which is a subfield of machine learning, were developed. In this 
study, the Isomap nonlinear dimensionality reduction method 
was chosen [19,20] to project the 66 dimensions of the data 
into two dimensions, which helped visualize the data geome-
try and primarily determine the machine learning algorithms 
that should be used in the modeling stage.

Screening for feature genes

The least absolute shrinkage and selection operator (LASSO) 
regression analysis algorithm was used to select key genes to 
build a linear model between target variables and genes with 
L1 norm constraints. This analysis method was more effective 
at selecting important features when compared with the tradi-
tional least-squared method. LASSO was used to improve the 
accuracy of the linear model and avoid over-fitting by penal-
izing coefficients with large values. The linear model derived 
from LASSO was reduced most of the coefficients to zero, and 
the features with non-zero coefficients were essential for pre-
dicting the target variables or patient labels.

Establishment of a gene signature with diagnostic value 
for VAP using logistic regression analysis, random forest 
analysis, and fully-connected neural network analysis

In this study, widely used and validated algorithms, including 
logistic regression and random forest algorithms, were applied 
to construct classification models. In particular, a type of deep 
neural network was applied, namely a fully connected or dense-
layer network, to construct a generalized model from the data.

Logistic regression has been used in many machine learning 
and medical fields and has previously provided good results. 

As a widely used statistical model in binary classification tasks, 
the algorithm identifies correlations between features (f) and 
binary dependent target variables (zero and one tag) on a giv-
en dataset and fit a multivariate linear equation (L). Then, the 
output of the linear equation was passed to the logistic func-
tion, and the final probability (P) of data belonging to class 
one, or VAP–related patients, was obtained. As a result, the pa-
tient with an output probability >0.5 was identified as a VAP–
related patient, or was identified as a normal patient. In this 
study, the penalty coefficient of logistic regression was set to 
0.02 to obtain good model generalization.

The logistic regression formula used was as follows:

L=a1*f1+a2*f2+….+an*fn and P=1/(1+e–L)

The random forest algorithm introduced randomization to the 
algorithm to reduce overfitting of a single decision tree and 
to promote model accuracy by building many related decision 
trees from one training set. In particular, deep neural networks 
have been widely applied in a variety of fields, including natu-
ral language processing [21], and have achieved performances 
comparable with those of traditional machine learning algo-
rithms. Therefore, to take full advantage of this type of pow-
er model, a fully connected three-layer deep neural network 
was constructed, also known as the feed-forward multi-layer 
perceptron (MLP), to investigate the intrinsic relationship be-
tween patient types and gene expression data. The MLP mod-
el utilized the backward propagation method as a supervised 
learning algorithm to minimize the error or loss function, a sta-
tistical measuring distance between predicted labels and true 
labels across the neural network, to converge on the network.

Cross-validation and metrics

Given that the number of patient samples in the dataset was 
relatively small, a reliable leave-one-out (LOO) cross-valida-
tion procedure was used to evaluate the model’s generaliza-
tion abilities derived from the three algorithms used in this 
study, logistic regression analysis, random forest analysis, and 
fully-connected neural network analysis. Also, the area under 
the receiver operating characteristic (ROC) curve (AUC) and the 
metrics of accuracy was applied as quantitative measurements 
to assess the predicted abilities of the constructed models.

Results

Identification of ventilator-associated pneumonia (VAP) 
gene expression dataset

A multistep bioinformatic analysis was performed in this study 
to develop a ten-gene signature to predict VAP (Figure 1). 
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Whole blood Microarray

Data preprocessing

Deep neural network Logistic regression Random forest

PPI construction

Developing a 10-gene signature for predicting VAP

Building classi�cation models

Screennig of DEGsGene Expression Omnibus
(GSE30385 dataset)

Functional enrichment
analysis

Figure 1.  Flow diagram of the study design. The study design for developing a ten-gene signature for predicting ventilator-associated 
pneumonia (VAP), based on a deep learning neural network and bioinformatics analysis.
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Figure 2.  The distribution of gene expression values for ventilator-associated pneumonia (VAP). (A) Raw data box plot. (B) Normalized 
data box plot. The abscissa and ordinate represent the Gene Expression Omnibus (GEO) samples and the gene expression 
value, respectively.
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The gene expression files of VAP patients were downloaded 
from the Gene Expression Omnibus (GEO) database. The Affy 
R package was used to preprocess the raw data. As shown in 
Figure 2, box plots of the processed and raw data distribution 
were prepared. The data distribution was disordered before 
processing but was consistent after processing and could be 
used for subsequent analysis.

Identification of differentially expressed genes (DEGs) 
inVAP+ and VAP– patients

Based on the processed data of the VAP gene expression pro-
files, 66 significant DEGs were identified, including 35 down-
regulated and 31 upregulated genes for the VAP+ and VAP– 
groups, respectively. The top ten DEGs are shown in Table 1. 
Upregulated genes included matrix metallopeptidase 8 (MMP8), 
arginase 1 (ARG1), haptoglobin (HP), interleukin 18 receptor 1 
(IL18R1), and NLR family apoptosis inhibitory protein (NAIP). 
The top down-regulated genes included complement factor D 
(CFD), pleckstrin homology-like domain family A member 2 
(PHLDA2), plasminogen activator, urokinase (PLAU), laminin sub-
unit beta 3 (LAMB3), and dual-specificity phosphatase 2 (DUSP2).

Three-dimensional principal component analysis (PCA) was 
performed using the above DEGs (Figure 3A) and showed 
that VAP samples were divided into two groups. The volcano 
plot of the p-value and fold change are shown in Figure 3B. 
The whole gene expression of the 66 DEGs is shown in the 
heatmap in Figure 3C.

Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis 
of the DEGs

Functional and pathway enrichment analysis of the biologi-
cal classification of the above DEGs was performed. The re-
sults of the analysis of the GO terms analysis are shown in 
Supplementary Table 1. In the biological process (BP) cate-
gory, upregulated DEGs were associated with a significant in-
crease in neutrophil activity, including neutrophil activation 
in the immune response and degranulation. In the molecular 
function (MF) category, upregulated genes were enriched in 
serine hydrolase activity, serine-type peptidase and endopep-
tidase activity, and glucosyltransferase activity. In the cellular 
component (CC) category, upregulated DEGs were associated 

Gene symbol Gene name log2-FC p-Value Regulation

MMP8 Matrix metallopeptidase 8 1.871450982 0.002938895 Up

ARG1 Arginase 1 1.488811973 0.003824453 Up

HP Haptoglobin 1.411448445 0.007541712 Up

IL18R1 Interleukin 18 receptor 1 1.156128987 0.008158229 Up

NAIP NLR family apoptosis inhibitory protein 1.095823284 0.036770186 Up

LTF Lactotransferrin 1.051261502 0.014733312 Up

CYP1B1 Cytochrome P450 family 1 subfamily B member 1 0.982426681 0.041859932 Up

DEFA4 Defensin alpha 4 0.979954402 0.034299563 Up

MNDA Myeloid cell nuclear differentiation antigen 0.959622573 0.017834746 Up

ANXA3 Annexin A3 0.848970244 0.019900178 Up

CTSZ Cathepsin Z –0.862858489 0.002942944 Down

THBD Thrombomodulin –0.871430229 0.009507344 Down

PPIF Peptidylprolyl isomerase F –0.872320694 0.006172789 Down

SLPI Secretory leukocyte peptidase inhibitor –0.890979857 0.001666654 Down

PI3 Peptidase inhibitor 3 –0.928381059 9.68E–05 Down

DUSP2 Dual-specificity phosphatase 2 –0.961242077 0.005718815 Down

LAMB3 Laminin subunit beta 3 –1.010787763 0.000192664 Down

PLAU Plasminogen activator, urokinase –1.063036567 0.032298508 Down

PHLDA2 Pleckstrin homology like domain family A member 2 –1.070158334 0.001626576 Down

CFD Complement factor D –1.242598099 0.013684517 Down

Table 1. The top ten differentially expressed genes (DEGs) in ventilator-associated pneumonia (VAP).
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with the cytoplasmic vesicle lumen, and secretory granule lu-
men (Figure 4A).

Down-regulated genes showed significant enrichment in the 
upregulation of responses to external stimuli, down-regula-
tion of hydrolase activity, negative regulation of proteolysis 
and endopeptidase activity, and differentiation of brown fat 
cells in the BP category. In the MF category, down-regulated 
genes were enriched in endopeptidase inhibitor activity, pep-
tidase inhibitor activity, endopeptidase regulator activity, cy-
closporin A binding, and enzyme inhibitor activity. In the CC 
category, down-regulated genes were enriched in the endo-
plasmic reticulum lumen (Figure 4B).

The KEGG pathway enrichment was analyzed for the identi-
fied DEGs using the KOBAS database (Supplementary Table 2). 
The analysis showed a significant increase of upregulated DEGs 
in the hematopoietic cell lineage, interactions between cyto-
kine receptors, metabolic pathways, amoebiasis, and MAPK, 
NOD-like receptor, FoxO, neurotrophin, and tumor necrosis 
factor (TNF) signaling pathways (Figure 4C). The down-reg-
ulated genes showed enrichment in the PI3K-Akt signaling 
pathway, proteoglycans in cancer, Epstein-Barr virus (EBV) in-
fection, focal adhesion, pathways in cancer, herpes simplex 
virus (HSV) infection, transcriptional dysregulation in cancer, 
tuberculosis, the cGMP-PKG signaling pathway, and microRNAs 
in cancer (Figure 4D).

VAP+
VAP–

VAP+
VAP–

Sample

Down
Up

Regulation

6

4

2

0

–2

–4 –4
–2

0
2

4
6

8

–10 –5 0 5 10

PC
3

4.5

3.6

2.7

1.8

0.9

0.0

3

2

1

0

–1

–2

–3

–1.87 1.87–1.25 1.25–0.62 0.620.0

-lo
g1

0(
p-

va
lue

)

-log2(foldchange)

PC
2

PC1

A

C

B

Figure 3.  Identification of differentially expressed genes (DEGs) in ventilator-associated pneumonia (VAP) between the VAP+ and 
VAP– groups. (A) Three-dimensional principal component analysis (PCA). The red points represent VAP+ samples, and the 
blue points represent VAP– samples. (B) The volcano plot of DEGs. Blue dots denote down-regulated genes, and red dots 
represent upregulated genes. (C) The expression heatmap of DEGs.
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Figure 4.  Functional annotation and pathway enrichment analysis of genes associated with ventilator-associated pneumonia (VAP). 
(A) The Gene Ontology (GO) enrichment term results of the upregulated differentially expressed genes (DEGs). (B) The GO 
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Protein–protein interaction (PPI) network establishment 
and module analysis

The STRING database was used to create a PPI network to in-
vestigate the biological roles of the identified DEGs (Figure 5A). 
There were 48 nodes and 106 edges that were identified in 
the PPI network. Two key modules were identified from the 
whole network using MCODE (Figure 5B, 5C). ClueGO was used 
to perform GO term enrichment analysis of genes in module 1 
(Figure 5D). Genes were enriched in tertiary granule lumen, 

specific granule, specific granule lumen, defense response to 
fungus, disruption of cells of other organisms, and antibacte-
rial humoral response (Supplementary Table 3).

Screening for feature genes

To select feature genes and build a gene signature with di-
agnostic value for VAP among the DEGs, a series of analyses 
was performed (Figure 6A). The projected data identified by 
the Isomap algorithm transformed two dimensions, are shown 
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Figure 5.  Protein–protein interaction (PPI) network construction and module analysis based on differentially expressed genes (DEGs). 
(A) The entire PPI network (B) Module 1 network. (C) Module 2 network. (D) The Gene Ontology (GO) enrichment term 
analysis of module 1.
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Figure 6.  Development of a ten-gene signature for predicting ventilator-associated pneumonia (VAP) using the three modeling 
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VAP– patients, with the remaining being VAP+ patients. (C) Feature selection of ten genes. (D) The receiver operating 
characteristic (ROC) curves of the diagnostic value of the three algorithms.

Gene symbol Gene name log2-FC p-Value Regulation

LTF Lactotransferrin 1.051261502 0.014733312 Up

MNDA Myeloid cell nuclear differentiation antigen 0.959622573 0.017834746 Up

FKBP5 FK506 binding protein 5 0.787232999 0.013536848 Up

PDGFC Platelet derived growth factor C 0.782415364 0.00563081 Up

GADD45A Growth arrest and DNA damage inducible alpha 0.724582865 0.000672126 Up

ARHGDIA Rho GDP dissociation inhibitor alpha 0.720167209 0.033516623 Up

PPIB Peptidylprolyl isomerase B –0.608265883 0.0035643 Down

RGS2 Regulator of G protein signaling 2 –0.745549324 0.000658377 Down

KIF3B Kinesin family member 3B –0.746830664 0.002775964 Down

CTSZ Cathepsin Z –0.862858489 0.002942944 Down

Table 2. Details of the ten featured genes in ventilator-associated pneumonia (VAP).
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in Figure 6B, where the binary classes of data are represent-
ed by different colors, and annotations on the right corner of 
each data point show the sample attribute. The majority of 
data points are mutually separated and can be distinguished 
by a simple decision boundary. Therefore, the machine learn-
ing algorithm was developed without a complex adjustment 
to fit the data and provide results.

Among the 66 genes, some were closely associated with the 
two types of patients and might be key biomarkers for iden-
tifying patients at increased risk of VAP. A reliable feature se-
lection process was adopted in this study to identify essential 
genes. After LASSO on the 66 identified DEGs, ten essential 
genes with coefficients greater than zero were extracted as 
feature genes (Figure 6C, Table 2).

Building a gene signature exhibiting diagnostic value 
using three algorithms

The optimal identification of two patient populations was 
performed using robust machine learning algorithms to build 
a classification model on the selected feature genes. In this 
study, widely used and validated algorithms, including logis-
tic regression and random forest algorithms, were applied to 
construct classification models. In particular, one type of deep 
neural network was applied, which was a fully connected net-
work or dense-layer network, to construct a generalized mod-
el from the data.

Three prevalent and robust algorithms, including one type of 
deep neural network, the feed-forward multi-layer perceptron 
(MLP), were used to build the predictive models based on the 
ten selected genes. The area under the curve (AUC) values of 
the three models for logistic regression, random forest, and 
MLP were 0.85, 0.86, and 0.87, respectively (Table 3). In ad-
dition to the two metrics, the ROC curves were plotted for 
each model (Figure 6D). Considering the two metrics simul-
taneously, the predicted model based on the MLP algorithm 
was selected, and ten key genes were identified to distin-
guish between the two types of patients. The predictive abil-
ity of the MLP model also indicated that the ten selected es-
sential genes were closely associated with the patients who 
were diagnosed with VAP. Among these ten genes, six were 

Metrics Accuracy AUC

Logistic regression 0.75 0.85

Random forest 0.80 0.86

MLP 0.90 0.87

Table 3.  The accuracy and area under the curve (AUC) of 
the three predicted models in ventilator-associated 
pneumonia (VAP).

MLP – multi-layer perceptron.
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Figure 7.  The expression box plot of the ten genes associated with ventilator-associated pneumonia (VAP). * Represents a p-value 
<0.05. ** Represents a p-value <0.01.
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upregulated, and four were down-regulated. The expression 
box plots are shown in Figure 7.

Discussion

The aim of this study was to use three modeling methods, 
logistic regression analysis, random forest analysis, and fully-
connected neural network analysis, to develop a diagnos-
tic gene signature for the diagnosis of ventilator-associated 
pneumonia (VAP). The multistep bioinformatics analysis was 
performed to identify a ten-gene signature for the diagnosis 
and prediction of VAP based on the three modeling methods. 
GSE30385 was identified from the Gene Expression Omnibus 
(GEO) database to identify differentially expressed genes 
(DEGs) associated with patients with VAP. A total of 66 signif-
icant DEGs were identified between VAP+ and VAP– patients. 
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment identified the molec-
ular functions of the DEGs. After applying the least absolute 
shrinkage and selection operator (LASSO) regression analysis 
algorithm to select key genes, ten essential genes were iden-
tified. Based on three modeling methods, including logistic re-
gression, random forest, and fully-connected neural network 
methods, a ten-gene signature was identified with diagnos-
tic value for VAP. This ten-gene signature may predict VAP in 
patients and could be used as potential diagnostic or predic-
tive markers. However, these initial findings require validation 
with future clinical studies.

VAP acts as a potentially fatal hospital-acquired pneumo-
nia that represents a global health problem [22]. Also, VAP is 
caused by multidrug-resistant bacteria that also represents an 
emerging global problem [23]. The diagnosis of VAP remains 
a challenge. Based on the use of the GEO database, bioinfor-
matics analysis studies have been increasingly reported, but 
only three previous studies have been reported in gene expres-
sion associated with VAP. In 2015, Xu et al. [7] used the ex-
pression profile GSE30385 to identify 69 DEGs associated with 
VAP, including 36 down-regulated and 33 upregulated genes, 
which differed from the present study in which 66 DEGs were 
identified. Although the results of this previous study [7], and 
the present study were similar, the main reason for the dif-
ferences in the number of DEGs was that the annotation plat-
form GPL 201 was updated in July 2016.

In the present study, in the GO term enrichment analysis, the 
upregulated genes were found to be associated with the pro-
cesses of the immune system, immune reaction, and kinase 
activity, while the down-regulated genes were associated with 
stronger stress response, peptidase inhibitor activity as well 
as programmed cell death. Also, upregulated genes exhibited 
a primary enrichment in the neurotrophic protein signaling 

pathway, MAPK signal pathway, and the nucleotide-binding 
oligomeric domain (NOD)-like receptor signal pathway. In con-
trast, down-regulated genes exhibited a primary enrichment 
in complement, the coagulation cascade, cancer, ribosomal, 
and other pathways.

In the present study, neutrophil activities were significantly en-
riched by upregulated genes, including neutrophil degranula-
tion, neutrophil activation in the immune response, as well as 
immunity mediated by neutrophils. Neutrophil proteases are 
significantly increased in the alveolar space in VAP and may 
contribute to its pathogenesis [24]. Neutrophil extracellular 
traps are increased in the alveoli in patients with VAP [25]. Also, 
in the present study, upregulated genes were enriched in the 
defense responses to fungi and bacteria, immune responses, 
and antibacterial humoral responses. The findings from this 
study support the important role of immune responses in the 
etiology of VAP [26,27]. Genes associated with cell components 
were closely associated with the lumen, and down-regulated 
genes were enriched in the regulation of the response to ex-
ternal stimuli, as well as the negative regulation of hydrolase 
activity, proteolysis, and peptidase activity.

Also, in 2015, Xu et al. [28] reported the findings from a study 
that used the gene expression profile data of GSE30385 and 
compared the PPI pairs of all genes from the STRING database, 
followed by searching VAP-related genes in the National Center 
for Biotechnology Information (NCBI) to build a PPT network 
for these genes. Then, they searched the overlapping DEGs and 
those in the PPI network and showed that the MAPK cascade 
and processes related to the immune system were enriched in 
these overlapping genes [28]. Swanson et al. [8] used a logis-
tic regression model with cross validation to develop a gene 
expression model (PIK3R3, ATP2A1, PI3, ADAM8, and HCN4) 
for predicting VAP in trauma patients, but this previous study 
used only one modeling method to build the gene signatures.

In the present study, three modeling methods were used to 
build a ten-gene signature with diagnostic value in VAP. Among 
these ten genes, lactotransferrin (LTF) is a multifunctional pro-
tein of the transferrin family. Specific receptors presenting on 
microbial cell surface also interpret lactoferrin antibacterial 
actions, and in humans, LTF is primarily expressed in muco-
sal epithelial cells and immune cells [29], and is known for its 
antimicrobial, antiviral, anti-inflammatory, and immunomod-
ulatory functions [30].

A previously published study included proteomic profiling 
of bronchoalveolar lavage (BAL) fluid in critically ill VAP pa-
tients [31], and the protein lactotransferrin was also found to 
be a differentially expressed protein in VAP+ patients when 
compared with VAP– patients. Myeloid cell nuclear differentia-
tion antigen (MNDA), is involved in the activation of the innate 
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immune response and cellular defense response and is an im-
munohistochemical marker used to distinguish marginal zone 
lymphomas from other small B-cell lymphomas [32]. Also, the 
role of MNDA on the proliferation, apoptosis, and migration 
of osteosarcoma cells has previously been studied [33]. FK506 
binding protein 5 (FKBP5) is an important modulator of stress 
responses and affects the pathogenesis of stress-related dis-
orders [34]. The critical roles of platelet-derived growth fac-
tor C (PDGFC) in the cardiovascular system as angiogenic and 
survival factors have been demonstrated [35].

Growth arrest and DNA damage-inducible alpha (GADD45A) 
acts as an indicator of DNA damage and responds to environ-
mental stresses by mediating the p38/JNK pathway activation 
through MTK1/MEKK4 kinase, and has been studied in sev-
eral human cancers [36–39]. Rho GDP dissociation inhibitor 
alpha (ARHGDIA) is expressed in glioma [40,41]. Peptidylprolyl 
isomerase B (PPIB) is expressed in both Gram-negative and 
Gram-positive bacteria and is an intracellular protein that con-
trols bacterial cell division [42]. Regulator of G protein signal-
ing 2 (RGS2) is expressed in prostate cancer [43], breast can-
cer [44], and ovarian cancer [45]. Inhibition of kinesin family 
member 3B (KIF3B) expression can inhibit hepatocellular car-
cinoma cell proliferation [46]. The gene polymorphisms of ca-
thepsin Z (CTSZ) is expressed in pulmonary tuberculosis [47]. 
Also, by inducing epithelial-mesenchymal transition (EMT) in 
hepatocellular carcinoma, CTSZ overexpression is associated 
with tumor metastasis [48]. However, there have been no pre-
vious reports on the role of MNDA, FKBP5, PDGFC, GADD45A, 
ARHGDIA, PPIB, RGS2, KIF3B, and CTSZ in VAP.

This study had several limitations. The diagnostic signature 
identified in this study requires further validation in a larger 
sample size of patients with VAP. Although this model identi-
fied key genes associated with increased risk of VAP, a large 
number of genes were identified, which should be further nar-
rowed to identify the most important genes that can be de-
veloped as predictive, diagnostic, or therapeutic biomarkers.

Conclusions

This study aimed to use machine learning models to develop 
a gene signature for the prediction of ventilator-associated 
pneumonia (VAP). The GSE30385 expression profile was down-
loaded from the Gene Expression Omnibus (GEO) database, 
and 66 significant differentially expressed genes (DEGs) were 
identified, including 35 down-regulated and 31 upregulated 
genes that distinguished between VAP+ and VAP– patients. 
According to Gene Ontology (GO) terms used for enrichment 
analysis, there was a significant increase in the number of up-
regulated DEGs in neutrophil activity. Down-regulated genes 
were increased in association with hydrolase activity. Based on 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis, there was a significant increase in 
the number of upregulated DEGs in FoxO and MAPK signal-
ing pathways. Down-regulated genes saw an enrichment in 
PI3K/Akt signaling pathway and focal adhesion. After applying 
the least absolute shrinkage and selection operator (LASSO) 
regression analysis algorithm on the 66 DEGs, ten essential 
genes were extracted as feature genes and a ten-gene signa-
ture was identified to predict VAP in patients, including LTF, 
MNDA, FKBP5, PDGFC, GADD45A, ARHGDIA, PPIB, RGS2, KIF3B, 
and CTSZ. The three modeling methods included logistic re-
gression analysis, random forest analysis, and the feed-for-
ward multi-layer perceptron (MLP), to build a ten-gene diag-
nostic signature for the diagnosis of VAP. The area under the 
curve (AUC) values using the three models were 0.85, 0.86, 
and 0.87, respectively. This ten-gene signature requires fur-
ther clinical evaluation for the prediction of VAP in patients.
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