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Identity-by-descent mapping in a Scandinavian
multiple sclerosis cohort

Helga Westerlind*,1, Kerstin Imrell1, Ryan Ramanujam1,2, Kjell-Morten Myhr3,4, Elisabeth Gulowsen Celius5,
Hanne F Harbo5,6, Annette Bang Oturai7, Anders Hamsten8, Lars Alfredsson9, Tomas Olsson1,
Ingrid Kockum1, Timo Koski2 and Jan Hillert1

In an attempt to map chromosomal regions carrying rare gene variants contributing to the risk of multiple sclerosis (MS), we

identified segments shared identical-by-descent (IBD) using the software BEAGLE 4.0’s refined IBD analysis. IBD mapping

aims at identifying segments inherited from a common ancestor and shared more frequently in case–case pairs. A total of 2106

MS patients of Nordic origin and 624 matched controls were genotyped on Illumina Human Quad 660 chip and an additional

1352 ethnically matched controls typed on Illumina HumanHap 550 and Illumina 1M were added. The quality control left a

total of 441 731 markers for the analysis. After identification of segments shared by descent and significance testing, a filter

function for markers with low IBD sharing was applied. Four regions on chromosomes 5, 9, 14 and 19 were found to be

significantly associated with the risk for MS. However, all markers but for one were located telomerically, including the very

distal markers. For methodological reasons, such segments have a low sharing of IBD signals and are prone to be false

positives. One marker on chromosome 19 reached genome-wide significance and was not one of the distal markers. This marker

was located within the GNA11 gene, which contains no previous association with MS. We conclude that IBD mapping is not

sufficiently powered to identify MS risk loci even in ethnically relatively homogenous populations, or that alternatively rare

variants are not adequately present.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic, lifelong, demyelinating disease,
affecting primarily young adults. Genes are known to have an
important role in the susceptibility to MS, indicated by a high value
for heritability, h2, of 0.64 (CI: 0.36–0.76) in a recent study.1 By large-
scale genotyping and case–control analyses, over 100 risk genes have
been identified, which are estimated to explain less than one-third of
the heritability.2 The identified risk genes so far are, owing to study
design, common variants, and one possible explanation for the
missing heritability could be that rare variants have an important role.

There are several methods for identification of rare gene variants
that are important in the pathogenesis. The traditional approach to
capture segments shared identical-by-descent (IBD) using affected
families and linkage has generally been less productive in MS and in
most complex genetic disorders. In MS, this approach is also limited
by the low level of familial aggregation,1 making it difficult to obtain
sufficient numbers of families with more than a few affected
individuals. A possible exception to this failure may be the analysis
of isolated or semi-isolated populations, such as Bothnian multicase
MS families in Finland3 and an isolated Dutch population4 which
both indicated the importance of specific genes, which however so far
are not supported by data from the large international case–control
studies.

Population-based linkage analysis (PBLA) is an approach in which
data from SNP genotyping are used to detect segments with IBD shared
more often among cases than among controls,5 a method hypothesized
to catch signals of rare variants. Here, we apply a PBLA approach on a
data set of Scandinavian MS patients that was included in a previously
published genome-wide association screen.6 Although Scandinavia is
not what is traditionally seen as an isolate, it is a population that clusters
very closely in principal component analysis.6 It can therefore be
regarded as a genetically relatively homogenous population and
because of the high prevalence of MS, it might be well suited for PBLA.

A number of different methods applicable to PBLA have been
developed. One of the first softwares was PLINK’s segmental sharing
algorithm published in 2006,5 which used a Hidden Markov Model
(HMM)7 to detect segments shared by descent. More recent
approaches include GERMLINE,8 which uses a dictionary approach,
and BEAGLE IBD,9 also using an HMM methodology. Beagle IBD
was shown to be more accurate but in turn quite slow in running
time. Browning and Browning10 developed a new method, fastIBD,
which outperformed PLINK substantially in accuracy and power, and
was able to detect segments among more distantly related individuals.
In a recent study by Gauvin et al,11 fastIBD was found to be more
reliable than GERMLINE, PLINK and two other methods12,13 when
compared using real data. Recently, Browning and Browning14 published
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a further update of their method, refined IBD, in which they abandoned
the HMM’s and used a dictionary approach, like GERMLINE, but
combined it with a probabilistic assessment of the segments being shared
IBD versus not being shared IBD, and thus gaining even more power.
For segments of shorter length, refined IBD detected a higher number
of segments than fastIBD,14 and may therefore be even more
appropriate for outbred populations such as those in this project.

Common for all the above-mentioned methods is that, they all use
sharing identical-by-state (IBS) to estimate sharing IBD. As frequen-
cies of loci can be significantly different among populations,
stratification of population structure within the data is crucial to
avoid spurious associations. Attention to detection and removal of
outliers and/or close relatedness is therefore an important step to
entail a data set suitable for analysis. In order to estimate IBD from
IBS, these steps must be given careful attention.

MATERIALS AND METHODS

Genotyping and quality control
In all, 2106 MS patients of Nordic origin from Sweden (n¼ 713), Norway

(n¼ 1030) and Denmark (n¼ 363), and 624 controls matched on the Swedish

sample were genotyped on the Illumina Human Quad 660 chip (Illumina,

San Diego, CA, USA) and quality controlled as described elsewhere6 (data

accessible at https://www.ebi.ac.uk/ega/studies/EGAS00000000101). From this

quality control, 91 individuals were excluded due to genotyping error and/or

close relationship.

An additional 678 controls for breast cancer patients treated in the Stockholm

area,15 typed on Illumina 1M (Illumina), and 674 controls for Swedish patients

with myocardial infarction,16,17 typed on Illumina HumanHap 550k (Illumina),

were also added. The data are available upon request from http://www.

karmastudy.org (breast cancer) and http://procardis.org (myocardial infarction),

respectively.

An additional quality control, after re-calling the genotypes for the

additional controls and combining the two data sets, was performed with

PLINK using a minor allele frequency of 0.05, Hardy–Weinberg equilibrium of

1e-6, a missingness per individual of 0.07, as required by Beagle,14 and a

missingness per marker of 0.1, left 441 731 markers in the analysis.

Outlier analysis
The smartPCA algorithm of the EIGENSTRAT package18 was used for

calculating the principal component (PC) vector and removing outliers. The

outlier-removal process involved two stages, utilizing as input data the first six

PCs. In the first stage, sample pairwise Euclidean distances were used to

calculate the average distance of a sample to each of its 10 nearest neighbors.

This information gives the density of local clustering along PCs, and an

arbitrary cutoff (distance of 0.15) was used to determine the main cluster(s),

thereby taking into account the sparseness of the sample distribution. In the

second stage, samples in the included cluster(s) were required to also have 9 of

10 the nearest neighbors inside the cluster. This ensures that only samples at

the interior of clusters are included, and less tightly included samples

approaching the cluster boundary are omitted to ensure a more

homogeneous composition. A final set of 3953 individuals remained after

the exclusion of outliers. Scripts for R19 and MATLAB20 for the outlier analysis

can be found on http://kirc.se.

Transformation of data sets
The data set was transformed from PLINK’s .ped and .bed format to Beagle’s

.bgl format using linkage2beagle.jar, and later from .bgl to .vcf using

beagle2vcf.jar from the Beagle utility programs.

Identification of IBD segments
A pre-release version of BEAGLE 4.0 was used for detection of the segments.

The ibdtrim parameter was set to 25. The centiMorgan distances for the

map-file were interpolated using the Beagle utility program base2genetic.jar

and build 36 of the human genome project.

IBD mapping
A Java program was written to convert the format from refined IBD to fastIBD

(available on http://kirc.se) and the scripts for IBD mapping published by

Sharon Browning21 were used to perform the IBD mapping. The threshold for

genome-wide significance was estimated through the permutation analysis

provided by Sharon Browning’s script using 5 million permutations. When

calculating the P-values in the permutation analysis, it was corrected for the

average genome-wide sharing.

The analysis was run on a two-server computational cluster, where each

machine was equipped with two Intel Xeon E5-2660 2.20 GHz processors,

128 GB RAM with Scientific Linux 6.3 as operating system and SLURM as

resource management system.

Segments with a LOD score of o3 and a length shorter than 1 cM were

excluded before calculating the genome-wide average and performing the

permutation analysis.

The threshold for genome-wide significance was set as the 0.05 percentile of

the distribution for the permutation P-values.

RESULTS

A histogram over the frequency of lengths of detected chromosomal
segments can be seen in Figure 1. The distribution approximated a
Pareto distribution with the mean lengths of segments slightly
above 1 cM.

The permutation analysis showed significant peaks of the segment
shared IBD at the ends of chromosomes 5, 9 and 14 and in the
beginning of chromosomes 1, 7, 15 and 19 (Figure 2). Determining
the correct end points of segments is a known difficulty while
identifying segments,14 and IBD detection at the end of
chromosomes is lower. This can be seen in Figure 3 where the IBD
sharing between all pairs of individuals is shown. This may inflate
significance estimations for segments identified to be shared more
often between affected individuals. Thus, the fact that most associated
segments were located telomerically, strongly suggests that their
identification was an artifact of the method. Therefore, a filter
removing signals in regions with the lowest 10% of IBD detection
was added. To this end, we calculated how many segments spanned
each accepted marker and estimated the 10th percentile from the
distribution.

After applying the filter, the peaks on chromosomes 5, 9, 14 and 19
remained (Figure 4). The signal on chromosome 19 was the only
genome-wide significant hit that was not in a telomeric position.
Here, a single marker (RS8092) reached significance in the permuta-
tion analysis, whereas the flanking markers did not (RS4806907 and
RS1682809). The significant marker was located in the last exome of
transcript 001 of gene GNA11.

Figure 1 Plot of the distribution of the lengths of the segments.
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DISCUSSION

We aimed at reusing data from a published GWAS for assessing
chromosomal segments shared IBD between patients and
controls to achieve a PBLA of a genetically relatively homogenous
cohort of individuals from Scandinavia. When applying the

statistical methodology of choice on over 2000 patients and as
many controls, only one marker was found to reach genome-wide
significance. None of the over 100 previously identified MS risk
gene loci indicated an increased sharing of haplotypes between
patients.

Figure 2 Permutation analysis before filtering. Blue line indicates genome-wide threshold and black line is the minimal permutation P-value. The full colour

version of this figure is available at European Journal of Human Genetics online.

Figure 3 Pattern for IBD sharing per chromosome.
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Assuming that lack of power contributed to the lack of significant
findings in this study, we attempted to infer the power calculations
described for refined IBD to our settings.14 This suggested that,
theoretically, we may have reached a power 450% with our sample
size of n¼ 2000 using a LOD of 3 as a cutoff to identify segments of
1 cM length or greater. However, extensive simulations would be
required to definitively assess the real power of the analysis.

Another explanation for the results could be that, despite removing
outliers and retrieving a homogenous data set, the population might
still be too outbred to find significant results using this type of
analysis. In Sweden, there are a few identified high MS prevalence
clusters such as Lysvik in the west22 and Överkalix in the north.23

Even if rare genetic variants explain these clusters and samples from
these and other possible clusters are included, such variants may have
been missed due to dilution when including them in the larger
material.

A further speculation would be that rare variants are less important
as genetic risk factors for MS in comparison with the common
variants responsible for the previously identified genetic effects
in MS.2,6

Although major improvements have been made in accuracy and
speed of haplotype sharing algorithms compared with previous
methods, there are still slight problems with the refined IBD method.
One of the problems is the difficulty to avoid false positives in regions
with low coverage of IBD such as at ends of chromosomes, an artifact
seen in this study. This prompted us to the filtering out of regions
with low IBD, which left one marker that was not in a telomeric
region. This variant maps to GNA11, which codes for a guanine
nucleotide binding protein (G protein), alpha 11 (Gq class), a gene
not previously associated with MS and located on 19p13.3. The
closest previously published MS-associated gene is TNFSF14 that is
located some 3 MBp centromeric. Already in 2005, a linkage peak for
MS was reported in 19p13 that acted independently from the HLA
locus;24 however, it is not specified as to where on 19p13 this effect
was seen. In a paper in 2009, a microsatellite marker on 19p13 was

associated to disease outcome,25 but upon our inspection in a later
build of the genome reference, it appears that this marker is more
likely to reside at 19q13, an area with several published associations
from both linkage and association analysis.26–29 Thus, there is weak
prior evidence for an importance of this locus in MS.

Earlier in 2013, a paper performing PBLA in MS using fastIBD was
published by a group in Australia,30 reporting a peak at the end of
chromosome 19. A different method for post-processing of the
segments was used and no filtering out of regions with general low
IBD detection was made. This paper also presented a significant
finding in the HLA region, the most strongly acting gene region in
MS. The most straightforward explanation for the lack of signal in
HLA in our study is that there are no rare variants in this region of
the Swedish population. This would indicate that the HLA
associations reported in the literature are due to common
variations and not due to, for example, sequence variations within
the associated alleles. Other possible explanations could be the shorter
length of segments in the region, which in our analysis were filtered
out already during the segment identification phase when they did
not reach the 1 cM threshold.

There are a few potential problems to consider when running
PBLA, and parameter settings can be difficult. The extensive amount
of hardware and computational time for the analysis introduces
difficulty and parameter sweeping is not an option. The extensive
permutation analysis performed in this study gave a more accurate
estimate for the genome-wide threshold. Nevertheless, it took months
to run despite the use of a reasonably fast computational cluster with
a suitably large amount of hardware. There are other ways of
obtaining an estimate for this threshold,10 but they are less accurate
and require time and computer power to perform the analysis.

CONCLUSION

Detecting segments shared by descent is a very intriguing method;
however, it is still very new and to date not well tested. Much has
happened since the first version of PLINK’s segmental sharing

Figure 4 Permutation analysis after filtering out regions with low IBD sharing. Blue line indicates genome-wide threshold and black line is the minimal

permutation P-value. The full colour version of this figure is available at European Journal of Human Genetics online.
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algorithm was published in 2006, and methods are now both faster
and more accurate with higher power.10 Using available methods, the
outcome of analysis was largely negative, with one significant marker
shared more frequently in haplotypes estimated to be identical by
descent among MS case–case pairs in a Scandinavian population.
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