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ABSTRACT
In December 2019, a COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated
around the world impacting human health for millions. Herein, in-silico drug discovery approaches
have been utilized to identify potential natural products (NPs) as Severe Acute Respiratory Syndrome
coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. The MolPort database that contains over
100,000 NPs was screened and filtered using molecular docking techniques. Based on calculated dock-
ing scores, the top 5,000 NPs/natural-like products (NLPs) were selected and subjected to molecular
dynamics (MD) simulations followed by molecular mechanics–generalized Born surface area (MM-
GBSA) binding energy calculations. Combined 50ns MD simulations and MM-GBSA calculations
revealed nine potent NLPs with binding affinities (DGbinding) >�48.0 kcal/mol. Interestingly, among the
identified NLPs, four bis([1,3]dioxolo)pyran-5-carboxamide derivatives showed DGbinding >�56.0 kcal/
mol, forming essential short hydrogen bonds with HIS163 and GLY143 amino acids via dioxolane oxy-
gen atoms. Structural and energetic analyses over 50 ns MD simulation demonstrated NLP-Mpro com-
plex stability. Drug-likeness predictions revealed the prospects of the identified NLPs as potential drug
candidates. The findings are expected to provide a novel contribution to the field of COVID-19
drug discovery.
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Introduction

The recent pandemic due to the worldwide spread of COVID-19
caused by a new Severe Acute Respiratory Syndrome coronavirus
2 (SARS-CoV-2) is a great concern for global public health (Lu
et al., 2020; Zhu et al., 2020). The WHO declared a global emer-
gency in January 2020, and by March COVID-19 had expanded
into a pandemic due to its rapid propagation (Cucinotta &
Vanelli, 2020). Since then the U.S. Food and Drug Administration
(FDA) has issued an emergency use authorization of remdesivir
for treatment of suspected or laboratory-confirmed COVID-19
cases. In addition, clinical trials are being conducted for several
potential drugs to treat COVID-19 (Thorlund et al., 2020).
Identification of small molecules as potential SARS-CoV-2 inhibi-
tors continues to be a major research focus within the scientific
and pharmaceutical communities (Al-Khafaji et al., 2020; Liu
et al., 2020; Sanders et al., 2020). The mechanism of SARS-CoV-2
inhibition depends on a main protease (Mpro) that represents a
potential target for terminating viral replication (Boopathi et al.,
2020). SARS-CoV-2 Mpro with a peptidomimetic inhibitor (N3) has
been recently crystallized providing structural information for in-
silico studies to screen for novel SARS-CoV-2 inhibitors (Jin
et al., 2020).

Natural products (NPs) have been the source of most of the
active ingredients of medicines, as over 50% of the approved
drugs are based on NPs (Harvey, 2008). Therefore, NPs have hith-
erto received great attention by researchers that seek to discover
potential drugs for the treatment of various diseases such as
malaria (Clark, 1996; Wells, 2011), HIV (Kurapati et al., 2015), car-
diovascular disease (Mashour et al., 1998), and neoplastic disease
(Cragg et al., 1997). Recently, NPs screenings have been reported
to identify anti-COVID-19 inhibitors based on NPs/NLPs (Gentile
et al., 2020; Gonzalez-Paz et al., 2020; Ul Qamar et al., 2020). The
long lead time and high cost of isolating and identifying NPs
have prompted investigators to design natural-like products
(NLPs) libraries based on small molecules taking into account the
stability improvement and bioavailability (Quinn et al., 2008;
Thomas & Johannes, 2011). One of the most common enriched
databases is MolPort database containing 113,756 NPs/NLPs
(https://www.molport.com). The current study set out to screen
the MolPort database against potential small molecules that
would bind in the SARS-CoV-2 Mpro active site and act as an
inhibitor. Based on estimated docking scores, the top 5,000 NPs/
NLPs were selected and subjected to molecular dynamics simula-
tions combined with binding energy calculations using molecular
mechanics–generalized Born surface area (MM-GBSA) approach.
The stability, binding affinity and interactions of the identified
NPs/NLPs with the SARS-CoV-2 Mpro active site were investigated
with 50ns molecular dynamics simulations. Drug likeness param-
eters were predicted for the proposed NPs/NLPs. The obtained
results provide implications of new drug development in the pre-
vention or treatment of COVID-19.

Computational methodology

Database preparation

The MolPort database that contains 113,756 natural and nat-
ural-like products was downloaded and prepared for

molecular docking calculations (https://www.molport.com).
The 3D chemical structures of the compounds were gener-
ated using Omega2 software (Hawkins et al., 2010; OMEGA,
2013). The geometrical structures of the compounds were
then optimized by MMFF94S force field using SZYBKI
(SZYBKI, 2016). Gasteiger method was used to assign partial
atomic charges (Gasteiger & Marsili, 1980). Prepared files may
be accessed at the publicly-available site CompChem-
DataBase (www.compchem.net/ccdb).

Mpro preparation

The crystal structure of SARS-CoV-2 main protease (Mpro)
complexed with peptidomimetic inhibitor (N3) (PDB code:
6LU7 (Jin et al., 2020) was considered as a template for all
molecular docking and molecular dynamics calculations.
Water molecules and ions were removed. The protonation
state of Mpro was examined using Hþþ server, and all missing
hydrogen atoms were added (Gordon et al., 2005). Finally,
the pdbqt file for Mpro was prepared according to AutoDock
protocol (Forli et al., 2016).

Molecular docking

In this study, two molecular docking calculations were con-
ducted—namely, standard and expensive. In the two calcula-
tions, all docking parameters were kept to default values,
except the number of genetic algorithm (GA) runs and the
maximum number of energy evaluations (eval). The latter
two variables were set to 25 and 100, and 2,500,000 and
10,000,000 for standard and expensive molecular docking
calculations, respectively. The docking grid was purposed to
embrace the active site of the SARS-CoV-2 Mpro receptor
with a grid size of 60 Å� 60Å� 60Å and a spacing value of
0.375 Å. The grid center was located at �13.069, 9.74, 68.49
(XYZ coordinates). All molecular docking calculations were
carried out using Autodock4.2 software (Morris et al., 2009).

Molecular dynamics simulations

Molecular dynamics (MD) simulations were executed on top
potent NPs/NLPs in complex with SARS-CoV-2 Mpro using
AMBER16 software (Case et al., 2016). In MD simulations,
NPs/NLPs and Mpro were described using General AMBER
force field (GAFF) and AMBER force field 14SB, respectively
(Maier et al., 2015; Wang et al., 2004). Two types of MD simu-
lations were performed—namely, implicit and explicit MDs.
In implicit MD, the atomic partial charges of the NPs/NLPs
were assigned using am1-bcc method with the help of
Antechamber tool implemented inside AMBER16 (Jakalian
et al., 2002). A non-bonded cutoff of 999 Å and no periodic
boundary conditions were applied. Moreover, the solvation
effect was captured with the igb ¼ 1 implicit solvent model
(Roux & Simonson, 1999). The docked NP/NLP-Mpro com-
plexes were then minimized for 500 steps and heated from
0K to 300 K over 10 ps. Finally, 100 ps and 1,000 ps produc-
tion stages were performed and snapshots were collected
every 1 ps, giving 100 and 1,000 snapshots, respectively. All
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Table 1. Calculated standard and expansive docking scores (in kcal/mol) and binding features for nine potent natural-like products (NLPs) against SARS-CoV-2
main protease (Mpro).

No. MolPort code 2D-chemical structure

Docking score (kcal/mol)
Binding features

(Hydrogen bond length in Å)Standard Expensive

1 MolPort-000-708-794 �10.4 �11.0 GLU166 (1.80 Å), GLY143 (1.72 Å),
HIS163 (2.35 Å), HIS 164 (1.83 Å)

2 MolPort-044-179-844 �10.0 �10.9 GLN189 (1.80 Å), THR190 (2.39 Å),
GLN192 (2.45 Å), HIS163 (2.07 Å)

3 MolPort-000-702-646 �10.4 �10.8 HIS163 (2.26), HIS164 (2.05 Å),
THR190 (1.66 Å), GLN192 (2.84 Å),
GLN189 (2.94 Å), GLY143 (1.95 Å)

4 MolPort-002-513-915 �9.6 �10.5 HIS164 (2.15 Å), GLN192 (2.38 Å),
GLN189 (2,55 Å), GLY143 (2.09 Å),

HIS163 (2.57 Å)

5 MolPort-005-948-349 �10.2 �10.4 GLN189 (2.10, 1.89 Å),
ASN142 (2.15 Å), GLU166 (2.85 Å)

6 MolPort-039-056-062 �10.0 �10.4 GLN192 (2.24 Å), THR190 (1.97 Å),
GLU166 (2.04 Å), GLN189 (2.18, 2.18 Å),

ASN142 (2.54 Å)

7 MolPort-004-849-765 �9.8 �10.4 HIS164 (2.07 Å), GLN189 (2.51 Å),
GLY143 (1.97 Å), HIS163 (2.44 Å)

(continued)
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implicit MD simulations were performed with the CPU ver-
sion of pmemd (pmemd.MPI) in AMBER16. In explicit MD, the
atomic partial charges of the studied NPs/NLPs were
assigned using the restrained electrostatic potential (RESP)
approach at the HF/6-31G� level with the help of Gaussian09
software (Bayly et al., 1993; Frisch et al., 2009). The docked
NP/NLP-Mpro complexes were solvated in a cubic water box
with 15 Å distances between the edges of the box and any
atom of NP/NLP or NP/NLP-Mpro complexes. The solvated
NP/NLP-Mpro complexes were then minimized for 5000 steps
and subsequently gently annealed from 0K to 300 K over
50 ps. The systems were equilibrated for 1 ns and production
stages were conducted over simulation times of 10 and
50 ns. The snapshots were collected every 10 ps, giving 1,000
and 5,000 snapshots, respectively. Periodic boundary condi-
tions and the NPT ensemble were adopted in all explicit MD
simulations, including both the equilibration and production
stages. Long-range electrostatic interactions under periodic
conditions with a direct space cut-off of 12 Å were treated
with Particle Mesh Ewald (PME) method (Darden et al., 1993).
Langevin dynamics with the collision frequency gamma_ln
set to 1.0 was used to keep the temperature constant at
298 K. Berendsen barostat with a relaxation time of 2 ps was
employed to control the pressure of system (Berendsen
et al., 1984). A time step of 2 fs and the SHAKE option to
constrain all bonds involving hydrogen atoms were used. All
explicit MD simulations were performed with the GPU ver-
sion of pmemd (pmemd.cuda) in AMBER16.

MM-GBSA binding energy

Snapshots were collected every 10 ps over the production
stage of 50 ns MD simulation, giving 5,000 snapshots. Based
on the collected snapshots, molecular mechanics–generalized
Born surface area (MM-GBSA) approach was used to evaluate
the binding energy of the studied NPs/NLPs with SARS-CoV-2
Mpro (Massova & Kollman, 2000). The MM-GBSA binding free

energies were estimated as follows:

DGbinding ¼ GComplex � GNP=NLP þ GMpro
� �

where the energy term (G) is estimated as:

G ¼ Evdw þ Eele þ GGB þ GSA

with Evdw , Eele, GGB and GSA as the van der Waals, electro-
static, General Born solvation, and surface area energies,
respectively. For the NPs/NLPs, entropy contributions
were neglected.

Drug likeness

The online Molinspiration cheminformatics software (http://
www.molinspiration.com) was utilized to evaluate the physi-
cochemical parameters of the identified potent NPs and
NLPs. Lipinski’s parameters including topological polar sur-
face area (TPSA), relative molecular weight (MW), number of
hydrogen bond donors (nOHNH), number of hydrogen bond
acceptors (nON) and the partition coefficient log P (miLog P)
were assessed.

Molecular target prediction and network analysis

Based on the structural similarity of known ligands-target
integrations, target prediction of the most promising NPs/
NLPs was performed using the online website-based tools of
SwissTargetPredicition (http://www.swisstargetprediction.ch).
Additionally, the available database for Severe Acute
Respiratory Syndrome diseases was collected from the online
database DisGeNET (https://www.disgenet.org). Venn diagram
was plotted using InteractiVenn online tool (Heberle et al.,
2015). Protein-protein interaction (PPI) network was gener-
ated using a functional database of STRING for top predicted
targets (Li et al., 2019). The PPI network was diagramed and
analyzed using Cytoscape 3.8.0 (Shannon et al., 2003).

Table 1. Continued.

No. MolPort code 2D-chemical structure

Docking score (kcal/mol)
Binding features

(Hydrogen bond length in Å)Standard Expensive

8 MolPort-046-158-375 �9.7 �10.3 PHE140 (1.68, 2.34 Å),
GLU166 (2.38 Å), CYS145 (2.51 Å),

HIS163 (2.85, 1.78 Å),

9 MolPort-001-751-850 �9.6 �10.1 GLN192 (2.14 Å), HIS163 (2.10 Å),
ASN142 (1.94 Å), GLU166 (2.09 Å),
CYS145 (2.35 Å), HIS41 (2.84 Å)
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Results and discussion

Unavailability of therapies as yet indicates an urgent need
for drug exploration against SARS-CoV-2. The main protease
(Mpro) is a likely targeted for enzyme inhibition due to the
polypeptides’ essential role in viral replication. In this study,
the expansive MolPort database for natural products (NPs)
and natural-like products (NLPs) was screened and filtered
for the identification of potential SARS-CoV-2 Mpro inhibitors.

Molecular docking

Two levels of molecular docking calculations were carried
out to minimize computational-costs and time. Initially, all
NPs/NLPs in the MolPort database were screened against
Mpro with standard docking parameters of GA¼ 25 and
eval¼ 2,500,000. The NPs/NLPs were then sorted based on
their docking scores. In terms of the calculated docking
scores, almost three-fourths of the screened NPs and NLPs
(�78%) showed binding energies less than �8.7 kcal/mol
with SARS-CoV-2 Mpro. Therefore, only the top 25,000 NPs/
NLPs were selected for further docking calculations. Using
expensive docking parameters of GA¼ 100 and eval-
¼ 10,000,000, the selected 25,000 NPs/NLPs were re-docked
against Mpro. Docking scores and binding features, as well as
2D chemical structures, of nine potent NLPs with SARS-CoV-
2 Mpro are listed in Table 1. The 2D and 3D representations
of interactions of the top nine potent NLPs with important

Figure 1. 2 D and 3 D representation of predicted binding mode of MolPort-000-708-794 as potent natural-like products (NLPs) inside the active site of SARS-CoV-2
main protease (Mpro).

Table 2. Decomposition of MM-GBSA binding energies for four dioxolo-deriva-
tives in complex with SARS-CoV-2 main protease (Mpro) through 50 ns MD
simulations.

MolPort code

Calculated MM-GBSA binding energy (kcal/mol)

DEVDW DEele DEGB DESUR DGgas DGSolv DGbinding
MolPort-004-849-765 �62.4 �35.1 45.7 �6.6 �97.5 39.1 �58.4
MolPort-000-708-794 �63.7 �47.1 60.4 �6.8 �110.8 53.6 �57.3
MolPort-002-513-915 �63.0 �34.5 47.6 �6.7 �97.5 40.9 �56.6
MolPort-000-702-646 �63.1 �43.6 57.4 �6.9 �105.7 50.5 �56.2
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amino acid residues of SARS-CoV-2 Mpro are depicted in
Supporting Information Figure S1.

The most promising NLPs (shown in Table 1 and
Supporting Information Figure S1) share the same binding
mode inside the active site of SARS-CoV-2 Mpro, forming
essential hydrogen bonds with key amino acid residues
including HIS164, HIS163, and GLU166. Further interactions
including van der Waals and hydrophobic interactions were
identified, giving a docking score higher than ��9.6 kcal/
mol (Supporting Information Figure S1). For instance, the
potency of MolPort-000-708-794 with a binding energy of
�11.0 kcal/mol may be attributed to its ability to form four
hydrogen bonds with GLU166, GLY143, HIS163, and HIS164
with bond lengths of 1.80, 1.72, 2.35 and 1.83 Å, respectively
(Figure 1). Two out of the latter four hydrogen bonds were
formed via dioxolane oxygen atoms, revealing a significant
contribution of dioxolane rings in NLPs-Mpro binding mode
and affinity. Based on calculated expensive docking scores,

the top 5,000 potent NPs/NLPs were closely investigated
using molecular dynamics (MD) calculations.

Molecular dynamics simulations

Conformational flexibilities of drug-receptor complexes, solv-
ent effects, and dynamics must be considered to achieve reli-
able drug-receptor binding affinities (De Vivo et al., 2016;
Kerrigan, 2013). Therefore, molecular dynamics (MD) simula-
tions combined with binding energy calculations over rea-
sonable simulation time were performed for the top 5,000
potent NPs/NLPs in complex with SARS-CoV-2 Mpro.
Considering computational-costs and time, MD simulations
for the 5,000 docked NPs/NLPs-Mpro complexes were con-
ducted in implicit solvent for 100 ps and the corresponding
binding energies were estimated using MM-GBSA approach
(see Computational Methodology section for details). The

Figure 2. Calculated MM-GBSA binding energies for the top nine potent natural-like products (NLPs) as SARS-CoV-2 main protease (Mpro) inhibitors over 100 ps
and 1 ns implicit MD and 10 ns and 50 ns explicit MD simulations.

Table 3. Predicted physiochemical parameters of the four dioxolo-derivatives as potent SARS-CoV-2 main protease (Mpro) inhibitors and their different structural
descriptors.

MolPort code miLog Pa TPSAb nONc nOHNHd nviolation Nrotbe MolVolf MWtg %ABSh

MolPort-004-849-765 2.38 104.37 9 2 0 4 393.88 499.36 72.9%
MolPort-000-708-794 1.43 163.43 13 3 2 7 461.20 568.63 52.6%
MolPort-002-513-915 2.12 130.67 11 2 1 7 437.32 492.52 63.9%
MolPort-000-702-646 1.48 163.43 13 3 2 7 470.49 562.60 52.6%
aLogarithm of partition coefficient between n-octanol and water (miLogP).
bTopological polar surface area (TPSA).
cNumber of hydrogen bond acceptors (nON).
dNumber of hydrogen bond donors (nOHNH).
eNumber of rotatable bonds (nrotb).
fMolecular volume (Mol Vol).
gMolecular weight (MWt).
h%ABS ¼ 109� [0.345� TPSA] (Zhao et al., 2002).
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calculated MM-GBSA binding energies of the top 1,000 com-
pounds are listed in Supporting Information Table S1.

Interestingly, of the 5,000 investigated NPs/NLPs, only 86
NPs/NLPs showed significant MM-GBSA binding energies
with values in range �45.0 to �56.3 kcal/mol. To achieve a
greater degree of accuracy, molecular dynamics of 86 NPs/
NLPs in complex with Mpro were further investigated over a
longer implicit MD simulation with a time of 1 ns. Estimated
MD//MM-GBSA binding energies are presented in Supporting
Information Table S2. The corresponding MM-GBSA binding
energies for nine potent NLPs are presented in Figure 2.

On the basis of the calculated MM-GBSA binding energies
over 1 ns (Supporting Information Table S2), 46 NPs/NLPs
exhibited instability in molecular dynamics and their corre-
sponding MM-GBSA binding energies with Mpro were
decreased to be less than �45.0 kcal/mol, while the other 40
NPs/NLPs showed significant binding affinities with MM-
GBSA energies ��45.0 kcal/mol. Therefore, we focused on
these potent 40 NPs/NLPs over a reasonable MD simulation
time in explicit solvent. Consequently, 10 ns MD simulations
for the potent 40 NPs/NLPs-Mpro complexes were conducted
in explicit solvent and followed by MM-GBSA binding ener-
gies calculation. The estimated 10 ns MD//MM-GBSA binding
energies are noted in Supporting Information Table S3, and
the corresponding binding energies for nine potent NLPs are
presented in Figure 2.

Interestingly, only nine of the investigated NPs/NLPs
showed promising binding affinities >�50.0 kcal/mol
towards SARS-CoV-2 Mpro over 10 ns MD simulation time
(Supporting Information Table S3). To increase the reliability

of the observed results, each one of these nine NLPs in com-
plex with Mpro was further simulated for 50 ns MD, and the
corresponding binding energies were calculated (Figure 2).

As can be seen from Figure 2, there was no significant dif-
ference between the estimated MM-GBSA binding energies
over 10 ns MD and those over 50 ns MD, reflecting the tight
binding of the identified NLPs with SARS-CoV-2 Mpro.
Surprisingly, four of the nine NLPs—namely, MolPort-004-
849-765, MolPort-000-708-794, MolPort-002-513-915 and
MolPort-000-702-646—are bis([1,3]dioxolo)pyran-5-carboxa-
mide derivatives and showed outperformance affinity
towards SARS-CoV-2 Mpro with binding energies
>�56.0 kcal/mol. Therefore, considerable interest was given
in the following sections to investigate the identified diox-
olo-derivatives as potential SARS-CoV-2 Mpro inhibitors.

Post-dynamics analyses

The purpose of the post-dynamics analyses was to evaluate
the interaction nature and stability of the identified dioxolo-
derivatives inside the SARS-CoV-2 Mpro active site. Structural
and energetic analyses for the four promising dioxolo-deriva-
tives were conducted over 50 ns explicit MD simulations.

Binding energy decomposition
Decomposition of average MM-GBSA binding energy over
50 ns MD simulation was performed to reveal the nature of
dominant interactions in NLPs-Mpro complexes (Table 2).
Energy decomposition results showed that Evdw was the

Figure 3. Variations in the MM-GBSA binding energies for MolPort-004-849-765 (in cyan), MolPort-000-708-794 (in red), MolPort-002-513-915 (in blue) and
MolPort-000-702-646, (in black) with SARS-CoV-2 main protease (Mpro) during the 50 ns MD simulation.
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dominant force in NP/NLP-Mpro binding affinities with a con-
tribution value of ��63.0 kcal/mol for the four dioxolo-deriv-
atives. Eele was favorable with values of �35.1, �47.1, �34.5

and �43.6 kcal/mol for MolPort-004-849-765, MolPort-000-
708-794, MolPort-002-513-915 and MolPort-000-702-646,
respectively.

Figure 4. Hydrogen bond lengths and center-of-mass (CoM) distances between MolPort-004-849-765 (in cyan), MolPort-000-708-794 (in red), MolPort-002-513-915
(in blue) and MolPort-000-702-646 (in black) with the HIS164 amino acid residue inside the active site of SARS-CoV-2 main protease (Mpro) over the 50 ns
MD simulation.
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Binding energy per frame
The stability of dioxolo-derivatives inside the Mpro active site
was investigated using the correlation between the binding-
energy and time. Therefore, MM-GBSA binding energy was
estimated per-frame for each of MolPort-004-849-765,
MolPort-000-708-794, MolPort-002-513-915, and MolPort-000-
702-646 with Mpro and presented in Figure 3. According to
data in Figure 3, there was overall stability for the four diox-
olo-derivatives till the end of the simulations with average
values of �58.4, �57.3, �56.6, and �56.2 (kcal/mol), respect-
ively. These findings indicated the promising stability of NLP-
Mpro complexes over the simulated MD time of 50 ns.

Hydrogen bond length and center-of-mass distance
Inspecting the hydrogen bond length and center-of-mass
(CoM) distance between the dioxolo-derivatives and the key
HIS164 amino acid residue over the 50 ns MD simulation
would reflect an indication of NLPs-Mpro stability. Therefore,
the desired hydrogen bond lengths and CoM distances were
measured over the 50 ns MD simulations and depicted in
Figure 4.

The most obvious finding to emerge from data plotted in
Figure 4 was that MolPort-004-849-765, MolPort-000-708-794,
MolPort-002-513-915 and MolPort-000-702-646 showed high
stability inside the active site with average hydrogen bond
lengths of 1.93, 1.98, 1.92, and 1.99 Å, respectively. In terms
of the measured CoM distances, the average CoM distance
between NLP and HIS164 was nearly constant around 8Å
during 50 ns MD simulations for the four investigated diox-
olo-derivatives.

Overall, these post-dynamics results provided evidence for
the stability of the identified dioxolo-derivatives in complex
with SARS-CoV-2 Mpro, forming hydrogen bond interactions
with the key amino acids.

Root-mean-square deviation
Root-mean-square deviation (RMSD) was used to investigate
the structural changes in the NLP-Mpro complexes. RMSD for
the backbone atoms of the MolPort-004-849-765, MolPort-
000-708-794, MolPort-002-513-915 and MolPort-000-702-646
in complex with Mpro relative to the starting structures
throughout the 50 ns MD simulations were evaluated and
presented in Figure 5.

From the data in Figure 5, it is apparent that the back-
bone of NLP-Mpro complexes exhibited stability over 50 ns
MD simulation, giving RMSD with less than 0.35 nm. These
results emphasize that four investigated dioxolo-derivatives
are tightly bonded in the active site and do not impact the
overall topology of Mpro. Finally, these energetic and struc-
tural analyses demonstrated the high stability of the four
investigated dioxolo-derivatives-Mpro complexes through
50 ns MD simulations.

Drug likeness

Lipinski’s rule of five is commonly used in drug discovery
and development to evaluate the oral bioavailability of active
drug in humans. In this study, physicochemical parameters
of the promising NLPs as potential SARS-CoV-2 Mpro inhibi-
tors were predicted using Molinspiration cheminformatics,

Figure 5. Root-mean-square-deviation (RMSD) of the backbone from the initial structure for MolPort-004-849-765 (in cyan), MolPort-000-708-794 (in red), MolPort-
002-513-915 (in blue) and MolPort-000-702-646 (in black) with SARS-CoV-2 main protease (Mpro) through 50 ns MD simulation.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 9



(http://www.molinspiration.com) online software calculation
toolkit. The predicted parameters included Lipinski’s parame-
ters, topological polar surface area (TPSA), and percentage of
absorption (%ABS). The predicted parameters are listed in
Table 3.

From data given in Table 3, the milog P values of the four
dioxolo-derivatives were found to be below five (calc. in
range 1.43 to 2.38), suggesting that these NLPs have good
permeability across the cell membrane. Molecular weight
was found to be more or less than 500 (calc. in range 492.52
to 568.63), predicting the compounds to be easily trans-
ported, diffused and absorbed. Besides, the number of
hydrogen bond donors (nOHNH) was less than 5 in accord-
ance with Lipinski’s rules, and the number of hydrogen bond
acceptors (nON) was in range 9 to 13. It is worth mentioning
that this slight increase in molecular weight and hydrogen
bond acceptors will not have a significant impact on com-
pound transportation and diffusion, where it has been shown
that several FDA-approved drugs moved beyond the trad-
itional low molecular weight of 500 and hydrogen bond
acceptors of 10 (Mullard, 2018). Besides, TPSA of all promis-
ing dioxolo-derivatives was observed in range 104.37 to
163.43 Å which was a very good indicator of the bioavailabil-
ity of the investigated NLPs. In addition, the calculated %ABS

was ranged between 52.62% and 72.99%, indicating that the
investigated NLPs may have good cell membrane permeabil-
ity and oral bioavailability.

Molecular target prediction and network analysis

Severe Acute Respiratory Syndrome diseases (C1175175) dis-
played 117 genes based on DisGeNET online software.
Additionally, targeted genes for the identified dioxolo-deriva-
tives as potent Mpro inhibitors were collected using online
SwissTargetPrediction tools, giving 100 targets. Classification
of the predicted targets for each examined dioxolo-derivative
is depicted in Supporting Information Figure S2. The Venn
diagram comparison analysis between Severe Acute
Respiratory Syndrome diseases and predicted targeted genes
was demonstrated and plotted in Figure 6.

According to data presented in Venn diagram (Figure 6),
Acute Respiratory Syndrome diseases and predicted targeted
genes displayed commonly shared MAPK14 and EGFR (Figure
6). The host protein angiotensin-converting enzyme 2 (ACE2),
serves as an entry receptor for SARS-CoV-2. Targeting
MAPK14 would result in blocking of ACE2 production path-
ways, and in turn, reducing the probability of SARS-CoV-2
virus to be received and internalized by human cells

Figure 6. Venn diagram analysis for the four identified dioxolo-derivatives as potent SARS-CoV-2 main protease (Mpro) inhibitors and Severe Acute Respiratory
Syndrome disease genes.
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(Kindrachuk et al., 2015). In addition, SARS-CoV-2 inhibition
might be achieved by inhibition of MAPKs which are acti-
vated also by GFRs, such as in case of chloroquine
(Hondermarck et al., 2020).

The possible targets predicted by SwissTargetPrediction
for all examined dioxolo-derivatives were further analyzed
using STRING PPI network and visualized by Cytoscape 3.8.0.
The network topological analysis by Cytoscape demonstrated
that the targets within the top 10 scores of degree were
MAPK14 and EGFR for the four examined dioxolo-derivatives
(Supporting Information Table S4). The STRING PPI network
for the identified top 10 targets is depicted in Figure 7.

Conclusion

SARS-CoV-2 main protease (Mpro) is characterized to be an essen-
tial and highly potent target for the inhibition of the novel cor-
onavirus. In this study, a total of 113,756 natural and natural like
products were screened against Mpro to discover potential SARS-
CoV-2 Mpro inhibitors. Filtration of MolPort database was carried
out using combined molecular docking and molecular dynamics
(MD) followed by molecular mechanics–generalized Born surface
area (MM-GBSA) binding energy calculations. Based on docking
scores and MM-GBSA binding energies, nine NLPs showed

promising binding affinities >�50.0 kcal/mol with SARS-CoV-2
Mpro. Interestingly, four of the nine NLPs—namely, MolPort-004-
849-765, MolPort-000-708-794, MolPort-002-513-915 and MolPort-
000-702-646—are bis([1,3]dioxolo)pyran-5-carboxamide deriva-
tives showing high affinity towards Mpro with binding energies
>�56.0kcal/mol. Post-dynamics analyses demonstrated the sta-
bility and affinity of the identified dioxolo-derivatives with Mpro.
Predicted physicochemical parameters of the promising dioxolo-
derivatives fit drug-likeness properties, indicating the probability
of these NLPs as prospective SARS-CoV-2 drug candidates.
Protein-protein interaction (PPI) showed the linked top targets
genes that could have an effect on viral infection, as well as, the
host. The current results establish that bis([1,3]dioxolo)pyran-5-
carboxamide derivatives hold promise as inhibitors against SARS-
CoV-2 Mpro and are ready for in vitro inhibition against SARS-
CoV-2.
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Figure 7. The STRING PPI network for the top 10 targets identified by network analyzer for the identified dioxolo-derivatives as potent SARS-CoV-2 main protease
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