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ABSTRACT

Cytokines are cell-to-cell signaling proteins that play
a central role in immune development, pathogen re-
sponses, and diseases. Cytokines are highly reg-
ulated at the transcriptional level by combinations
of transcription factors (TFs) that recruit cofactors
and the transcriptional machinery. Here, we mined
through three decades of studies to generate a com-
prehensive database, CytReg, reporting 843 and 647
interactions between TFs and cytokine genes, in hu-
man and mouse respectively. By integrating CytReg
with other functional datasets, we determined gen-
eral principles governing the transcriptional regula-
tion of cytokine genes. In particular, we show a corre-
lation between TF connectivity and immune pheno-
type and disease, we discuss the balance between
tissue-specific and pathogen-activated TFs regulat-
ing each cytokine gene, and cooperativity and plas-
ticity in cytokine regulation. We also illustrate the use
of our database as a blueprint to predict TF–disease
associations and identify potential TF–cytokine reg-
ulatory axes in autoimmune diseases. Finally, we dis-
cuss research biases in cytokine regulation studies,
and use CytReg to predict novel interactions based
on co-expression and motif analyses which we fur-
ther validated experimentally. Overall, this resource
provides a framework for the rational design of future
cytokine gene regulation studies.

INTRODUCTION

Cytokines comprise an array of polypeptides that are crit-
ical in the development of the immune system and in the
regulation of immune and autoimmune responses (1). The
published lists of human cytokines range from 132 to 261
genes depending on whether growth factors, hormones, or

the receptors of cytokine genes are included (2–4). Here, we
focus on 133 cytokine genes, with a primary role in the im-
mune system, shared by different publications.

Cytokine dysregulation is associated with myriad dis-
eases including autoimmune disorders, susceptibility to in-
fections, and cancer (1,5–8). The expression of cytokine
genes is primarily regulated at the transcriptional level
through a combination of tissue-specific (TS) transcription
factors (TFs) that control cytokine expression in different
cell lineages, and pathogen- or stress-activated (PSA) TFs
that respond to signaling pathways activated by pathogen-
derived ligands or endogenous inflammatory mediators
(9,10). Although cytokine transcriptional regulation has
been studied for more than three decades, including hall-
mark models of transcriptional regulation such as the
IFNB1 enhanceosome (11), we currently lack a comprehen-
sive view of the gene regulatory network (GRN) involved in
controlling cytokine gene expression.

Several databases have been generated that annotate
protein–DNA interactions (PDIs). InnateDB reports inter-
actions between TFs and immune-related genes retrieved
from different databases such as PubMed and IntAct, a sub-
set of which have been manually curated (12). TRRUST
reports interactions involving immune and non-immune
genes (13), obtained by data mining and curating article ab-
stracts from Pubmed. However, the overlap between these
databases is generally low (20% overlap for cytokine genes),
suggesting that they may be incomplete and/or may con-
tain misannotated PDIs. This limits our understanding of
the combinatorics involved in cytokine transcriptional reg-
ulation, especially in terms of the balance between TS and
PSA TFs regulating each cytokine gene, the cooperativity
and plasticity in cytokine regulation, and the relationship
between TF connectivity and immune phenotype/disease.

Here, we mine through three decades of research to gen-
erate a comprehensive and user-friendly database, CytReg
(http://cytreg.bu.edu), comprising 843 human and 647
mouse interactions between TF and cytokine genes. We an-
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alyze this cytokine GRN and integrate it with phenotypic
and functional datasets to provide novel insights into the
general principles governing cytokine regulation. In partic-
ular, we find a correlation between TF connectivity in the
cytokine GRN and immune phenotype. We observe that the
balance between PSA and TS TFs is shifted towards PSA
TFs for interferons and pro-inflammatory cytokines and we
provide a model for cooperative and plastic recruitment of
cofactors to cytokine promoters. Using this cytokine GRN,
we also present a blueprint for further studies of cytokine
misregulation in disease and identify novel TF–disease as-
sociations. Finally, we discuss biases and the completeness
of the literature-derived cytokine GRN, and provide pre-
dictions for novel interactions which we validate using en-
hanced yeast one-hybrid (eY1H) and reporter assays in hu-
man cells.

MATERIALS AND METHODS

Generation of CytReg

To obtain a comprehensive list of physical and regula-
tory PDIs between TFs and cytokine genes, we mined the
XML files from ∼26 million articles available in Medline on
10 July 2017, using NBCI’s e-utilities python implementa-
tion, for studies mentioning a cytokine, a TF, and an exper-
imental assay. Three broad categories of assays (chromatin
immunoprecipitation, electrophoretic mobility shift assays,
and functional assays), 1431 TFs, and 133 cytokines were
considered (Supplementary Table S1). Alternative names
for TFs and cytokines were obtained from the HUGO Gene
Nomenclature Committee (www.genenames.org) and cu-
rated from the literature. Alternative spellings for names
that include Greek letters or hyphens were also considered
in the data mining.

The resulting 6878 articles, together with 815 articles an-
notated in databases such as TRRUST (13) and InnateDB
(12), were manually curated to determine whether experi-
mental evidence for the PDIs was provided. A spreadsheet
was generated containing, for each mined interaction, the
TF and cytokine HGNC names, the TF and cytokine names
used in the paper, the type of assay, and the PubMed ID
of the paper. Curation was performed based on the entire
publication, rather than the abstract alone, because in some
cases, PDIs reported in the abstract were based on indi-
rect evidence and in other cases many PDIs identified were
only reported in the body of the publication or in the fig-
ures. In addition to validating or rejecting mined PDIs, cu-
rators annotated the species, the functional activity (acti-
vating or repressing) if reported, and additional PDIs ab-
sent in the mined list but present in the body of the paper.
Each PDI was curated by two independent researchers, and
disagreements were resolved by a third senior curator. The
resulting database contains 1552 PDIs (843 in human, 647
in mouse, and 62 from other species) for which we anno-
tated the assay used and the regulatory activity identified
(Supplementary Table S2). To visualize this complex cy-
tokine GRN we developed CytReg (https://cytreg.bu.edu),
a web tool where PDIs can be browsed by species, TFs, cy-
tokines, assay types, and TF expression patterns across dif-
ferent cell-types. In addition, links are provided to Uniprot

entries (http://www.uniprot.org) for cytokines and TFs, and
to PubMed articles for the PDIs.

Determination of the level of evidence for PDIs

We classified PDIs as high or low evidence of being direct
regulatory interactions (Supplementary Table S3). PDIs
detected by a functional assay (e.g. reporter assays and
TF knockdown) and an assay measuring direct binding
(e.g. chromatin immunoprecipitation and in vitro binding
assays) were classified as high evidence. PDIs detected by
only one type of assay were classified as low evidence.

Determination of the relationship between TF connectivity
and gene expression

The median transcript per million (TPM) expression levels
in 20 immune cell-types for TFs with different connectivity
in the human cytokine GRN was determined based on ex-
pression data published by the Blueprint Epigenome Con-
sortium (14) (http://dcc.blueprint-epigenome.eu). In addi-
tion, an expression enrichment score in immune tissues
compared to non-immune tissues was determined based on
data from 32 tissues from the Expression Atlas (https://
www.ebi.ac.uk/gxa/experiments/E-MTAB-2836). Briefly, a
pseudocount of 1 was added to all the expression data to
reduce the noise from low abundant transcripts. Then, the
expression of a TF in a tissue was divided by the average
expression of the TF across the 32 tissues to obtain an ex-
pression enrichment score. Finally, the average enrichment
score per TF was determined for the five immune tissues
(lymph node, bone marrow, spleen, tonsils, and appendix)
and for the remaining 27 non-immune tissues in the dataset.

Association between TFs and immune phenotypes and dis-
eases

The association between TFs and immune phenotypes was
determined based on phenotypes in knockout mice re-
ported by the Mouse Genome Informatics database (www.
informatics.jax.org) as of 12 January 2018 (Supplementary
Table S4). Thirty different terms including different immune
cells, antibody isotypes, cytokines, inflammation and im-
mune tissues were used to determine whether a reported
phenotype should be classified as immune-associated.

Association between TFs and immune disorders (includ-
ing autoimmune diseases and susceptibility to infections)
was obtained from the Human Gene Mutation Database
2013 release and from genome-wide association studies
(GWAS) downloaded on 27 July 2017 from the NHGRI-
EBI Catalog (Supplementary Table S4) (15,16).

TF enrichment in PDIs with cytokines expressed in different
immune cell types

For each TF, we compared the proportion of cytokine tar-
gets corresponding to cytokines expressed in a specific im-
mune cell type, to the proportion of the remaining cytokine
targets. A proportion comparison test was used to deter-
mine a P-value and a Benjamini- Hochberg adjusted P-
value to account for multiple hypothesis testing. TFs with
an adjusted P-value lower than 0.1 are included in Supple-
mentary Table S5.
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Pathogen/stress-activated and tissue-specific TFs

PSA TFs were determined from the literature based on
their ability to be activated or responsive to signaling path-
ways triggered by pathogen-associated molecular patterns
and/or stress signals (e.g. oxidative stress, heat shock, and
danger-associated molecular patterns) (Supplementary Ta-
ble S6). Tissue-specific TFs were determined by calculating
a tissue-specificity score (TSPS) based on expression data
from 34 different tissues and cells as previously described
(17):

TSPS =
∑

pi .log2

(
pi

p

)

where pi corresponds to the ratio between the expression
level in a tissue and the sum of the expression levels across
all 34 tissues; and p corresponds to the expected ratio un-
der the assumption of equal expression across all tissues.
TFs were considered tissue-specific (TS) if their TSPS ≥0.7,
a threshold selected based on the bimodal distribution of
TSPS across all TFs (Supplementary Table S6). TFs for
which a TSPS could not be calculated because of unavail-
able expression data, were excluded from the analysis.

Determination of TF inflammatory scores

For each TF, an inflammatory score (IS) was determined as
the difference between the percentage of PDIs with canon-
ical pro-inflammatory cytokines (IL1A, IL1B, IL12A,
IL12B, IL18, TNF, IFNG, CSF2, CXCL8 and IL6), and
the percentage of PDIs with anti-inflammatory cytokines
(IL10, IL11, IL13, IL19, IL1RN, IL24, IL37, IL4, IL5,
CXCL17, TGFB1, TGFB2 and TGFB3). For TFs with IS
≥ 0.5 or IS ≤ –0.5 we determined the percentage that have
a pro- or anti-inflammatory role, or a role in differentiation
based of phenotypes in knockout mice (www.informatics.
jax.org).

TF–disease associations

For each disease (asthma, systemic lupus erythematosus,
inflammatory bowel disease, type 2 diabetes, rheumatoid
arthritis, tuberculosis infection and cytomegalovirus infec-
tion) the Expression Atlas (www.ebi.ac.uk) was searched for
cytokines upregulated in the disease state, using a cut-off of
2-fold induction (Supplementary Table S7). TFs enriched in
regulating the upregulated cytokines were determined from
the human cytokine GRN using the Fisher’s exact test (Sup-
plementary Table S8). Multiple hypothesis testing was cor-
rected by calculating the Benjamini-Hochberg adjusted P-
value and using an FDR threshold of 0.1. The resulting
TF–disease associations were plotted using a Circos plot
(http://mkweb.bcgsc.ca/tableviewer/).

TF and cytokine association with autoimmune diseases

TFs and cytokines associated with different autoimmune
diseases were obtained from the Human Gene Mutation
Database 2013 release, and from GWAS downloaded on
27 July 2017 from the NHGRI-EBI Catalog (Supplemen-
tary Table S9) (15,16). The union of gene-disease associa-

tions between both databases was considered. Crohn’s dis-
ease and ulcerative colitis were grouped with inflammatory
bowel disease. This list includes coding and noncoding vari-
ants, and thus variants that affect protein function or ex-
pression levels. Of note, this list of gene-disease associa-
tions is not comprehensive as it only includes associations
identified in genetic studies (i.e. does not consider environ-
mental or epistatic factors that affect cytokine expression).
Significance for enrichment of shared autoimmune diseases
between interacting TFs and cytokines was determined by
comparing to 1000 randomized versions of the human cy-
tokine GRN. Network randomization was performed by
edge switching as previously described (18).

TF–drug associations

TF–drug associations and information regarding drug
function were obtained from Drugbank (19). Agonists and
activators were grouped as agonists, antagonist and in-
hibitors were grouped as antagonists. For each cytokine, the
number of TFs targetable by agonists or antagonists was de-
termined.

Prediction of novel PDIs in the human cytokine GRN

To predict novel PDIs in the human cytokine GRN, for each
TF, SEEK (20) was used to search for the top 100 genes co-
expressed with the known cytokine targets of the selected
TF across >5000 expression profiling datasets. Then, for
each cytokine within those 100 genes, the presence of bind-
ing sites for the selected TF in the cytokine promoter (2 kb
upstream of the transcription start site) was determined us-
ing the Scan DNA sequence tool in CIS-BP (http://cisbp.
ccbr.utoronto.ca/), the PWM-Logodds algorithm, and a
stringent threshold of 10 (21). Enrichment for human PDI
predictions reported in mouse was determined by calculat-
ing an odds ratio and statistical significance was calculated
using the Chi-square test. The 1066 predicted interactions
were classified according to confidence: high (two or more
TF binding sites and evidence of interaction in the mouse
cytokine GRN), medium (two or more TF binding sites
but absent from the mouse cytokine GRN, or less than two
binding sites but presence in the mouse cytokine GRN), and
low (one binding site and absent from the mouse cytokine
GRN) (Supplementary Table S10).

Enhanced yeast one-hybrid (eY1H) assays

eY1H assays were used to detect interactions between TFs
and cytokine gene promoters (22,23). This method involves
two components: a ‘DNA-bait’ such as cytokine gene pro-
moter, and a ‘TF-prey’. The DNA-bait is cloned upstream
of two reporter genes (LacZ and HIS3) and both constructs
are integrated into the yeast genome (24,25). The DNA-bait
strains generated are then mated with yeast strains express-
ing TFs fused to the yeast Gal4 activation domain (AD),
and if the TF binds the regulatory region, the AD moi-
ety activates the reporter genes. Reporter gene activity is
measured by the conversion of colorless X-gal to a blue
compound, and by the ability of the yeast to grow on me-
dia lacking histidine and to overcome the addition of 3-
amino-triazole (3AT), a competitive inhibitor of the His3
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enzyme. Each interaction was tested in quadruplicate. Yeast
DNA-baits corresponding to promoter regions (2 kb up-
stream of the transcription start site) of cytokine genes were
generated as previously described (Supplementary Table
S11) (25,26). The promoter regions of CXCL10, CXCL8,
CXCL3, CCL4 and CCL20 were screened for REL binding,
while promoter regions for IL17A, IL17F, and IL26 were
screened for RORC binding. To identify TFs that interact
with the promoters of CCL27 and CCL4L2, the CCL27 and
CCL4L2 DNA-bait strains were screened against an array
of 1086 human TFs (26).

Motif analysis

Binding of REL, RORC, RBPJ, TFAP2A/B, PPARG,
ATF3, EBF1, ZIC1/3, GCM1 and WT1 were predicted
using CIS-BP via the Scan DNA sequence tool, using
the PWM-LogOdds method and a stringent threshold of
10 (21). Motif analyses were performed on the same 2 kb
regions upstream of the transcription start sites used to per-
form the eY1H assays (Supplementary Table S11).

Transient transfections and luciferase assays

HEK293T cells were plated in 96-well opaque plates (∼1 ×
104 cells/well) 24 h prior to transfection in 100 �l DMEM
+ 10% FBS + 1% antibiotic-antimycotic 100×. DNA-
bait luciferase reporter clones were generated by cloning
the cytokine promoter regions upstream of the firefly lu-
ciferase into a Gateway compatible vector generated from
pGL4.23[luc2/minP] (26). TF-prey clones were generated
by Gateway cloning the TFs into a vector derived from
pEZY3 (Addgene) to generate fusions with ten copies of the
VP16 activation domain (TF-pEZY3-VP160). Cells were
transfected with Lipofectamine 3000 (Invitrogen) accord-
ing to the manufacturer’s protocol using 20 ng of the DNA-
bait luciferase reporter vector, 80 ng of the TF-pEZY3-
VP160 vector, and 10 ng of renilla luciferase control vec-
tor. The empty pEZY3-VP160 vector co-transfected with
the recombinant firefly luciferase plasmid was used as a neg-
ative control. 48 hours after transfection, firefly and renilla
luciferase activities were measured using the Dual-Glo Lu-
ciferase Assay System (Promega) according to the manufac-
turer’s protocol. Non-transfected cells were used to subtract
background luciferase activities, and then firefly luciferase
activity were normalized to renilla luciferase activity.

Code availability

The code used for the data mining in Medline is available at
https://github.com/fuxmanlab/cytreg.

Statistical analyzes

Statistical analyzes were performed using GraphPad Prism
Version 7.01, Excel 2016, or VassarStats (http://vassarstats.
net). All tests performed were two-tailed tests.

Software used to generate figures

Box, bar, histogram, and correlation plots were generated
using GraphPad Prism Version 7.01. Heatmaps were gen-
erated using matrix2png (https://matrix2png.msl.ubc.ca/).

Networks were generated using Cytoscape Version 3.2.1
(http://www.cytoscape.org/).

RESULTS

Generation of CytReg

To obtain a comprehensive cytokine GRN, we systemati-
cally mined ∼26 million articles in Medline for studies men-
tioning at least one of 133 cytokines, one of 1431 TFs, and
an experimental assay (Figure 1A and Supplementary Table
S1). The resulting 6878 articles, and 815 additional articles
referenced in TRRUST (13) and InnateDB (12), were then
manually curated to determine whether experimental evi-
dence for the physical and regulatory PDIs was provided.
This resulted in a list of 1552 PDIs (843 in human, 647 in
mouse and 62 in other species), for which we annotated the
assay used and the regulatory activity identified (Figure 1A
and Supplementary Table S2). To visualize this GRN we de-
veloped a database, CytReg (https://cytreg.bu.edu), where
users can browse PDIs by species, TF, cytokine, assay type,
and TF expression patterns (Figure 1B). Links are provided
to Uniprot entries for TFs and cytokines, and to PubMed
articles reporting the PDIs (Figure 1C). Finally, the selected
PDIs can be visualized as networks showing the TFs, cy-
tokines, and the types of interactions (activation, repres-
sion, or bifunctional) (Figure 1D).

CytReg contains an additional 371 human and 264
mouse PDIs compared to TRRUST and InnateDB (Figure
1E). We also removed 243 PDIs annotated in TRRUST and
InnateDB when: (a) the article did not provide direct exper-
imental evidence for the PDI, (b) the TF interacted with the
regulatory region of a cytokine receptor rather than that of
a cytokine or (c) the cytokine regulated the activation path-
way of a TF rather than the TF regulating a cytokine. Alto-
gether, CytReg greatly expands the PDIs annotated in other
databases and removes misannotated PDIs.

Although multiple PDIs are shared between human and
mouse, 69% of human and 60% of mouse PDIs are species-
specific (Figure 1F). This low overlap is not likely related
to a lack of confidence in the interactions because a simi-
lar proportion of interactions found in one or both species
were classified as high confidence based on evidence from
functional (e.g. reporters assays and TF knockdowns ex-
periments) and in vivo or in vitro binding assays (chromatin
immunoprecipitation -ChIP- and electrophoretic mobility
shift assays –EMSAs, respectively) (Figure 1G and Supple-
mentary Table S3). More likely, this low overlap is related to
literature bias and incompleteness of the GRN, or to differ-
ent modes of regulation between mouse and human as has
been previously reported (27). Indeed, we found that PDIs
reported early on in one species were more frequently de-
tected in the other species than PDIs reported more recently.
For example, 71% of mouse PDIs reported on or before the
year 2000 are also reported in human, while only 21% of
mouse PDIs reported on or after 2010 are also reported in
human. This suggests that literature biases may play an im-
portant role in the differences in annotated PDIs between
species.

Most interactions were reported by at least two of three
types of experimental assays: binding assays (e.g. EMSA

https://github.com/fuxmanlab/cytreg
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Figure 1. Generation of CytReg. (A) Pipeline used for the text mining and article curation to determine literature-based PDIs between TFs and cytokine
genes. (B) Search page of CytReg where PDIs can be browsed by TF, cytokine, species, assay type, and TF expression levels (mRNA and protein) in different
immune cells. (C) Results page indicating the interacting cytokines and TFs, the types of assays used to determine the PDIs, whether the interaction is
activating or repressing, and the Pubmed IDs of the publications referencing the PDIs. Links are provided to UniProt entries for cytokines and TFs, and
to Pubmed for the references. The interactions can be downloaded as a CSV file or visualized as a network graph. (D) Network visualization of the selected
PDIs. Nodes represent cytokines and TFs, edges represent the type of interaction (activating, repressing, bifunctional, or physical). Nodes can be moved to
re-arrange the network. (E) Overlap of PDIs in CytReg and those annotated in InnateDB and TRRUST. (F) Overlap between mouse and human cytokine
GRNs. (G) Fraction of PDIs with high evidence of direct regulatory activity (by a functional assay and an in vitro or in vivo binding assay) or low evidence
(by one type of assay).
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and pull down assays), ChIP and functional assays (Sup-
plementary Figure S1A and B). Human PDIs detected by
all three types of assays were more frequently also detected
in mouse (and vice versa) compared to PDIs detected by one
or two types of assays (Supplementary Figure S1A and B).
The types of assays used to determine PDIs has changed
over time, with papers in the 1990s focusing on binding
and functional assays while papers in the 2010s focusing on
ChIP and functional assays, reflecting the increased aware-
ness of the importance of chromatin context in gene regu-
lation (Supplementary Figure S1C and D).

Association between TF connectivity and immune phenotype

As observed in other GRNs, a few TFs and cytokines are
responsible for most PDIs in the cytokine GRN (Figure 2A
and B, and Supplementary Figure S2A and B) (28,29). For
example, 12% of the TFs are responsible for >50% of the
human PDIs, including different subunits of NF-�B that
when combined represent 16% of the PDIs in the human
cytokine GRN (Figure 2A). Similarly, 8% of the cytokines,
including the highly studied CXCL8, IL6 and TNF, are in-
volved in >50% of the human PDIs (Figure 2B). We ob-
tained similar distributions for the mouse cytokine GRN
(Supplementary Figure 2A and B). These lopsided distri-
butions in the number of PDIs can be explained by a more
central role of some TFs and cytokines in the GRN, but also
by research biases as discussed below.

We found that TFs that interact with multiple cytokine
genes show higher expression levels in immune cells (Fig-
ure 2C) and higher expression enrichment in immune tis-
sues (such as the spleen, bone marrow, and lymph nodes)
compared to TFs that interact with only a few or no cy-
tokine genes (Figure 2D). Further, highly connected TFs
are frequently PSA TFs (e.g. 71% of TFs with ten or more
cytokine targets are PSA compared to 9% for TFs with
one cytokine target) consistent with their function in im-
mune responses. More importantly, highly connected TFs
are more frequently associated with immune phenotypes
in knockout mouse studies, and with immune disorders as
reported in the human gene mutation database (HGMD)
and in GWAS compared to low connected TFs (Figure 2E,
Supplementary Figure 2C, and Supplementary Table S4)
(15,16,30). For example, the highly connected TF IRF5 is
associated with multiple autoimmune diseases, including
multiple sclerosis and systemic lupus erythematosus (SLE),
and leads to low type-I interferon, TNF and IL6 produc-
tion in knockout mice (15,16,30). Conversely, the low con-
nected TFs HMGA2, NDS2 and HMBOX1, to our knowl-
edge, have not yet been associated with immune phenotypes
or diseases. Overall, these observations highlight the associ-
ation between TF connectivity and disease, consistent with
previous findings in a developmental GRN (26).

Cytokine regulation by different types of TFs

Different cell types express different sets of cytokines in
response to pathogen- or cell-mediated cues. For each
immune cell type, we determined the TFs enriched in
binding/regulating the cytokines expressed in the given cell
type (Supplementary Table S5). As expected, several master

regulator TFs are enriched, including TBX21 (T-bet) in Th1
cells, GATA3 and STAT6 in Th2 cells, RORC in Th17 cells,
and SPI1 (PU.1) and CEBPA in monocytes. Additionally,
several PSA TFs, such as RELA/NFKB1, are enriched in
Th1 cells, monocytes, myeloid dendritic cells, eosinophils,
and neutrophils, consistent with these cells producing pro-
inflammatory cytokines upon activation; while IRF1/3/5/7
are enriched in B cells and plasmacytoid dendritic cells, pro-
ducers of type-I interferons in response to viral pathogens.

Highly connected TFs in the cytokine GRN usu-
ally belong to the Ig-like plexins transcription factor
(IPT/TIG/p53 - including NF-�B and NF-AT TFs), acti-
vator protein 1 (AP-1), interferon regulatory factor (IRF),
and signal transducer and activator of transcription (STAT)
families, which are known to play prominent roles in im-
mune cell differentiation and immune responses (31–34).
These TF families are highly enriched in the cytokine
GRN compared to the GRN reported in TRRUST (13),
a literature-derived network not constrained to cytokine
genes (Figure 3A and Supplementary Figure S3A and B).
Furthermore, most PSA TFs are enriched in the cytokine
GRN compared to the GRN reported in TRRUST, con-
sistent with many cytokine genes being upregulated in re-
sponse to pathogens or stress conditions (Figure 3B).

Cytokines are expressed in a highly tissue- and condition-
specific manner. This is achieved by a specific combination
of receptors and signaling pathways present in each cell
type, and through the cooperation between PSA and TS
TFs (31). To study the role of PSA and TS TFs in cytokine
regulation, for each cytokine we determined the fraction
of TFs that respond to pathogen/stress signals (e.g. NF-
�B, AP-1 and IRFs) and the fraction of TS TFs deter-
mined based on each TF’s gene expression variability across
tissues (Supplementary Table S6). Our analysis revealed
that cytokines expressed in plasmacytoid dendritic cells, M1
macrophages, Th1 cells, and myeloid dendritic cells are pri-
marily regulated by PSA TFs, whereas cytokines expressed
NK cells, basophils, mast cells, Th2 cells, Th17 cells, and
eosinophils are also regulated by several TS TFs (Fig-
ure 3C). This is consistent with reports of the former cell
types expressing multiple canonical pro-inflammatory cy-
tokines and/or interferons, which are induced by pathogen-
associated molecular patterns or danger signals from in-
flammatory microenvironments. Indeed, further analysis re-
vealed that interferons and pro-inflammatory cytokines are
regulated by broadly-expressed PSA TFs, whereas anti-
inflammatory cytokines are regulated by both PSA and TS
TFs (Figure 3D).

Different TFs have predominantly pro- or anti-
inflammatory functions. Thus, for each TF, we determined
an inflammatory score (IS) based on the preference of
binding to pro- versus anti-inflammatory cytokine gene
targets (Figure 3E). TFs with an IS > 0.5 more frequently
had a pro-inflammatory function, while TFs with IS < -0.5
more frequently had an anti-inflammatory function based
on knockout mouse phenotypes (Figure 3F, P = 0.009
by Fisher’s exact test). Although the dysregulation of
other targets is likely involved, these analyses suggest that
the cytokine targets of a TF can be important drivers of
immune phenotypes.
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Figure 2. Relationship between TF connectivity and phenotype in the human cytokine GRN. (A) Number of cytokine targets per TF (TF degree) in the
human cytokine GRN ordered by TF degree rank. (B) Number of interacting TFs per cytokine (cytokine degree) in the human cytokine GRN ordered
by cytokine degree rank. (C) Median expression as transcripts per million (TPM) across human immune cells obtained from the Blueprint Epigenome
Consortium for TFs displaying different numbers of cytokine targets. (D) Expression enrichment in human immune tissues versus non-immune tissues for
TFs with varying numbers of cytokine targets. Each box spans from the first to the third quartile, the horizontal lines inside the boxes indicate the median
value and the whiskers indicate minimum and maximum values. Statistical significance determined using two-tailed Wilcoxon matched-pair ranked sign
test. (E) Fraction of TFs in the human cytokine GRN with annotated immune phenotypes when knocked out in mice (MGI), or associated with immune
disorders in the Human Gene Mutation Database (HGMD) or in genome-wide association studies (GWAS) based on the number of cytokine targets.

Figure 3. Cytokine regulation by different types of TFs. (A, B) Correlation between the percentage of PDIs involving a TF in the human cytokine GRN
versus a global human GRN annotated in TRRUST, for different TF families (A) or for pathogen- or stress-activated (PSA) TFs (B). (C) Average fraction
of PSA and tissue-specific (TS) TFs for cytokines expressed in different cell types. (D) Fraction of PSA and TS TFs for different classes of cytokines.
Correlation determined by Pearson correlation coefficient. (E) Inflammatory score (IS) for each TF based on the fraction of PDIs with pro- and anti-
inflammatory cytokines. (F) Percentage of TFs with pro-inflammatory, anti-inflammatory, and differentiation or other functions based on mouse knockout
phenotypes. P = 0.009 by Fisher’s exact test.
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GRN integration with TF-cofactor interactions

TFs regulate gene expression by recruiting co-activators
and co-repressors that interact with the transcriptional ma-
chinery or mediator complex, or that covalently modify hi-
stones, TFs or methylate DNA (35). Based on literature-
derived protein-protein interactions reported in Lit-BM-13
(36), we found that the TFs that bind/regulate cytokine
genes interact with numerous cofactors, including multi-
ple co-activators such as EP300, CREBBP and nuclear co-
activators 1–3 and 6 (Figure 4A). This is not surprising
given that ∼80% of the regulatory PDIs in CytReg are ac-
tivating and involve potent transcriptional activators such
NF-�B and AP-1. Nevertheless, several activating TFs also
interact with co-repressors which can inhibit TF function
until triggered by signaling pathways (37).

In general, each cofactor interacts with multiple TFs that
bind/regulate each cytokine gene (Figure 4B) (36). This
may be associated with TF cooperativity to recruit cofac-
tors to regulatory regions as has been reported for the co-
operative recruitment of EP300 by RELA, IRFs, JUN and
HMGA1 to the IFNB1 enhanceosome (11). Alternatively,
cofactor binding to multiple TFs may also be associated
with regulatory plasticity by which cofactors can be re-
cruited by different sets of TFs to modulate cytokine gene
expression in different cell types or conditions. To evalu-
ate these possibilities, we focused on the histone acetyltans-
ferases EP300/CREBBP, which play key roles in immune
regulation and differentiation, and whose protein-protein
interactions with TFs have been mapped to their different
domains (38,39). We found that, for cytokines for which
multiple PDIs have been determined, the set of TFs that
bind/regulate that cytokine gene collectively interact with
multiple domains of EP300/CREBBP (Figure 4C). This
may lead to a cooperative recruitment of EP300/CREBBP
to regulatory regions, as has been observed for the IFNB1,
TNF, and IL6 genes (11,40,41). This is also consistent with
the observation that, even for cytokines with multiple an-
notated PDIs, the mutation of a single TF binding site or
the inhibition of a single TF can lead to a dramatic ef-
fect on gene expression (42,43). Interestingly, for each cy-
tokine, several TFs can also interact with the same domain
of EP300/CREBBP (Figure 4C). Although this may con-
tribute to a cooperative recruitment of EP300/CREBBP,
it may also increase regulatory plasticity in different cell
types and/or under different stimuli by allowing different
TF combinations to induce cytokine expression. For exam-
ple, TNF induction by LPS, calcium or viruses all lead to
EP300/CREBBP recruitment to the TNF enhanceosome,
however, through different sets of TFs (41).

Some cofactors such as MAPK8, BRCA1, MDM2 and
COPS5 preferentially interact with PSA TFs, consistent
with their reported function in inflammation and stress re-
sponses, and associated immune phenotype in knockout
mice (Figure 4D) (30). Other cofactors such as NCOR1/2,
NCOA1/2/3/6, RB1, NRIP1, SRC and MED1 interact pri-
marily with TS TFs such as nuclear hormone receptors (36).
Interestingly, different domains of EP300/CREBBP inter-
act preferentially with PSA or TS TFs: for example, CH1,
KIX and Q/I interact mostly with PSA TFs, whereas RID
and CH3 interact mostly with TS TFs (Figure 4E). Alto-

gether, this suggests that PSA and TS TFs cooperate in re-
cruiting EP300/CREBBP through different domains to in-
duce cytokine expression under the right stimuli and in the
appropriate cell types. In addition, functional redundancy
between different PSA TFs may allow for the activation of
cytokine expression under different conditions. For exam-
ple, the PSA TFs HIF1A and NF-�B, both of which in-
teract with the CH1 domain of EP300/CREBBP, can in-
dependently induce CXCL8 expression (44). Overall, these
findings are consistent with a model that contains aspects
of both the enhanceosome (i.e. cooperative TF binding is
required for regulatory activity) and billboard (i.e. TFs in-
dependently regulate gene expression) models of gene regu-
lation, where only certain combinations of TFs present in
particular cells or conditions can induce gene expression
(45). Each cytokine, depending on their regulatory flexibil-
ity, may be closer to one model or the other.

The cytokine GRN as a blueprint to study disease

Cytokine expression is widely dysregulated in immune dis-
orders and infection. This is driven by the activation of mul-
tiple signaling pathways that result in TF activation lead-
ing to the concomitant regulation of target cytokines. To
explore these TF–disease relationships, we leveraged the
human cytokine GRN to identify TFs enriched in reg-
ulating the cytokines overexpressed in different autoim-
mune diseases, Mycobacterium tuberculosis infection, and
cytomegalovirus infection (Supplementary Table S7). We
identified 46 TF–disease associations between 25 TFs and
seven diseases, many of which are known (Figure 5A,
and Supplementary Table S8). For example, different sub-
units of NF-�B were associated with all the diseases eval-
uated, consistent with the ubiquitous role of NF-�B in
inflammation (37). Other TF–disease associations identi-
fied were more specific. For instance, IRFs and ATF2 (in
addition to NF-�B) were associated with cytomegalovirus
infection which is consistent with these TFs being acti-
vated by viral pathogens through pattern recognition re-
ceptors (46–48). STAT1 and STAT2 were also associ-
ated with cytomegalovirus infection, in this case, likely
through the activation of signaling pathways driven by the
autocrine/paracrine secretion of type-I and type-II inter-
ferons induced by IRF and NF-�B activation. In addition,
we identified an association between STAT6 and SLE, con-
sistent with STAT6 deficiency being associated with a bet-
ter prognosis in mouse models of SLE (49,50), and with
STAT6 polymorphisms being associated with SLE in hu-
mans (51). Further, we found known associations between
KLF6, NR3C1, XBP1 and HSF1 with inflammatory bowel
disease further validating our analyses (52–55).

More importantly, we found previously uncharacterized
TF–disease associations. For example, we identified an as-
sociation BCL6 and SLE (Figure 5A). A mouse model
of SLE (Def6 and SWAP70 double knockout) showed in-
creased BCL6 protein expression (56). However, the role of
BCL6 in cytokine dysregulation in SLE has not been estab-
lished. Our analyses, suggest that the increased BCL6 levels
may be associated with increased levels of CCL1/2/7/8/13
observed in SLE (Supplementary Table S7). We also iden-
tified a previously uncharacterized association between
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Figure 4. Cooperativity and plasticity in cytokine regulation. (A) Protein-protein interaction network from Lit-BM-13 between cofactors and TFs in the
human cytokine GRN. Ellipses – TFs, diamonds – cofactors. Node size indicates the number of cytokine targets (for TFs) in the cytokine GRN, and the
number of protein-protein interactions with TFs (for cofactors). Only cofactors with five or more protein-protein interactions are shown. (B, C) Number of
TFs (shades of grey) interacting with each human cytokine gene that interact with the different cofactors (B) or the different domains of EP300/CREBBP
(C). (D, E) Fraction of cofactor (D) or EP300/CREBBP domain (E) protein-protein interactions (shades of red) involving PSA or TS TFs. Only cytokines
and cofactors with five or more interactions are shown. Co-activators are shown in red font, co-repressors in blue font, and bifunctional cofactors in purple
font.

ETS2 and cytokine upregulation in M. tuberculosis infected
macrophages (Figure 5A). ETS2 is an activator that is up-
regulated 5.7-fold (P = 3.6 × 10−7) in macrophages in-
fected with M. tuberculosis for 48 h (E-MEXP-3521). This
increased ETS2 expression, together with ETS2 activation
through the MAPK pathway (57), may contribute to cy-
tokine upregulation in M. tuberculosis infection. Interest-
ingly, the association between ETS2 and M. tuberculosis in-
fection would not have been predicted only based on PDIs
from InnateDB and TRRUST. Further, using PDIs from
these previous databases we only predicted 21 TF–disease
associations, most of them included within the 46 asso-
ciations predicted based on CytReg, while missing multi-
ple known associations such as those between NF-�B sub-
units and autoimmune diseases (Supplementary Figure S4).
Overall, our analyses predicted novel TF–disease associa-
tions which are consistent with known TF functions. Fur-
ther studies are required to determine the mechanisms of
action of BCL6 in SLE and ETS2 in M. tuberculosis infec-
tions.

Mutations in multiple TFs have been associated with im-
mune disorders such as autoimmune diseases (15,16). The
role of TFs in autoimmunity is likely related to the dysreg-
ulation of immune genes, in particular cytokines, as they
play a central role in immune responses and tolerance (7,8).
Indeed, mutations in many cytokine genes have been asso-
ciated with autoimmunity (15,16). We considered the cy-
tokines and TFs that have been associated with autoim-
mune diseases in GWAS and HGMD, and found that many
TF–cytokine gene pairs that interact in the cytokine GRN
have been associated with the same autoimmune disease
(Figure 5B). For example, we found multiple TF–cytokine
pairs associated with inflammatory bowel disease, rheuma-
toid arthritis, atopic dermatitis/psoriasis, and SLE (Fig-
ure 5B and Supplementary Table S9). Overall, the num-
ber of TF–cytokine pairs associated with the same autoim-
mune disease is higher than that determined in random-
ized networks derived from the human cytokine GRN (Fig-
ure 5C). These TF–cytokine pairs identified may consti-
tute different regulatory axes by which TFs lead to the
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Figure 5. Association of the cytokine GRN with human diseases. (A) Circos plot connecting diseases with TFs based on enrichment of the TFs in regulating
cytokines upregulated in the indicated disease. Ribbon width is proportional to the percentage of cytokines upregulated in the indicated disease that are
regulated by the indicated TF. (B) GRN connecting interacting TFs and human cytokine genes associated with autoimmune disorders. Edges connect
interacting cytokine-TF pairs. Edge color indicates that the interacting cytokine and TF are associated with the same disease based on HGMD and
GWAS. (C) The human cytokine GRN was randomized 1000 times by edge switching and the number of TF–cytokine-disease sets in each randomized
network was calculated. The number under the histogram peak indicates the average overlap in the randomized networks. The red arrow indicates the
observed overlap in the real network. Statistical significance determined based on z-score calculation. (D) GRN connecting cytokines with TFs that can be
targeted by approved drugs. Blue, red, and yellow ovals indicate TFs targetable by agonists, antagonists, or both, respectively. Oval size corresponds to the
number of approved drugs targeting a TF. Rectangles indicate cytokine genes. Rectangle size is proportional to the number of drugable TFs per cytokine.

disease. For example, AHR activation is protective in in-
flammatory bowel disease, partly due to increased IL10 ex-
pression (58). Interestingly, the association between AHR,
IL10, and inflammatory bowel disease, together with 19
other TF–cytokine-disease associations was absent in pre-
dictions based on PDIs from the union of TRRUST and
InnateDB. Altogether, the network depicted in Figure 5B
constitutes a blueprint to study other regulatory axes in au-
toimmunity.

Targeting cytokine activity is a widely used therapeutic
approach for multiple autoimmune and inflammatory dis-
eases (19,59). However, only ∼15% of cytokines can cur-
rently be directly targeted with approved small molecules or
specific antibodies, as reported in Drugbank (19). An alter-

native strategy is to modulate cytokine production by ac-
tivating or repressing TF regulatory pathways or by using
TF agonists or antagonists (19,37,60). Although the use of
antibodies is a more specific therapeutic approach to inhibit
cytokine activity, antibodies cannot be used in many cases
because: (i) approved antibodies blocking cytokine activity
are only available for nine cytokines, (ii) a therapeutic strat-
egy may require the concomitant modulation of multiple
cytokines, or (iii) a strategy may require the induction of cy-
tokine activity (e.g. the induction of anti-inflammatory cy-
tokines such as IL10) rather than inhibition. In these cases,
modulation of cytokine expression by targeting TFs may
provide an effective alternative approach.
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Many cytokines can potentially be targeted using drugs
against their interacting TFs (or the signaling pathways that
activate those TFs). Indeed, multiple TF agonists and an-
tagonists have been approved as therapeutics, including 17
TFs with targets in the human cytokine GRN (Figure 5D).
Combined, these TFs, which include nuclear hormone re-
ceptors, NF-�B and AP-1, can potentially target 59 cy-
tokine genes, most of which are dysregulated in disease
(Supplementary Table S7). Targeting these TFs can increase
or decrease cytokine expression depending on the TF regu-
latory function and on the drug’s agonist or antagonist ac-
tivity. For example, IL10 expression can be induced using
AHR agonists as a protective mechanism in inflammatory
bowel disease, or repressed by an endogenous VDR agonist
(calcitriol) during pregnancy to enhance responses to mi-
crobial infections (58,61). Ultimately, multiple factors need
to be considered including the off-target effect of the drugs,
the number of other genes whose expression may be affected
by targeting a particular TF, and how the modulation of TF
activity may propagate to other immune and non-immune
functions.

Completeness of the cytokine GRN

Although great progress has been made in the last three
decades identifying novel PDIs, the cytokine GRN is far
from complete. Indeed, we observed that the size of the
cytokine GRN and the number of TFs involved have in-
creased at a constant rate suggesting that novel PDIs re-
main to be identified (Figure 6A and Supplementary Figure
S5A). Importantly, the fraction of TFs that have been in-
corporated into the cytokine GRN that are associated with
immune phenotypes or diseases has remained constant sug-
gesting that the GRN continues to grow towards immune-
relevant interactions (Figure 6B and Supplementary Figure
S5B).

Future growth of the cytokine GRN is not expected to
be uniform for all TFs and cytokines. Indeed, the num-
ber of PDIs seems to have saturated for some TFs such as
RELA, NFKB1, and FOS, while other TFs such as SPI1
and MAFK do not show signs of saturation (Figure 6C and
Supplementary Figure S5C). The number of PDIs for some
well-studied cytokines such as CCL5 have also plateaued,
while new PDIs are still being identified for other cytokines
such as human CXCL8 and CCL2 or mouse IL4 (Figure
6D and Supplementary Figure S5D).

We also observed a bias towards highly studied TFs and
cytokines as we detected a strong correlation between the
number of publications in Medline associated with a cy-
tokine or TF and the number of PDIs in the cytokine GRN
(Figure 6E and F; and Supplementary Figure S5E and F).
An argument can be made that highly connected TFs have
more pleiotropic functions and thus, are more frequently
studied. However, more than 200 TFs absent in the cytokine
GRN lead to an immune phenotype when knocked out in
mice, many of which are associated with alterations in cy-
tokine expression (Supplementary Table S4) (30). This sug-
gests that many TFs are absent from the cytokine GRN
and that many PDIs involving infrequently studied TFs are
missing.

Similarly, highly studied cytokines are involved in more
PDIs (Figure 6F and Supplementary Figure S5F). Al-
though we cannot rule out the possibility that highly stud-
ied cytokines have more pleiotropic roles and are regulated
by different TFs in different cells and conditions, this alone
cannot explain that there are no PDIs reported for 30% of
the cytokines. Further, if there is a strong selective pres-
sure to have multiple modes of regulation for certain cy-
tokines, we would expect the mouse and human cytokine
orthologs to be regulated by a similar number of TFs, but
this is frequently not the case (Supplementary Figure S5G
and H). What is more likely is that highly studied cytokines
such as TNF and CXCL8 have more PDIs because they
have been studied in more cell types and conditions. To test
this hypothesis, we performed eY1H assays to evaluate the
binding of 1,086 human TFs to the promoters of CCL27
and CCL4L2, two under-studied cytokines absent from the
GRN (Figure 6G and I). We detected seven interactions
with the CCL27 promoter involving TFAP2A/B/E, KLF7,
ZNF18, PPARG, and RBPJ (Figure 6G). Motif analyses for
TFs with available position weight matrices (TFAP2A/B,
PPARG and RBPJ) identified multiple TF binding sites in
the CCL27 promoter. We evaluated the seven eY1H inter-
actions by luciferase assays in HEK293T cells, all of which
were validated (Figure 6H). Of note, TF ZNF18, which
is widely expressed in immune cells, is also absent from
CytReg showing that novel TFs in the cytokine GRN re-
main to be identified. We also detected 13 TF interactions
with the promoter of CCL4L2 using eY1H assays (Fig-
ure 6I). Multiple TF binding sites were found in the pro-
moter of CCL4L2 for most of the TFs for which a posi-
tion weight matrix was available. We tested the 13 eY1H in-
teractions by luciferase assays in HEK293T cells, nine of
which validated (Figure 6J). Interestingly, ATF3 is known
to regulate CCL4, a close paralog of CCL4L2 (62). Further,
CCL4L2 is produced by multiple cell types including mono-
cytes, B cells, T cells, fibroblasts, endothelial, and epithelial
cells, while ATF3, EBF3, REL, ZBTB10, ZNF710, WT1,
TFAP2A and TFAP2E are also expressed in one or more of
these cell types (63). Overall, this shows that novel interac-
tions can be detected for cytokines and TFs that have been
poorly characterized.

Prediction of novel PDIs in the cytokine GRN

To predict novel PDIs in the human cytokine GRN, we
leveraged the observation that co-expressed genes tend to
share interactions with similar TFs (64,65). Thus, for each
TF with at least two PDIs in the human cytokine GRN, we
searched for other cytokines co-expressed with the known
target cytokines across >5000 expression profiling datasets
using SEEK (20). Potential targets were then filtered by
the presence of the corresponding TF binding site in the
promoter region (2 kb upstream of the transcription start
site) determined using CIS-BP (21). The 1066 predicted
PDIs were enriched in orthologous interactions detected in
mouse but absent from the human cytokine GRN (OR =
4.43, P < 10−20 by Chi-square test). Predictions were classi-
fied as high, medium, or low confidence based on the num-
ber of TF binding sites for the corresponding TF and the
presence of the interaction in mouse (Figure 7A; Supple-
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Figure 6. Completeness of the human cytokine GRN. (A) Number of annotated PDIs, TFs, and cytokines in the human cytokine GRN over time. (B)
Fraction of TFs in the human cytokine GRN with annotated immune phenotypes when knocked out in mice (MGI) or associated to immune disorders
in genome-wide association studies (GWAS) and in the Human Gene Mutation Database (HGMD) over time. (C, D) Number of PDIs per TF (C) or per
cytokine (D) in the human cytokine GRN over time. (E, F) Correlation between the number of PDIs in the human cytokine GRN and the number of
publications per TF (E) or per cytokine (F) reported in Medline. (G, I) PDIs with the promoters of CCL27 (G) or CCL4L2 (I) were analyzed by eY1H
assays. Each interaction was tested in quadruplicate. The qualitative strength of PDIs detected by eY1H compared to AD-vector control are indicated
as –, +, ++ and +++ corresponding to no, weak, medium, and strong interaction, respectively. Motif location for the indicated TFs in the promoters of
CCL27 and CCL4L2 are shown. (H, J) Luciferase assays to validate interactions between the promoters of CCL27 (H) or CCL4L2 (J) and the indicated
TFs. HEK293T cells were co-transfected with reporter plasmids containing the cytokine promoter region (2 kb) cloned upstream of the firefly luciferase
reporter gene, and expression vectors for the indicated TFs (fused to the activation domain VP160). After 48 h, cells were harvested and luciferase assays
were performed. Relative luciferase activity is plotted as fold change compared to cells co-transfected with the vector control (1.0). Experiments were
performed 3–4 times in three replicates. Individual data points represent the average of the three replicates, the average of all experiments is indicated by
the black line. *P < 0.05 by one-tailed Student’s t-test with Benjamini-Hochberg correction.

mentary Table S10). As expected, there is a strong correla-
tion between the TF degree for known and for known plus
predicted interactions, although this correlation is not per-
fect (Figure 7B). Importantly, adding the predicted interac-
tions, maintained or even improved the correlation between
TF degree and expression enrichment in immune tissues,
presence of immune phenotype in mouse, and association

with immune disorders in GWAS and HGMD (Figure 7C).
Overall, this suggests that our predictions are enriched in
functional PDIs.

Using this platform, we predicted IL26 and IL17F to be
novel potential targets of RORC, whose ROR� t isoform
is a master regulator of Th17 cell differentiation and func-
tion (Figure 7D) (66). The interaction between RORC and
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Figure 7. Prediction of novel PDIs in the human cytokine GRN. (A) Novel PDI predictions based on co-expression between cytokines and known cytokine
targets of each TF (determined using the SEEK database), and motifs analysis. Prediction confidence, as defined in the methods section, is shown. (B)
Correlation between the number of cytokine targets (TF degree) for known PDIs and known + predicted PDIs. Correlation determined by Spearman’s
rank correlation coefficient. (C) Correlation between TF degree for known (K) or known + predicted (K+P) PDIs and expression enrichment score (EES)
in immune tissues, mouse immune phenotype (MGI), and human immune disorders in GWAS and HGMD. Correlation and significance determined by
Spearman’s rank correlation coefficient. (D, G) Top predicted cytokine targets of RORC (D) and REL (G). The co-expression rank among all genes and
among cytokines is shown. CXCL8 is a known target of REL, while IL17A is a known target of RORC. (E, H) Enhanced yeast one-hybrid assays testing
PDIs between the indicated human cytokine promoters and RORC (E) and REL (H). AD-vector corresponds to empty vector. The qualitative strength of
PDIs compared to AD-vector control are indicated as –, +, ++ and +++ corresponding to no, weak, medium, and strong interaction, respectively. REL
and RORC binding sites are indicated in red for each 2 kb promoter region. (F, I) Luciferase assays in HEK293T cells co-transfected with reporter plasmids
containing the indicated cytokine promoter region (2 kb) cloned upstream of the firefly luciferase reporter gene, and expression vectors for RORC (F) or
REL (I) (fused to the activation domain VP160). After 48 h, cells were harvested and luciferase assays were performed. Relative luciferase activity is plotted
as fold change compared to cells co-transfected with the vector control (1.0). Experiments were performed 3–4 times in three replicates. Individual data
points represent the average of the three replicates, the average of all experiments is indicated by the black line. *P < 0.05 by one-tailed Student’s t-test with
Benjamini–Hochberg correction.

IL17F, a paralog of the known RORC target IL17A, was re-
ported in mouse (67) but, to our knowledge, not in human.
IL26 is a key cytokine involved in immune cell priming, an-
tibacterial immunity, and autoimmune diseases produced
by ROR� t expressing Th17 cells, but not previously shown
to be directly regulated by ROR� t (68,69). We validated
these two novel predicted PDIs using eY1H assays, motif
analyses, and luciferase assays in HEK293T cells showing

even stronger activity than the well-known RORC-IL17A
interaction (Figure 7E and F). Overall, this suggests that
RORC directly regulates multiple Th17 cytokines.

Using a similar approach, we found that CCL4, CXCL3,
CCL20 and CXCL10 are among the most highly corre-
lated cytokines to the known targets of the well-studied TF
REL, and that their promoters have multiple binding sites
for REL (Figure 7G and H). Interestingly, these cytokines
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are known to be regulated by other subunits of NF-�B but,
to our knowledge, not by REL (Supplementary Table S2).
We validated these predicted interactions using eY1H as-
says and luciferase assays in HEK293T cells (Figure 7H
and I). Interestingly, these four novel targets of REL, a TF
associated with autoimmune disorders, are also associated
with and/or upregulated in autoimmune disorders (Supple-
mentary Table S7) (70–74). Overall, this shows that by in-
tegrating the PDIs annotated in CytReg with co-expression
data we can expand the current cytokine GRN. Addition-
ally, our predictions provide a blueprint for further studies
in cytokine regulation.

DISCUSSION

In the present study, we mined ∼26 million articles in Med-
line, of which we curated >7000 articles, to generate com-
prehensive mouse and human cytokine GRNs comprising
843 and 647 PDIs, respectively. We created a user-friendly
database (https://cytreg.bu.edu) where PDIs can be easily
browsed by TF, cytokine, species, assay type, and TF expres-
sion patterns, and visualized as networks. Overall, CytReg
is 2- to 3-fold more complete than other databases such as
InnateDB and TRRUST (12,13). Using this comprehensive
database, we were able to obtain novel insights into the prin-
ciples involved in cytokine regulation, perform comparative
analyses between mouse and human GRNs, and make func-
tional predictions which were not previously possible with
other databases.

By analyzing the cytokine GRN, we found that highly
connected TFs are more highly expressed in immune cells
and more frequently associated with immune phenotypes
and diseases compared to low connected TFs. This is consis-
tent with previous reports correlating network connectivity
and phenotype, both in protein-protein and protein–DNA
interaction networks (26,29,75). Interestingly, we found that
this correlation is specific to immune diseases as TFs associ-
ated with non-immune diseases do not display a high con-
nectivity in the cytokine GRN (not shown). Overall, this
suggests that the link between TF connectivity and pheno-
type may be a local feature of GRNs where connectivity
to functionally related targets, rather than the entire GRN,
dictates the type of phenotypes or diseases a TF is asso-
ciated with. For example, REL which is highly connected
in CytReg, but not in TRRUST, has been associated with
rheumatoid arthritis, psoriasis, and Hodgkin’s lymphoma
but not with diseases unrelated to the immune system (15).

Our analysis of the combinatorics of the TFs that reg-
ulate each cytokine gene illustrates the complexity in cy-
tokine transcriptional regulation. We observed that pro-
and anti-inflammatory cytokines are regulated by a differ-
ent balance between PSA and TS TFs, but ultimately a com-
bination of both types of TFs may be required for cofac-
tor recruitment to induce cytokine expression in the ap-
propriate cells and conditions. This cooperativity between
PSA and TS TFs, together with cell type specific expression
patterns of surface receptors and signaling molecules, may
ultimately be responsible for the tight control of cytokine
expression in immune responses. The cooperative relation-
ship between TFs may also explain the deleterious effects of
several disease-associated single nucleotide variants (SNVs)

and engineered mutations in the promoters and enhancers
of cytokine genes, as affecting the binding of a single TF
may result in the loss of cooperativity and lead to gene mis-
regulation (43,76,77). For example, using massively paral-
lel reporter assays it was recently shown that ∼60% of all
possible substitutions in the core 44 nt of the IFNB1 en-
hanceosome altered its activity in virus-infected cells (43).
Remarkably, most of the substitutions that did not affect
activity were located outside of known TF binding sites or
led to an alternative binding site for the same TF.

Our analyses also suggest a potential plasticity between
TFs in cofactor recruitment, given that frequently multi-
ple TFs that regulate a cytokine gene can interact with the
same domain of EP300/CREBBP. Fine-mapping TF inter-
actions with protein domains of other cofactors will indi-
cate whether this is a unique feature of EP300/CREBBP.
Further, a comprehensive functional characterization of
different substitutions in cytokine promoters may deter-
mine whether the substitutions that affect the binding of
potentially redundant TFs are generally more benign than
those affecting the binding of cooperative TFs. However,
the converse can also be true as this plasticity may be re-
quired for proper cytokine expression in different cell types
and conditions.

CytReg is the most comprehensive cytokine GRN to-
date, significantly increasing the number of annotated PDIs
compared to previous databases, yet CytReg is not fully
complete. First, articles that do not mention interactions
within the information available in Medline will be missed
and will not have been curated. Second, CytReg is incom-
plete because multiple PDIs remain to be evaluated and
characterized. Indeed, by performing eY1H and luciferase
reporter assays, we found interactions involving cytokines
(CCL27 and CCL4L2) and TFs (e.g. ZNF18, ZBTB10,
KLF17, EBF3 and ZNF710) that are absent from CytReg.
Further, by leveraging CytReg, co-expression data, and mo-
tif analyses we predicted 1,066 PDIs in the human cytokine
GRN, a subset of which we validated by eY1H and lu-
ciferase assays. Third, in addition to missing PDIs in the
cytokine GRN, individuals may carry genomic variants in
noncoding regulatory regions of cytokine genes or in TF
coding sequences that lead to different TF–cytokine inter-
actions. Indeed, several disease-associated SNVs have been
identified in the promoters of cytokine genes that result
in the gain or loss of PDIs that may be absent in CytReg
(26,78–80). For example, a SNV in the proximal promoter
of CCL5 that is associated with atopic dermatitis leads to
a gain of PDI with GATA2 (26,78). Finally, CytReg cat-
alogues PDIs as binary interactions between TFs and cy-
tokine genes. However, the number of binding sites for
each TF, their strength, spacing, and orientation are key
for appropriate gene expression (45,81). With a few ex-
ceptions (e.g. the IFNB1 and the TNF enhanceosomes),
this regulatory logic is currently unknown, and thus cannot
be annotated (11,41). Ultimately, the integration of differ-
ent high-throughput and unbiased approaches, population-
wide studies of regulatory variation, and in-depth func-
tional characterizations of the regulatory logic will lead to
a more comprehensive picture of cytokine regulation in dif-
ferent cell types, conditions, and individuals.

https://cytreg.bu.edu
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