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Contactless facial video recording 
with deep learning models 
for the detection of atrial 
fibrillation
Yu Sun1, Yin‑Yin Yang2, Bing‑Jhang Wu2, Po‑Wei Huang2, Shao‑En Cheng2, Bing‑Fei Wu2* & 
Chun‑Chang Chen3

Atrial fibrillation (AF) is often asymptomatic and paroxysmal. Screening and monitoring are 
needed especially for people at high risk. This study sought to use camera-based remote 
photoplethysmography (rPPG) with a deep convolutional neural network (DCNN) learning model for 
AF detection. All participants were classified into groups of AF, normal sinus rhythm (NSR) and other 
abnormality based on 12-lead ECG. They then underwent facial video recording for 10 min with rPPG 
signals extracted and segmented into 30-s clips as inputs of the training of DCNN models. Using voting 
algorithm, the participant would be predicted as AF if > 50% of their rPPG segments were determined 
as AF rhythm by the model. Of the 453 participants (mean age, 69.3 ± 13.0 years, women, 46%), a total 
of 7320 segments (1969 AF, 1604 NSR & 3747others) were analyzed by DCNN models. The accuracy 
rate of rPPG with deep learning model for discriminating AF from NSR and other abnormalities was 
90.0% and 97.1% in 30-s and 10-min recording, respectively. This contactless, camera-based rPPG 
technique with a deep-learning model achieved significantly high accuracy to discriminate AF from 
non-AF and may enable a feasible way for a large-scale screening or monitoring in the future.

As the world’s population is ageing, atrial fibrillation (AF) has become a serious public health issue. Patients 
with AF-related ischemic stroke were more likely to have severe disability, high recurrence rate, high fatality 
rate, and greater medical cost than those without1–3. Because of its paroxysmal and asymptomatic natures4,5, AF 
is commonly diagnosed after an ischemic stroke has occurred6. Anticoagulants can significantly reduce the risk 
but documentation of AF is required to initiate this preventive therapy. Thus screening for AF in particularly 
among the elderly is recommended7,8.

Current methods of AF detection like implanted loop recorder9,10 and electrocardiogram (ECG) patch11 are 
either invasive or expensive, while handheld recorder12 is convenient for screening but not feasible for long-
term monitoring. Photoplethysmography (PPG) with pulse waveforms generated from optical sensors of mobile 
devices has become a new trend and shows sufficient accuracy for the detection of heart rate and other physi-
ological parameters13. Recent studies revealed various algorithms with good performance in discriminating AF 
from sinus rhythm14–17. Though digital wearables are increasingly popular worldwide, most elderly, who are the 
main population of AF, are still not used to the application of this high-tech device18. An emerging noncontact 
technique called remote photoplethysmography (rPPG) has been developed for detecting heart rate, which uses 
digital camera to measure the subtle variations of skin color reflecting the cardiac pulsatile signal due to heart 
activity pumping blood to and from the face19–21. This method would potentially be applied to mass screen with 
less cost, as well as to long-term monitoring under appropriate settings. Studies in estimating the accuracy of 
rPPG in detecting AF are still limited22,23. In this study, we sought to estimate the ability of rPPG measurement 
with deep learning (DL) models in discriminating AF from non-AF.
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Methods
Study population and examination procedure.  This was a prospective, single-center study conducted 
between June 1, 2019 and August 31, 2020 with participants recruited from outpatient departments of neurology 
and cardiology, and neurological ward at En Chu Kong Hospital, New Taipei City, Taiwan. Patients in critical 
medical conditions were excluded. All participants provided written informed consent prior to their enrollment 
in the study. This study followed the tenets of the Declaration of Helsinki and was approved by the Institutional 
Review Board of En Chu Kong Hospital (ECKIRB10803006). All the methods were performed in accordance 
with the relevant guidelines and regulations. In the examination room, each participant received a standard 10-s, 
12-lead ECG and then immediately sat in front of a digital camera at a distance of 1–2 m for facial video record-
ing. We placed another 3-lead ECG monitor (Deluxe-100, North-vision Tech. Inc. Taiwan) which was simulta-
neously started with the video recording. Participants were instructed to position themselves as stable as possible 
and to minimize movement during recording. The ambient light source for recording is the daylight lamp where 
the illuminance measured in front of participants’ face was at around 200–400 lx. The video recording ended at 
10 min or when subjects declined to continue before that time point.

ECG diagnosis and facial rPPG recording.  Participants were classified into three groups based on their 
12-lead ECG results: first, “AF” with or without other abnormal ECG patterns; second, “normal sinus rhythm” 
(NSR) in which the ECG results were completely normal; third, “Others” with abnormal ECG results except AF. 
In this study, we assumed that the presence of AF in patients would persist during the periods of receiving the 
12-lead ECG exam and subsequent 10 min of facial video-recording. The 12-lead ECG data were analyzed by a 
cardiologist blinded to the rPPG results.

In order to obtain the heart rhythm information from the facial image sequence, we used industrial camera 
(84 frames per second in VGA resolution) (FLIR BFLY-U3-03S2C-CS) as a sensor to capture face images. Once 
the image was captured, the face detection algorithm24 was used to locate the region of interest (ROI) on the face. 
Then, we averaged the RGB value from the ROI and used an optical technique25, rPPG- to capture the subtle color 
change of the skin due to the blood pulsation caused by the heartbeat. To reduce the noise caused by motion or 
environment illuminance variance, a forth order Chebyshev II bandpass filter (cutoff frequency: 0.5–3 Hz) was 
utilized. The example of extracted RGB signal, original rPPG, and filtered rPPG was shown in Fig. 1. It should 
be noticed that the camera setting about the auto exposure, auto gain, and auto focus were all disabled to ensure 
the rPPG signal quality. The entire recording of rPPG signals of each participant was divided into multiple 30-s 
segments. If the subject was classified as AF, his or her total segments of rPPG data would be labeled as AF, and 
the same rule applied to groups of “NSR” and “Others”.

Model development and AF prediction.  We adopted a sample-level, 12-layer, deep convolutional neu-
ral networks (DCNN)26 fed with 30-s segments of rPPG signals as the input for the feature computation. The 
overall model architecture was shown in Fig. 2 and Supplementary Fig. S1. For the first 11 convolutional layers, 
batch normalization, dropout and max pooling were included in several different layers. As for the activation 
function between convolutional layers, a rectified linear activation function was applied. A fully-connected layer 
was used as the last layer. The model was designed as a binary classifier, using annotations of ECG from a cardi-
ologist as ground truth and the probabilities of predictions as output.

The DCNN was implemented with PyTorch framework for model training in three datasets: “AF vs NSR”, “AF 
vs Others” and “AF vs Non-AF”, separately. In order to apply the DL algorithms to the population with various 
heart conditions, three datasets were formed and DCNN models were trained with input data of 30-s segments 
to discriminate AF from NSR, from other abnormalities, and from all non-AF, respectively. The data of rPPG 
segments from each dataset was partitioned into 10 equal-sized sets and we used tenfold cross-validation method 
for model training and validation27. The next step was to detect AF patients. Participants with 10 min of video 
recording would be supposed to have 20 segments of 30-s length. Every segment is fed into the model to obtain 
an atrial fibrillation score by voting algorithm28. If the score is bigger than 0.5, the corresponding participant 
would be classified as an AF case. Figure 3 showed the whole process of the study.

Statistical analysis.  The diagnostic performance of the DCNN model was evaluated by calculating the sen-
sitivity, specificity, positive predictive value, and accuracy rate using the confusion matrix with 12-lead ECG as 
the reference standard. We plotted receiver operating characteristic (ROC) curve and measured the area under 
the curves (AUC) to verify the performance of the binary classifier system under discrimination threshold. Since 
the models were trained in three datasets: “AF vs NSR”, “AF vs Others”, and “AF vs all Non-AF”, calculation of the 
measures was performed for these three models respectively. For estimating the diagnostic accuracy of whole 
length of rPPG recording on each subject, we repeated the calculations of AUC/sensitivity/specificity/ positive 
predictive value/accuracy rate for these three datasets with AF participants identified by voting algorithm. A 
sensitivity analyses was performed to check the relationship between camera recording time and the accuracy 
rate of rPPG in detecting AF based on 15- to 300-s data segments.

Results
Of the 473 enrolled patients, 20 were excluded due to the following reasons: 7 had too many artifacts on ECG, 6 
had missing data on ECG or on facial recordings, and 7 had the quality of rPPG signals too poor to read. Finally, 
we have a total of 453 (mean age, 69.3 ± 13.0 years, women, 46%) patients successfully analyzed, in which the 
mean length (± standard deviation, SD) of video recording for each participant was 484 (± 148) seconds and the 
average number (± SD) of 30-s samples per person was 16.12 (± 4.93). Based on 12-lead ECG, there were 116 par-
ticipants with NSR, 105 with AF, and 232 classified as others. The patients with AF (mean age, 74.3 ± 12.5 years, 
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Figure 1.   The examples of extracted RGB and rPPG signals. (A) Signals of a subject with normal sinus rhythm. 
(B) Signals of a subject with atrial fibrillation. (C) Signals of a subject with atrial premature complexes.
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women, 51.4%) were older with more women than patients without AF (mean age, 67.8 ± 13.0 years, women, 
44.8%). The ECG patterns in the group “Others” included abnormalities in rate and rhythm (e.g., sinus arrhyth-
mia, atrial premature complexes, atrial flutter, ventricular premature complex), axis (e.g., right or left axis devia-
tion), amplitude (e.g., ST depression, T-wave abnormality), durations and intervals (e.g., conduction delay or 
block, right or left bundle branch block, long QT). Pacing was found on the ECG of 5 participants of whom 
2. Besides, the ECG patterns of 16 patients, though manually interpreted as snus rhythm, were classified into 
the group of “Others” because their ECG resembled arrhythmia or atypical morphology of NSR due to various 
artifacts. The various ECG patterns of the participants of group “Others” were summarized in Table S1 in the 
Supplementary Information. Individuals with both AF and other ECG abnormalities were classified as “AF” 
group and were not uncommon in the study population.

This DCNN model had gained great success in the audio processing region since the relatively slim archi-
tecture and smaller convolution kernel were applied, which were also suit for the rPPG signal processing. We 
separately plotted the ROC curves of “AF vs. NSR”, “AF vs. Others” and “AF vs. Non-AF” of the three models based 
on data of 30-s rPPG segments (Fig. 4A,C,E). The ROC curves were plotted again based on the aforementioned 
voting results for predicting subject to be AF or not (Fig. 4B,D,F). The results of the performance of models with 
measures of AUC, sensitivity, specificity, positive predictive value, and accuracy rates were shown in Table 1. 
The performance of DL algorithms changed as the model was trained in different population composition. For 
predicting AF by 30-s-rPPG segments in the dataset of “AF vs NSR”, the sensitivity, specificity, positive predictive 
value and accuracy rates of test set were 95.0%, 87.3%, 90.2% and 91.6%, respectively. The diagnostic sensitiv-
ity and accuracy decreased while the specificity slightly increased as the model was trained in the dataset of 
“AF vs Others”. With all data pooled together, the sensitivity, specificity, positive predictive value and accuracy 
rates in discriminating AF from non-AF by the algorithm were 80.3%, 93.6%, 82.1% and 90.0%, respectively 
(Table 1). We checked the relationship between video recording time and the accuracy rate of rPPG and found 
that the accuracy rate reached a peak when the segment length was set at 120–240 s. This results were shown 
in Supplementary Fig. S2. We further calculated the diagnostic accuracy by assessing the whole length of rPPG 
recording signals for each subject. For the model trained in the dataset of “AF vs NSR”, the sensitivity, specificity, 
positive predictive value and accuracy rates on the test set were 99.1%, 94.8%, 94.6% and 96.8%, respectively. For 
the model trained in the dataset of “AF vs Others”, though the sensitivity slightly decreased, the algorithm still 
performed well with the sensitivity, specificity, positive predictive value and accuracy being 94.3%, 95.7%, 90.8% 
and 95.3%, respectively. Finally, we evaluated the model performance in detecting AF among all participants 
with and without arrhythmia or ECG abnormalities. The results showed high sensitivity (93.3%) and high posi-
tive predictive value (94.3%). The accuracy and specificity rates were even up to 97.1% and 98.3%, respectively 
(Table 1). The corresponding values for the performance of training datasets and testing datasets were shown in 
Table S2 and Table S3 in the Supplementary Information.

Figure 1.   (continued)
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Discussion
We demonstrated that a camera-based recording can detect AF using the rPPG technology incorporated with 
DL algorithms. With 12-lead ECG as standard reference, algorithm performance from 10 min of rPPG recording 
achieved high sensitivity (93.3%) and specificity rates (98.3%) with accuracy rate up to 97.1% in discriminating 
AF patients from those without AF. The ultrashort 30-s recording segment also yielded a high accuracy rate 
(90%). Even in the sample population of group “Others” with various abnormalities or arrhythmic ECG, the 
positive predictive value remained high (90.8%), which indicated low false positive rate. These data support 
the ability of DL-assisted rPPG to correctly discriminate AF from other pulse irregularity and abnormal ECG 
waveforms just by using a camera and even by a very short time recording.

In recent years, there have been several studies reporting the use of smartphones and their apps in detecting 
AF. These apps demonstrated good performance in detecting AF15,16,29,30, with accuracy rate around 95%-98% 
according to a review by Pereira et al.15, in which the smartphone camera recorded PPG signals through fingertip 
contact. Like handheld ECG recorder, the heart rhythm can only be measured as long as the person does not 
move the device because even slight movement may severely distort measurement. In addition, digital weara-
bles may not be so popular among the less-tech savvy individuals, as well as the elderly who are really the high 
AF-risked population18. Other than the detection performed by direct contact on the devices, the rPPG method 
with video recording on the face has the pulsatile signals remotely captured. The motion-robust rPPG algorithms 
enable the recording with an affordable, consumer-level camera under “normal” ambient light conditions19,31, and 
even for multiple people at the same time with minimal motion distortions32–34. These advantages make rPPG a 
promising tool not just for mass screening of AF but also for the remote, long-term heart rate monitoring outside 
the hospital, such as at home, in workplace environment or even in driving condition35.

In terms of using video-based rPPG for AF detection, relatively low error rates (17–29%) in the study by 
Couderc and colleagues proved that this method is feasible22. Another two studies by Shi et al. and Eerikainen 
et al. with small sample size also showed promising results with accuracy rates improved to 92–98%27,36. A study 
by Yan and colleagues used smartphone camera for contactless facial recording and analyzed the data by the 
Cardio Rhythm application in patients with AF and sinus rhythm yielded 95% of sensitivity and specificity16,23. 
Our study extended the application of using facial rPPG to differentiate AF from not only normal sinus rhythm 
but also other arrhythmia and various ECG patterns and also proved the high accuracy rate (97%). Since the 
diversity and size of data are very important factors for better performance of DL algorithm, more than half 
(232/453) of our participants, as classified as group “Others”, were neither normal sinus rhythm nor AF. Their 
ECG patterns showed various abnormalities in rate, rhythm, axis, wave morphology, durations and intervals. The 
results of the algorithm performance differed between datasets fed with more “normal ECG” subjects and dataset 
with more “abnormal ECG” subjects. Algorithm for population with AF and NSR achieved highest sensitivity. 
The sensitivity decreased but the specificity increased when model trained by lots of abnormal ECG patterns as 
feature inputs. Among the 453 participants, there were a total of 36 subjects misclassified by the models as to 
be either false positive or false negative cases (7 in the model of “AF vs NSR”, 16 in “AF vs Others”, 13 in “AF vs 
Non-AF”). Interestingly, all of them were misclassified by only 1 of the 3 models. For example, subjects who were 
misclassified in the dataset composed of “AF and NSR” were not misclassified in the dataset composed of “AF 
and non-AF”, and vice versa, suggesting the results of DL markedly affected by population composition of ECG 
characteristics. Since the participants were enrolled from the stroke ward and the department of cardiology and 
neurology, most of the participants were old and many had heart disease or rhythm problems. Previous reports 
showed that some abnormal rhythms such as ventricular premature contractions, atrial premature contractions 
and sinus arrhythmia were likely to be false positive of AF by PPG-based wearables16,18. This study performed 
model training from various abnormal ECG patterns including the morphology of pacing. There were 2 AF 
patients among the 5 participants with pacing. These 2 AF patients were correctly classified by rPPG with deep-
learning algorithm. But 1 of the other 3 patients without AF was misclassified as AF by the model. Overall, this 
study showed relatively low rate of misclassification by models among subjects with abnormal rhythms, e.g. 0/11 
sinus tachycardia, 0/2 sinus bradycardia, 1/15 ventricular premature contractions, 0/11 atrial premature contrac-
tions, 3/15 sinus arrhythmia (2 in “AF vs Non-AF” model, 1 in “AF vs Others” model were misclassified among 
15 sinus arrhythmia). And the ECG findings in our patients with AF not just showed AF alone. Instead, most of 
them have combined with other abnormal morphology or rhythms. DL approaches can yield good performance 
in detecting AF even in the population with high burden of other arrhythmia37. Algorithms developed by present 
three training models all achieved high accuracy rates (> 95%) in detecting AF patients, either from the datasets 
with more NSR or from that with more other arrhythmias or abnormal ECG features.

The Heart Rhythm Society consensus statement defined AF as an arrhythmia lasting ≥ 30 s on 1-lead ECG 
or if present on the entire 10 s 12-lead standard ECG38,39. This study estimated the performance of rPPG-based 
algorithms in both 30-s samples and 10 min of recordings. Though the current rule of 30-s recording cannot be 
applied on the model-predicted pulse irregularity presented on the form other than ECG, this rPPG-DL modality 
as with high sensitivity and low false positive rate on detecting AF shown in this study enables a promising tool 
for screening. Furthermore, the DL models achieved higher accuracy along with higher detection rate as the 
recording time increasing, which suggests a favorable cost-effective option in calculating AF burden by using 
rPPG for long-term monitoring in the future.

The performance of DL algorithms changes when models are trained in datasets from different target sub-
jects. Thus, algorithms developed in wearables such as smartphones among mostly young people may not be 
suitable for the elderly. Similarly, the best model trained in hospital setting may not be as good when applying in 
community screen. This study provides the evidence that rPPG-DL method may enable a reliable, non-contact 
screening or monitoring for AF detection as with the model specifically trained in the target individuals. The 
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cut point of > 50% AF(+) 30-s samples in this study for predicting AF individual may also need to be adjusted 
to get better predictive ability when applying to another population.

Limitations.  There are some limitations to the study. First, the 12-lead ECG and video-based rPPG record-
ing were not simultaneously performed. The depicted waveforms, in particular p-wave, of the output data from 
our simultaneous monitoring by 3-lead ECG were not clearly discernible in severe background noise. In addi-
tion, some tachycardia or ectopic beats on 3-lead monitor were also difficult in the interpretation of irregular 
rhythms. In order not to misclassify the participants with various cardiac diseases, we chose 12-lead ECG as 
standard reference. Since all of the subjects with AF in this study were either cases of long-term follow-up at 
our outpatient clinic, or cases of acute embolic stroke with high AF burden, it is highly possible that their AF 
would persist during the 10-s of 12-lead ECG exam and subsequent 10 min of rPPG recording. Nevertheless, the 
occurrence of paroxysmal AF during this 10-min examination still cannot be excluded. Second, all subjects in 
this study were selected to be able to position themselves sitting and facing camera steadily. There may be some 
selection bias as very ill patients were excluded. The applicability of rPPG on these kinds of patients is uncer-
tain. Third, seven participants with poor rPPG recording were excluded due to too much motion artifacts and 
poor lighting. Lighting conditions and motion artifacts are always great challenges for rPPG recording. Though 
motion-robust rPPG algorithms are proposed in extracting a clean pulse signal in ambient light environments 
using a regular color camera in subjects who move significantly32,33,40, studies to examine the generalizability in 
monitoring subjects for AF detection under free-living condition are warranted. Fourth, because some of our 
elderly patients, especially those with cognitive impairment, were unable to tolerate sitting steadily for 10 min, 
the length of video-recording time among our participants varied from 5 to 10 min. Thus we could not precisely 
make the conclusion for how long the exact recording time should be to obtain the accuracy rate provided in 
this study. The last point is that we chose industrial camera for the purpose of obtaining high resolution image. 
Although motion-robust rPPG algorithms have been developed by using consumer-level camera in detecting 
heart rate9,31 and facial video recording by smartphone camera has been used to differentiate AF from NSR16,23, 
the ability of AF detection from other various abnormal ECG for mass screen by using regular camera needs 
further studies.

Conclusions
The application of camera-based rPPG technique with DL algorithms achieved high accuracy in detecting AF 
among population with normal and various abnormal ECG patterns. The robust performance of deep learning 
models may enable rPPG, either by a common video camera or by a smartphone with built-in camera, to be a 
promising tool for mass screening and long-term monitoring in a non-contact and a favorable cost-effective way. 
This would represent a major advance for stroke prevention in the near future. Further studies are warranted to 
evaluate the model performance in hospital setting, large-scale community screening, and home-based long-
term monitoring.

Figure 2.   The overall DCNN model architecture.
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Classification based on 12-lead ECG 

453 participants included for analysis 

AF, n=105 Others, n=232 NSR, n=116

 AF segments, n =1969 NSR segments, n=1604

20 patients excluded

(7 too many artifacts 

on ECG, 6 missing 

data, 7 poor rPPG 

signals)

Segments of others, n=3747

Dataset of “AF vs NSR” Dataset of “AF vs Others” Dataset of “AF vs Non-AF” 

Split DCNN AppliedTrain (90%) Test (10%) 

Determine segments of 

“AF” and “NSR” 

Determine segments of 

“AF” and “Others” 

Determine segments of 

“AF” and “Non-AF” 

AF NSR AF Others AF Non-AF 

Predict participants to be AF or not 

473 participants received 12-lead ECG, followed by video-based rPPG recording on 

the face and simultaneously monitoring by 3-lead ECG for 10 minutes 

Each recording of rPPG signals was divided into multiple 30-sec segments

Figure 3.   Study flow diagram. AF atrial fibrillation, DCNN deep convolutional neural network, ECG 
electrocardiograph, NSR normal sinus rhythm, rPPG remote photoplethysmography. Step 1: Case enrollment 
and ECG-proved classification. Step 2: Extraction of rPPG signals and dividing them into 30-s segments as 
the data of for three datasets: “AF vs NSR”, “AF vs Others”, “AF vs Non-AF”. Step 3: Each segment was used as 
the input of DCNN learning model. For each dataset, tenfold cross validation method was applied to measure 
the performance of the models with data split into train set (9 folds) and test set (onefold). The procedure 
was repeated 10 times until all folds had served exactly once as the hold-out set. Eventually, we calculated 
the average accuracy of the ten folds as the performance of the model and the standard deviation values of 
model performance between each fold were also calculated. Step 4: Best model algorithms were generated to 
determine whether or not the 30-s-rPPG segment to be AF. Step 5: Participant with more than 50% of segments 
determined as AF by the above models was considered positive for AF.
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Figure 4.   Performance of the deep-learning models for classification of atrial fibrillation based on 30-s segment 
data and whole-length recording of subjects. AF atrial fibrillation, NSR normal sinus rhythm, ROC receiver 
operating characteristic. Receiver operating characteristic (ROC) curves based on data of 30-s segments (Left) 
and voting results of whole-length recording of subjects (Right) in the datasets: “AF vs NSR” (Fig. 2A,B), “AF 
vs Others” (Fig. 2C,D), “AF vs Non-AF” (Fig. 2E,F). By voting algorithm, subject who had more than 50% of 
model-determined AF segments was classified as AF case.
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