

Check for updates

Catalog of 5' fusion partners in *RET*+ NSCLC Circa 2020

Sai-Hong Ignatius Ou, MD, PhD,* Viola W. Zhu, MD, PhD

Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology and Oncology, University of California Irvine School of Medicine, Orange, California

Received 29 February 2020; revised 18 March 2020; accepted 18 March 2020 Available online - 30 March 2020

ABSTRACT

Since the discovery of *RET* fusion–positive (*RET*+) NSCLC around late 2011 to early 2012, clinical trials of multikinase inhibitors and highly potent and selective RET tyrosine kinase inhibitors have indicated that *RET* fusion is an actionable oncogenic driver in NSCLC. There seems to be a differential response to multikinase inhibitors depending on the fusion partner (*KIF5B-RET* versus non–*KIF5B-RET*); thus, knowledge of the fusion partners in *RET*+ NSCLC is important. To date, we identified 48 unique fusion partners in *RET* from published literature and congress proceedings. Two of the novel fusion partners (*CCNYL2* and *TRIM24*) were identified in *RET* fusions that emerged as resistant to EGFR tyrosine kinase inhibitors. In addition, multiple intergenic rearrangements were identified.

© 2020 The Authors. Published by Elsevier Inc. on behalf of the International Association for the Study of Lung Cancer. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

Keywords: 5' fusion partners; RET; NSCLC; Selpercatinib; Pralsetinib; Whole-transcriptome sequencing

Introduction

RET fusion-positive (*RET*+) NSCLC was discovered in early 2012,¹⁻⁴ 5 years after the discovery of *ALK* and *ROS1* fusion-positive NSCLC. There have been prospective studies investigating multikinase inhibitors (MKIs) such as vandetanib, cabozantinib, lenvatinib, sorafenib, and RXDX-105, which revealed modest clinical activity.⁵⁻⁹ More importantly, differential responses were observed on the basis of the specific fusion partner *KIF5B* verus non-*KIF5B* in *RET*+ NSCLC. The *KIF5B-RET* variant in NSCLC seems to be more resistant to MKIs than the other dominant *CCDC6-RET* fusion variant.^{6,9} Two highly potent and selective *RET* tyrosine kinase inhibitors (TKIs), selpercatinib (LIBRETTO-001, NCT03157128) and pralsetinib (ARROW, NCT03037385),^{10,11} are undergoing clinical trials for *RET*+ and *RET*-mutated tumors. In addition, *RET* fusion is one of the major receptor tyrosine kinase fusions identified as a resistance mechanism to EGFR TKIs.¹² We undertook this review to catalog the fusion partners identified in literature up to April 2020 for easy reference.

Methods and Results

We searched PubMed publications and conference or congress abstracts and presentations extensively to identify novel *RET* fusion partners (including noncoding RNAs). We also communicated with authors who had presented posters to obtain lists of novel fusion partners. We included only fusion partners that retained the 3' *RET* kinase domain. Overall, a total of 48 distinct *RET* fusion partners have been identified in literature as of

Cite this article as: Ou S-HI and Zhu VW. Catalog of 5' fusion partners in RET+ NSCLC Circa 2020. JTO Clin Res Rep 1:100037

ISSN: 2666-3643

https://doi.org/10.1016/j.jtocrr.2020.100037

^{*}Corresponding author.

Disclosure: Dr. Ou has stock ownership and was on the scientific advisory board of Turning Point Therapeutics, Inc. (until February 28, 2019); has received speaker honoraria from Merck, Roche/Genentech, AstraZeneca, Takeda/ARIAD, and Pfizer; and has received advisory fees from Roche/Genentech, AstraZeneca, Daiiki Sankyo, Takeda/ ARIAD, Pfizer, Foundation Medicine, Inc., and Spectrum. Dr. Zhu has received honoraria from AstraZeneca, Biocept, Roche-Foundation Medicine, Roche/Genentech, and Takeda, and has stock ownership of Turning Point Therapeutics Inc.

Address for correspondence: Sai-Hong Ignatius Ou, MD, PhD, Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, 200 South Manchester Ave., Ste. 400, Rm 407, Orange, CA 92868-3298. E-mail: siou@hs.uci.edu

^{© 2020} The Authors. Published by Elsevier Inc. on behalf of the International Association for the Study of Lung Cancer. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Table 1. Catalog of Fusion Partners in RET+ NSCLC

Na	Fusion	Year Presented/ Published in Print With Page	Chromosomal	Fusion	Response to RET TKI at the Time	Tumor	Method of	Variant Frequency		Deferences
NO.	Partner	Numbers	Location	вгеакроіпт	of Publication	Source	Detection	in lumor	FISH/IHC	References
1	KIF5B	2012	10p11.22	(K15, R12) (K16, R12) (K23, R12)	Not treated with RET TKI	FFPE	RNA sequencing	NR	NR/NR	Ju et al. ¹
		2012	10p11.22	(K15, R12) (K16, R12) (K23, R12) (K24, R8)	Not treated with RET TKI	FFPE	RT-PCR, Sanger sequencing	NR	NR/+	Kohno et al. ²
		2012	10p11.22	(K15, R12) (K16, R12) (K23, R12) (K23, R12) (K24, R11)	Not treated with RET TKI	FFPE	RT-PCR, Sanger sequencing	NR	NR/NR	Takeuchi et al. ³
		2012	10p11.22	(K15, R12)	Not treated with RET TKI	FFPE	NGS	NR	NR/NR	Lipson et al. ⁴
		2012	10p11.22	(K15, R12) (K22, R12)	Not treated with RET TKI	FFPE	RT-PCR, Sanger sequencing	NR	NR/NR	Yokota et al. ¹³
2	CCDC6	2012	10q21.2	(C1, R12)	Not treated with RET TKI	FFPE	RT-PCR, Sanger sequencing	NR	NR/NR	Takeuchi et al. ³
			10q21.2	(C1, R12)	Not treated with RET TKI	Cell line	RT-PCR	NR	NR/NR	Matsubara et al. ¹⁴
3	NCOA4	2012	10q11.22	(N6, R12)	Not treated with RET TKI	FFPE	RT-PCR	NR	+/+	Wang et al. ¹⁵
4	TRIM33	2013	1p13.2	(T14, R12)	PR to cabozantinib	FFPE	NGS	NR	+/NR	Drilon et al. ¹⁶
5	RUFY2	2014	10q21.3	(R9, R12)	Not treated with RET TKI	FFPE	Targeted RNA sequencing	NR	+/NR	Zheng et al. ¹⁷
6	CUX1	2014	7q22.1	C10, R12)	Not treated with RET TKI	FFPE	Anchored multiple PCR, NGS	NR	+/NR	Lira et al. ¹⁸
7	KIAA1468/ (RELCH) ^a	2014	18q21.33	(K10, R12)	Not treated with RET TKI	FFPE	RT-PCT	NR	NR/NR	Nakaoku et al. ¹⁹
	KIAA1468/ (RELCH) ^a	2019	18q21.33	NR	Treated with selpercatinib	FFPE or plasma	NGS	NR	NR/NR	Drilon et al. ²⁰
	RELCH ^a	2020	18q21.33	(R10, R12)	Not treated with RET TKI	FFPE	NGS	NR	+/NR	Jiang et al. ²¹
8	MPRIP	2016	17p11.2	(M19, R12)	Not treated with RET TKI	FFPE	Targeted RNA sequencing	NR	NR/NR	Fang et al. ²²
9	CLIP1	2016	12q24.31	NR	PR to cabozantinib	FFPE	NGS	NR	NR/NR	Drilon et al. ⁵
10	ERC1	2016	12p13.33	NR	SD to cabozantinib	FFPE	NGS	NR	NR/NR	Drilon et al. ⁵
11	KIAA1217	2016	10p12.2-p12.1	(K11, R10)	Not treated with RET TKI	FFPE	NGS	NR	+/NR	Lee et al. ²³
12	MYO5C	2016	15q21.2	(M25, R12)	SD to vandetanib	FFPE	NGS	NR	+/NR	Lee et al. ⁷

(continued)

Table	Table 1. Continued									
No.	Fusion Partner	Year Presented/ Published in Print With Page Numbers	Chromosomal Location	Fusion Breakpoint	Response to RET TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/IHC	References
13	EPHA5	2017	4q13.1-q13.2	NR	Response to RET TKI	FFPE	NGS	NR	NR/NR	Gautschi et al. ²⁴
14	PICALM	2017	11q14.2	NR	NR	FFPE	NGS	NR	NR/NR	Gautschi et al. ²⁴
15	FRMDA4 (KIAA1294)	2017	10p13	(F12, R12)	Not treated with RET TKI	FFPE	NGS	NR	+/NR	Velcheti et al. ²⁵
16	RASSF4	2017	10q11.21	(R3, R12)	Not treated with RET TKI	FFPE	NGS	NR	NR/NR	Zehir et al. ²⁶
17	KIF13A	2018	6p22.3	(K18, R12)	Not treated with RET TKI	FFPE	NGS	NR	NR/NR	Zhang et al. ²⁷
18	WAC	2018	10p12.1-p11.2	(W3, R12)	Not treated with RET TKI	FFPE	NGS	NR	NR/NR	Velcheti et al. ²⁸
19	TBC1D32 (C6orf170)	2019	6q22.31	(T9, R12)	Not treated with RET TKI	FFPE	NGS	NR	NR/NR	Peng et al. ²⁹
20	EML4	2019	2p21	NR	PR to RXDX-105	FFPE	NGS	NR	NR/NR	Drilon et al. ⁹
21	PARD3	2019	10p11.22-p11.21	NR	PR to RXDX-105	FFPE	NGS	NR	NR/NR	Drilon et al. ⁹
22	ARHGAP12	2019	10p11.22	NR	Treated with selpercatinib	FFPE or plasma	NGS	NR	NR/NR	Drilon et al. ²⁰
		2019	10p11.22	NR	NR	FFPE	NGS	NR	NR/NR	Liu et al. ³⁰
23	CCDC88C	2019	14q32.11-q32.12	NR	Treated with selpercatinib	FFPE or plasma	NGS	NR	NR/NR	Drilon et al. ²⁰
24	DOCK1 ^b	2019	10q26.2	NR	Treated with selpercatinib	FFPE or plasma	NGS	NR	NR/NR	Drilon et al. ²⁰
25	RBPMS ^b	2019	8p12	NR	Treated with selpercatinib	FFPE or plasma	NGS	NR	NR/NR	Drilon et al. ²⁰
26	PRKAR1A	2019	17q24.2	NR	Treated with selpercatinib	FFPE or plasma	NGS	NR	NR/NR	Drilon et al. ²⁰
27	ADD3	2019	10q25.1-q25.2	(A1, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
28	ANKS1B	2019	12q23.1	(A1, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
29	CCDC186	2019	10q25.3	(C10, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
30	CCNYL2 ^c	2019	10q11.21	(C6, R16)	SD to combination of cabozantinib and osimertinib	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
31	PCM1	2019	8p22	(P29, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
32	PRKG1	2019	10q11.23-21.1	(P7, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹

(continued)

ω

Table	Table 1. Continued											
No.	Fusion Partner	Year Presented/ Published in Print With Page Numbers	Chromosomal Location	Fusion Breakpoint	Response to RET TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/IHC	References		
33	PTPRK	2019	6q22.33	(P3, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹		
34	SIRT1	2019	10q21.3	(S8, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹		
35	SORBS1	2019	10q24.1	(S8, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹		
36	TSSK4	2019	14q1	(T1, R12)	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹		
37	TRIM24	2019	7q33-q34	NR	Treated with selpercatinib	FFPE or plasma	NGS	NR	NR/NR	Drilon et al. ²⁰		
	TRIM24 ^d	2019	7q33-q34	NR	NR	Plasma	NGS	NR	NR/NR	Rich et al. ³²		
38	CCDC3	2019	10p13	NR	NR	FFPE	NGS	NR	NR/NR	Liu et al. ³⁰		
39	CTNNA3	2019	10q21.3	NR	NR	FFPE	NGS	NR	NR/NR	Liu et al. ³⁰		
40	DYDC1	2019	10q23.1	NR	NR	FFPE	NGS	NR	NR/NR	Liu et al. ³⁰		
41	EML6	2019	2p16.1	NR	NR	FFPE	NGS	NR	NR/NR	Liu et al. ³⁰		
42	PRKCQ	2019	10p15.1	NR	NR	FFPE	NGS	NR	NR/NR	Liu et al. ³⁰		
43	PRPF18	2019	10p13	NR	NR	FFPE	NGS	NR	NR/NR	Liu et al. ³⁰		
44	LSM14A	2020	19q13.11	(L9, R20)	NR	FFPE	NGS	NR	+/NR	Lv et al. ³³		
45	GPRC5B ^e	2020	16p12.3	NR	NR	FFPE or plasma	NGS	NR	NR/NR	Lu et al. ³⁴		
46	GPR139 ^e	2020	16p12.3	NR	NR	FFPE or plasma	NGS	NR	NR/NR	Lu et al. ³⁴		
47	ANK3	2020	10q21.2	NR	NR	FFPE or plasma	NGS	NR	NR/NR	Lu et al. ³⁴		
48	EPC1 ^f	2020	10p11.22	NR	NR	FFPE or plasma	NGS	NR	NR/NR	Lu et al. ³⁴		

^{*a*}KIAA1468 is the same as RELCH.

^bDOCK1-RET and RBPMS-RET occurred in the same tumor.

^cCCNYL2-RET as resistance to osimertinib (EGFR L858R).

^dTRIM24-RET as resistance to EGFR del 19.

 $^e {\rm GPRC5B}$ and GPR139 were detected as dual fusions in one case.

^fEPC1 was detected as dual fusions in one case with the other fusion partner being KIF5B.

FFPE: formalin-fixed paraffin-embedded; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation sequencing; NR: not reported; PR: partial response; RT-PCR, reverse transcriptase polymerase chain reaction; SD: stable disease; TKI, tyrosine kinase inhibitor.

Table	2. List of Chromoson	nal Locations of I	Intergenic Transloca	tions With Po	otential Fusion Partr	ners				
No.	Year Presented/ Published in Print	Chromosomal Location	Potential Fusion Partner Gene	RET Exon Fusion	Response to RET TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/IHC	References
1	2019	10p14-p13	CDC123 ^a	R12	Treated with capmatinib, unknown response	FFPE	NGS	NR	NR/NR	Xu et al. ³⁵
2	2019	10q11.21	ALOX5	R11	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
3	2019	10q21.2	ANK3	R11	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
4	2019	10q25.2	DUSP5	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
5	2019	10p13	FAM188A (MINDY3)	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
6	2019	10p15.1	IL2RA	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
7	2019	10q23.31	LOC101926942 (LINC02653)	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
8	2019	10p12.1	LOC105376468	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
9	2019	10q11.21	LOC105378269	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
10	2019	5p12	MRPS30	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
11	2019	10p11.22	NRP1	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
12	2019	16q23.2	PRCAT47 (ARLNC1)	R11	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
13	2019	10p13	PTER	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
14	2019	10q21.1	UBE2D1	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
15	2019	19p12	ZNF43	R12	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹
16	2019	10p11.23	ZNF438	R11	NR	FFPE or plasma	NGS	NR	NR/NR	Zhang et al. ³¹

^aRET fusion as potential resistance to osimertinib for EGFR (del 19, T790M, C797G/S) FFPE: formalin-fixed paraffin-embedded; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation sequencing; NR, not reported; TKI, tyrosine kinase inhibitor.

April 2020 (Table 1).^{1–5,7,9,13-34} The *RET* gene is located on chromosomal 10q11.21. A total of 11 fusion partners are located on the long arm of chromosome 10 (10q), and three of the fusion partners are located around 10q11. Given the discovery of RET+ NSCLC occurred about 5 years after that of ALK+ and ROS1+ NSCLC, many of these novel RET fusion variants have not been treated with either MKIs or highly selective RET TKIs. Multiple intergenic rearrangements, mostly to exon 12 of RET, have also been identified and listed separately in Table 2.^{31,35} To date, none of these intergenic RET rearrangements have been reported to respond to RET TKIs; thus, the significance of these intergenic rearrangements remains to be determined, including whether functional fusion RNAs can be transcribed from these intergenic rearrangements.

Discussion

The number of RET fusion partners identified in *RET*+ NSCLC as of April 2020 is about 48, which is fewer than the number of ALK fusion partners identified.³⁶ Again, we expect that more fusion partners in *RET*+ NSCLC will be identified with the continual use of nextgeneration sequencing (NGS), including wholetranscriptome sequencing as the diagnostic platform migrates to exhaustively identify all the actionable driver mutations in NSCLC, particularly RET fusions, given the impending approval of selpercatinib and pralsetinib. Furthermore, not all the fusion partners identified in other tumor types such as thyroid cancer have been identified in *RET*+ NSCLC.^{26,37} Currently, only the KIF5B fusion partner in KIF5B-RET has been reported to confer poor response to MKIs,^{6,9} because the kinesin domain of KIF5B interacts with the kinase domain of RET to create a signaling hub rendering resistance to RET inhibition alone.³⁸ With this catalog of 5' fusion partners in RET+ NSCLC, we hope to increase awareness of the various fusion partners in RET+ NSCLC and stimulate further translational research.

Concluding Perspectives

- 1. *RET*+ NSCLC is a heterogeneous disease with at least 48 distinct fusion partners identified in the literature as of April 2020.
- 2. With the anticipated approval of selpercatinib and pralsetinib for *RET*+ NSCLC, many more fusion partners and intergenic rearrangements will likely be identified with the ever-increasing adoption of targeted RNA sequencing and whole-transcriptome sequencing because of the need to identify rare actionable fusions such as *NTRK* and *NRG1* fusions in general, and also *RET* fusions in particular.

- 3. *RET* fusions are also common receptor tyrosine kinase fusions identified as acquired resistance to EGFR TKIs. Two novel fusion partners (*CCNYL2* and *TRIM24*) were identified as resistance mechanisms to EGFR TKI in *EGFR*+ NSCLC.
- 4. The functional significance of intergenic rearrangements remains to be determined. In one study, intergenic rearrangements accounted for 7.7% of the *RET* fusions identified. However, it is yet to be determined whether these intergenic rearrangements are transcribed into functional *RET* RNA fusions.
- 5. We recommend that clinicians from all over the world continue to report these novel fusions and intergenic rearrangements with information on the following: (1) exon or fusion breakpoints; (2) response to RET TKIs; (3) allele frequency; and (4) whether the tumor is RET-positive on fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), if possible. Although RET TKIs are being developed after ALK and ROS1 TKIs, RET detection by IHC and FISH has not gone through health agency regulations given that NGS is the primary companion diagnostic platform used to detect RET fusions; thus, not much is known about the sensitivity and specificity as well as the positive and negative predictive values of these two testing modalities. We do realize that the uptake and utility of IHC and FISH for RET detection may be limited when NGS is likely the first approved companion diagnostic platform for RET fusions and increasing uptake to identify even rarer actionable driver alterations such as NRG fusions.

References

- 1. Ju YS, Lee WC, Shin JY, et al. Fusion of KIF5B and RET transforming gene in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. *Genome Res.* 2012;22:436-445.
- 2. Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. *Nat Med*. 2012;18:375-377.
- 3. Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. *Nat Med*. 2012;18:378-381.
- 4. Lipson D, Capelletti M, Yelensky R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. *Nat Med.* 2012;18:382-384.
- 5. Drilon A, Rekhtman N, Arcila M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. *Lancet Oncol.* 2016;17:1653-1660.
- Yoh K, Seto T, Satouchi M, et al. Vandetanib in patients with previously treated RET-rearranged advanced nonsmall-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. *Lancet Respir Med*. 2017;5:42-50.
- 7. Lee SH, Lee JK, Ahn MJ, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancerharboring RET rearrangement: a phase II clinical trial. *Ann Oncol.* 2017;28:292-297.

- 8. Hida T, Velcheti V, Reckamp KL, et al. A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. *Lung Cancer*. 2019;138:124-130.
- 9. Drilon A, Fu S, Patel MR, et al. A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105. *Cancer Discov.* 2019;9:384-395.
- Subbiah V, Gainor JF, Rahal R, et al. Precision targeted therapy with BLU-667 for RET-driven cancers. *Cancer Discov.* 2018;8:836-849.
- 11. Subbiah V, Velcheti V, Tuch BB, et al. Selective RET kinase inhibition for patients with RET-altered cancers. *Ann Oncol.* 2018;29:1869-1876.
- 12. Zhu VW, Klempner SJ, Ou SI. Receptor tyrosine kinase fusions as an actionable resistance mechanism to EGFR TKIs in EGFR-mutant non-small-cell lung cancer. *Trends Cancer*. 2019;5:677-692.
- Yokota K, Sasaki H, Okuda K, et al. KIF5B/RET fusion gene in surgically-treated adenocarcinoma of the lung. Oncol Rep. 2012;28:1187-1192.
- 14. Matsubara D, Kanai Y, Ishikawa S, et al. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. *J Thorac Oncol*. 2012;7:1872-1876.
- **15.** Wang R, Hu H, Pan Y, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. *J Clin Oncol*. 2012;30:4352-4359.
- Drilon A, Wang L, Hasanovic A, et al. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. *Cancer Discov.* 2013;3:630-635.
- 17. Zheng Z, Liebers M, Zhelyazkova B, et al. Anchored multiplex PCR for targeted next-generation sequencing. *Nat Med.* 2014;20:1479-1484.
- 18. Lira ME, Choi YL, Lim SM, et al. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. *J Mol Diagn*. 2014;16:229-243.
- 19. Nakaoku T, Tsuta K, Ichikawa H, et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. *Clin Cancer Res.* 2014;20:3087-3093.
- 20. Drilon A, Oxnard G, Wirth L, et al. Registrational results of LIBRETTO-001: A phase 1/2 trial of LOXO-292 in patients with RET fusion-positive lung cancers. *J Thorac Oncol.* 2019;14(suppl 10):S6-S7.
- 21. Jiang H, Xiao M, Qi C, Cai S, Liu F. A novel oncogenic RET fusion variant in non-small cell lung cancer: RELCH-RET. *J Thorac Oncol*. 2020;15:e27-e28.
- 22. Fang P, Yan Z, Liu W, et al. Detection of a novel RET gene fusion in a non-small cell lung cancer patient using AMP chemistry. *J Thorac Oncol*. 2016;11:S21-S22.
- 23. Lee MS, Kim RN, I H, et al. Identification of a novel partner gene, KIAA1217, fused to RET: functional characterization and inhibitor sensitivity of two isoforms in lung adenocarcinoma. *Oncotarget*. 2016;7:36101-36114.

- 24. Gautschi O, Milia J, Filleron T, et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. *J Clin Oncol*. 2017;35:1403-1410.
- 25. Velcheti V, Thawani R, Khunger M, et al. FRMD4A/RET: A novel RET oncogenic fusion variant in non-small cell lung carcinoma. *J Thorac Oncol*. 2017;12:e15-e16.
- 26. Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. *Nat Med*. 2017;23:703-713.
- 27. Zhang X, Li Y, Liu C, et al. Identification of a novel *KIF13A-RET* fusion in lung adenocarcinoma by next-generation sequencing. *Lung Cancer*. 2018;118:27-29.
- 28. Velcheti V, Madison R, Alim SM, Schrock AB. WAC/RET: A novel RET oncogenic fusion variant in non-small cell lung carcinoma. *J Thorac Oncol*. 2018;13:e122-e123.
- 29. Peng P, Zheng Y, Lv J. TBC1D32-RET: A novel RET oncogenic fusion in lung adenocarcinoma. *J Thorac Oncol*. 2019;14:e7-e9.
- **30.** Liu X, Wei Y, Fan X, et al. The landscape of RET genomic alterations in Chinese non-small cell lung cancer patients. *J Thorac Oncol*. 2019;14:S556.
- **31.** Zhang K, Chen H, Wang Y, et al. Clinical characteristics and molecular patterns of RET-rearranged lung cancer in Chinese patients. *Oncol Res.* 2019;27:575-582.
- **32.** Rich TA, Reckamp KL, Chae YK, et al. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel cooccurring activating RET alterations and oncogenic signaling pathway aberrations. *Clin Cancer Res.* 2019;25:5832-5842.
- **33.** Lv Y, Ling F, Zhang J, et al. A novel intergenic LSM14A-RET fusion variant in a patient with lung adenocarcinoma. *J Thorac Oncol*. 2020;15:e52-e53.
- Lu C, Dong XR, Zhao J, et al. Association of genetic and immuno-characteristics with clinical outcomes in patients with RET-rearranged non-small cell lung cancer: a retrospective multicenter study. J Hematol Oncol. 2020;13:37.
- **35.** Xu H, Shen J, Xiang J, et al. Characterization of acquired receptor tyrosine-kinase fusions as mechanisms of resistance to EGFR tyrosine-kinase inhibitors. *Cancer Manag Res.* 2019;11:6343-6351.
- **36.** Ou SI, Zhu VW, Nagasaka M. Catalog of 5' Fusion Partners in ALK-Positive NSCLC Circa 2020. *JTO Clin Res Rep.* 2020;1:1-10.
- **37.** Staubitz JI, Musholt TJ, Schad A, et al. ANKRD26-RET A novel gene fusion involving RET in papillary thyroid carcinoma. *Cancer Genet*. 2019;238:10-17.
- **38.** Das TK, Cagan RL. KIF5B-RET oncoprotein signals through a multi-kinase signaling hub. *Cell Rep.* 2017;20:2368-2383.