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Abstract: The Landau theory of phase transitions predicts the presence of a negative capacitance in
ferroelectric materials based on a mean-field approach. While recent experimental results confirm
this prediction, the microscopic origin of negative capacitance in ferroelectrics is often debated.
This study provides a simple, physical explanation of the negative capacitance phenomenon—i.e.,
‘S’-shaped polarization vs. electric field curve—without having to invoke the Landau phenomenology.
The discussion is inspired by pedagogical models of ferroelectricity as often presented in classic
text-books such as the Feynman lectures on Physics and the Introduction of Solid State Physics by
Charles Kittel, which are routinely used to describe the quintessential ferroelectric phenomena
such as the Curie-Weiss law and the emergence of spontaneous polarization below the Curie
temperature. The model presented herein is overly simplified and ignores many of the complex
interactions in real ferroelectrics; however, this model reveals an important insight: The polarization
catastrophe phenomenon that is required to describe the onset of ferroelectricity naturally leads to the
thermodynamic instability that is negative capacitance. Considering the interaction of electric dipoles
and saturation of the dipole moments at large local electric fields we derive the full ‘S’-curve relating
the ferroelectric polarization and the electric field, in qualitative agreement with Landau theory.
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1. Introduction

Ferroelectric materials possess a spontaneous polarization that can be reversed by the application
of an electric field. Because of their unique properties, ferroelectrics have been considered for a wide
variety of applications ranging from infrared detection to non-volatile information storage. Recently,
the use of negative capacitance in ferroelectrics was proposed to overcome the fundamental limits of
power dissipation in integrated circuits [1]. However, this has led to a lot of debate on the origin and
feasibility of negative capacitance in ferroelectric materials. In particular, so far, most investigations on
negative capacitance have utilized the Landau theory of ferroelectric phase transitions without giving
an explanation from the microscopic point of view. This has often raised the question whether negative
capacitance is an unphysical, artificial construct for the convenience of the phenomenology of Landau
theory. The goal of this work is to show that negative capacitance naturally arises in ferroelectrics
based on an easily understandable, microscopic model.

The spontaneous polarization in a ferroelectric originates from its non-centrosymmetric crystal
structure, below the Curie-temperature TC, which leads to a permanent electric dipole moment, even
when no electric field is applied. For temperatures above TC, the material transitions into a paraelectric
phase, which has no spontaneous polarization. These ferroelectric phase transitions have been well
understood for more than 70 years based on Landau’s phenomenological theory of phase transitions [2].
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Landau’s theory takes a thermodynamic mean-field approach to analyze a phase transition based on
symmetry considerations only. Ferroelectrics were first described using the Landau framework in the
works of Ginzburg [3] and Devonshire [4] in the 1940s.

In these seminal works, the relationship between the ferroelectric polarization P and the electric
field E is given by an ‘S’-shaped curve, which is the result of a symmetric double-well free energy
landscape. Since this ‘S’-shaped P-E curve has a region of negative slope dP/dE < 0, it was originally
argued by Landauer, that ferroelectric should possess a negative capacitance, which could in principle
be stabilized (see Figure 1) [5]. However, in most other works at the time, this region of negative
slope was only described as "thermodynamically unstable" and therefore not accessible in experiments
(see Figure 2). Only recently, first experimental evidence of negative capacitance in ferroelectrics
has been reported [6–10]. However, since Landau’s framework presents a mean-field theory, which
explains the observed macroscopic phenomenon only, an intuitive microscopic understanding of the
origin of negative capacitance in ferroelectric materials is needed.

Figure 1. After the discovery of ferroelectricity in BaTiO3 in the 1940s, Landauer presented the ‘S’-curve
relation between P and E in 1957 [11]. Following that, a justification to why there is a possibility for a
stable solution with negative capacitances in the circuits appeared in 1976 [5].

(a) (b) (c)

Figure 2. (a) Plots of the normalized polarization vs. the normalized electric field based on the theory
developed by Devonshire and Slater from [12]. (b) Theoretical relation between the displacement
field and the electric field in BaTiO3 as shown in [11]. (c) Polarization vs. electric field relation as
described in [13].

Feynman presented a pedagogical approach to explain the microscopic origin of ferroelectricity
in his classic lectures on physics [14]. However, he did not discuss the resulting negative sign in the
polarization-electric field dependence, besides mentioning the presence of a polarization catastrophe
which leads to a runaway condition with the dipole moments increasing to infinity, which he described
as implausible. Kittel, on the other hand, presented a more mathematically rigorous model based on
the Clausius-Mossotti relation based on a similar initial framework [15].
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In contrast, most discussions in the field of negative capacitance have so far only utilized Landau’s
phenomenological mean-field framework and did not investigate the actual, microscopic origin of the
effect. Recently, in ref. [16], Wong and Salahuddin presented a model for the origin of the ‘S’-shaped
P-E curve of a ferroelectric unit cell based on dipole-dipole and dipole-electric field interactions.
This work also discusses the stabilization of a negative capacitor through a depolarization field caused
by reduced charge screening by adding a positive capacitance in series. Furthermore, ref. [17] presented
a new perspective on negative capacitance relating it to the microscopic mechanism for the onset of
the polarization catastrophe.

In the following, the simple pedagogical model proposed by Feynman is used to analyze the
behaviour of a ferroelectric material below the Curie-temperature. A mathematical model for the
relation between the electric dipole moment p and local electric field at the dipole Elocal is presented,
which reveals the microscopic origin of negative capacitance in ferroelectrics. This model is then
extended to qualitatively reproduce the ‘S’-shaped P-E curve and the double-well energy landscape
known from the phenomenological Landau mean-field theory [18].

2. Model Description

2.1. Feynman’s Pedagogical Model

Consider a one-dimensional model where each ferroelectric unit cell is modeled as an electric
dipole. Let the model be an infinite line of dipoles with dipole moment p equally spaced with a
lattice constant ‘a’. Since this model assumes an infinitely long lattice, each dipole has the same dipole
moment p and experiences the same electric field.

The dipole moment is dependent on the local electric field at the dipole. Elocal is the sum of the
applied electric field and the electric field due to all other dipoles in the system. When an electric field
Eapplied is present, the dipole moment of each dipole is given by the following relations.

p = αε0Elocal (1)

Elocal = Edipole + Eapplied (2)

Here, α is the linear polarizability of the material and ε0 is the permittivity of free space. From
electrostatics, the field due to a dipole at a distance r from its origin is given by Er =

1
4πε0

2p
a3 . Based on

the one-dimensional model, Edipole at each dipole is simply the sum of the fields due to all dipoles and
can be written as an infinite series.

Edipole = 2
1

4πε0

2p
a3

(
1 +

1
23 +

1
33 + ...

)
=

p
ε0

0.383
a3 (3)

This shows that Edipole is directly proportional to the dipole moment of the dipoles. To simplify
Equation (3), a structural factor ζ is introduced which depends on the geometry of the system. ζ

takes different values depending on the microscopic arrangement of the dipoles in the lattice. In the
discussion to follow, ζ is treated as a variable used for dimensional correctness. Therefore, we can write

Edipole = ζ p (4)

From Equations (1), (2) and (4), we then obtain

p =
αε0

1− αε0ζ
Eapplied (5)

In the Feynman model, the dipole moment p is proportional to the local electric field Elocal , which
in turn is dependent on p thereby resulting in a microscopic feedback loop. For positive values of α

and ζ, Equation (5) describes positive feedback.
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The dielectric susceptibility, χe is proportional to the rate of change of the dipole moment p with
respect the applied electric field Eapplied.

χe =
1
ε0

dp
dEapplied

=
α

1− αε0ζ
(6)

The polarizability α is generally inversely proportional to the absolute temperature T. Let TC be the
Curie temperature of the material. For T > TC, it follows that αε0ζ < 1 and χe is positive. The material
exhibits paraelectric behaviour. According to the Curie-Weiss Law, the electric susceptibility χe is
inversely proportional to (T − TC). The constant of proportionality C is the Curie constant.

χe =
C

T − TC
(7)

At the Curie temperature, 1
αε0

= ζ, leading to a singularity of χe. The interest of this study is in
the state of the system below TC. For T < TC, 1

αε0
< ζ which gives rise to a negative susceptibility.

Since the relative permittiviy for a ferroelectric can be approximated by εr = 1+ χe ≈ χe, this indicates
that ferroelectric materials intrinsically exhibit negative permittivity and thus negative capacitance.

A common misconception is that, in the negative capacitance region, the ferroelectric dipoles
are aligned in the direction opposite to that of the electric field, which would be a violation of the
fundamental laws of thermodynamics because the anti-parallel alignment corresponds to an energy
maximum. However, as Equation (1) shows, the dipole moments always points in the same direction
as the local electric field.

2.2. Relation between p and Eapplied

The Feynman model of ferroelectrics which we discussed so far would thus allow the system to
spontaneously polarize for even the smallest deviation of either p or Eapplied from zero. This is due to
the relation between p and E in Equation (1), describing a positive feedback loop. Indeed, from the
discussion so far, the polarization would increase to infinity without bound. Historically, this effect has
been called the polarization catastrophe, which is at the origin of the intrinsic negative susceptibility
derived here.

To explain why the polarization eventually saturates and does not diverge to infinity, we have to
introduce the polarizability as a non-linear function of the local electric field. In general, the application
of an electric field increases the distance between the positive and negative ions of a dipole, thus
increasing its dipole moment. However, the distance only increases until the attractive forces in the
bond between the opposite charged ions balance the force due to the local electric field. Let pmax

correspond to the saturation dipole moment and let Ecritical be the local electric field at which the dipole
moment starts to saturate. For simplicity, let us assume the following relation between p and Elocal .

p = pmax tanh

(
Elocal

Ecritical

)
(8)

For small values of Elocal , that is, when Elocal << Ecritical , p and Elocal are related linearly as in
Equation (1). Combining Equations (2), (4) and (8), the following expression is obtained.

p = pmax tanh

(
ζ p + Eapplied

Ecritical

)
(9)

Using the identity, tanh−1 = 1
2 log 1+x

1−x in Equation (9), we can then write

Eapplied = −ζ p +
Ecritical

2
log

1 + p/pmax

1− p/pmax
(10)
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As we have established before, the linear polarizability α is inversely proportional to the
temperature T. Let α = 1

σε0T , where σ is a positive constant and ζ = σTC. Equation (10) simplifies to
the following.

Eapplied

Ecritical
= −TC

T
p

pmax
+

1
2

log
1 + p/pmax

1− p/pmax
(11)

Several p-Eapplied curves for different temperatures T/TC are shown in Figure 3. The “S”-shaped
p-E curve is seen for T < TC indicating the presence of negative susceptibility. This is in qualitative
agreement with the polarization-electric field curves obtained from homogeneous Landau theory.
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Figure 3. Theoretical relationship between the dipole moment p and the applied electric field Eapplied
for different temperatures T normalized to the Curie-temperature TC according to Equation (11).

Using the Taylor expansion in Equation (10) in the limits, |Eapplied| < Ecritical and |p| < pmax,
we obtain

Eapplied = −ζ p + Ecritical

(
p

pmax
+

1
3

(
p

pmax

)3

+
1
5

(
p

pmax

)5

+ ...
)

=

(
Ecritical

pmax
− ζ

)
p +

(
Ecritical

3p3
max

)
p3 +

(
Ecritical

5p5
max

)
p5 + ...

(12)

We can now relate this expression for the microscopic dipole moments p to the macroscopic
polarization P, which is defined as the average dipole moment per unit volume V, i.e. P = p/V.
The well-known mean-field Landau formalism is given by Eapplied = a1P + a11P3 + a111P5, which
means that we can now identify the Landau-coefficients a1, a11 and a111 by comparison to Equation (12).
This yields a1 = V(Ecritical/pmax − ζ), a11 = V(Ecritical/3p3

max) and a111 = V(Ecritical/5p5
max).

In a next step, we can calculate the electrostatic potential energy U of one electric dipole, which
can be generally defined as U =

∫
Edp. When we integrate the applied field with respect to the dipole

moment p from Equation (11), the energy of the system can be written as follows.
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U =
Ecritical

2

[
−TC

T
p2

pmax
+ pmaxlog

(
1− p2/p2

max

)
+ plog

(
pmax + p
pmax − p

)]
(13)

Here the integration constant of the energy integral was set to zero. Figure 4 shows the energy
profiles at different temperatures. For T < TC, a double-well energy landscape emerges, indicating the
presence of two degenerate stable states corresponding to a spontaneous dipole moment.
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Figure 4. Theoretical relationship between the potential energy U normalized to pmax and Ecritical vs.
the dipole moment p for T/TC = 0.5, 0.6, 0.8, 1 and 1.4 using Equation (13).

As can be seen from Figure 4 for T/TC < 1, the unpolarized state at p/pmax = 0 is unstable,
leading to an increase in dipole moment even through thermal fluctuations and is bounded by the
saturation of the dipole moment for high electric fields. Negative capacitance in ferroelectrics thus
originates from the polarization catastrophe below TC, which leads to the emergence of the spontaneous
polarization itself.

3. Conclusions

An intuitive, microscopic description of the phenomenon of negative capacitance in ferroelectrics
has been presented. It was shown that a positive feedback mechanism operates to align the electric
dipole moments in the direction of the local electric field, which may also be in the direction opposite
to the applied electric field, leading to a negative capacitance without any violation of fundamental
thermodynamics. The positive feedback is set up because the electric field caused by the dipoles is
larger than the applied electric field. The spontaneous electric dipole moment is bounded by a negative
feedback loop due to attractive bonding forces in the atoms and the interaction with the electric field.
By assuming a non-linear relation between the dipole moment p and the local electric field Elocal such
that p saturates at large values of Elocal , the ‘S’-curve relating the polarization P and the applied electric
field Eapplied was derived. The same analysis leads to the double-well ferroelectric energy profile.

It needs to be noted that the model presented herein is a toy model in one dimension, and does not
represent any real ferroelectric material in three dimensions. As Feynman pointed out, having multiple
instances of such one-dimensional chains close by in parallel will actually lead to antiferroelectricity,
not ferroelectricity. An appropriate treatment of ferroelectrics negative capacitance in three dimensions
was presented in ref. [16]. However, even such a simplified, one dimensional model provides a
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powerful insight: The polarization catastrophe phenomenon that is required to describe displacement
type ferroelectrics naturally leads to a thermodynamically unstable, negative capacitance.

Furthermore, it is rather intriguing that the single domain picture as originally proposed [1]
and also utilized in this work plays a significant role in explaining negative capacitance in
ferroelectrics while experiments demonstrate the existence of this phenomena in multi-domain
materials. Ferroelectrics—even in the widely studied, archetypal ones in their cleanest and
highest quality, epitaxial forms—are indeed complicated materials; in fact, complexities therein
span multiple orders of length scale. For example, in ferroelectric-dielectric heterostructures, the
very same depolarizing field that stabilizes the otherwise unstable negative capacitance in the
ferroelectric causes it to decompose into complicated domain structures [8,9]. Even in such a
multi-domain scenario, negative capacitance states are experimentally observed in nanoscale regions
within the ferroelectric layer [8]. On the other hand, recent pulsed capacitance measurements of
ferroelectric-dielectric heterostructures have led to an experimental validation of the hysteresis-free
‘S’-shaped polarization-electric field relation in the ferroelectric [7,19,20]. This points to the fact that
our current understanding is not adequate in explaining the full spectrum of negative capacitance
phenomena. Furthermore, depolarization phenomena are of interest since they can limit the use of
ferroelectrics for memory applications by affecting the retention of the device, while the same physical
effect opens up opportunities for the design of negative capacitance devices [21]. While these topics are
beyond the scope of this work, an overview of the current status of negative capacitance transistors was
recently presented in ref. [22–24]. Furthermore, a detailed analysis of ferroelectric negative capacitance
phenomena in the multi-domain scenario has recently been presented in ref. [25], which interested
readers are encouraged to peruse through.

Besides the recent progress in the basic theoretical understanding of negative capacitance,
further investigations are necessary to prove that negative capacitance effects can also be utilized in
application-relevant ferroelectric materials based on HfO2 and ZrO2 [26,27]. In this relatively new
class of ferroelectrics, non-ideal effects like their polycrystalline morphology, crystal defects and charge
trapping phenomena might play an important role in the design and operation of practical negative
capacitance devices [28]. Therefore, future experimental and theoretical work should also focus on
moving from idealized ferroelectric model systems (e.g., epitaxial perovskite superlattices) towards
more application-relevant ferroelectric materials and devices.
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