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Objective: Major depressive disorder (MDD) is a psychiatric disorder with serious

negative health outcomes; however, there is no reliable method of diagnosis. This

study explored the clinical diagnostic value of the fractional amplitude of low-frequency

fluctuation (fALFF) based on the support vector machine (SVM) method for the diagnosis

of MDD.

Methods: A total of 198 first-episode MDD patients and 234 healthy controls were

involved in this study, and all participants underwent resting-state functional magnetic

resonance imaging (fMRI) scanning. Imaging data were analyzed with the fALFF and

SVM methods.

Results: Compared with the healthy controls, the first-episode MDD patients showed

higher fALFF in the left mid cingulum, right precuneus, and left superior frontal gyrus

(SFG). The increased fALFF in these three brain regions was positively correlated with

the executive control reaction time (ECRT), and the increased fALFF in the left mid

cingulum and left SFG was positively correlated with the 17-item Hamilton Rating Scale

for Depression (HRSD-17) scores. The SVM results showed that increased fALFF in the

left mid cingulum, right precuneus, and left SFG exhibited high diagnostic accuracy of

72.92% (315/432), 71.76% (310/432), and 73.84% (319/432), respectively. The highest

diagnostic accuracy of 76.39% (330/432) was demonstrated for the combination of

increased fALFF in the right precuneus and left SFG, along with a sensitivity of 84.34%

(167/198), and a specificity of 70.51% (165/234).
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Conclusion: Increased fALFF in the left mid cingulum, right precuneus, and left

SFG may serve as a neuroimaging marker for first-episode MDD. The use of the

increased fALFF in the right precuneus and left SFG in combination showed the best

diagnostic value.

Keywords: fractional amplitude of low-frequency fluctuation, first-episode major depressive disorder,

resting-state fMRI, support vector machine, imaging biomarker

INTRODUCTION

Major depressive disorder (MDD) is a severe psychiatric disorder
affecting more than 264 million people around the world (1)
and is characterized by cognitive and affective dysfunction.
Previous studies have revealed that MDD participates in some
mechanisms/pathophysiologies, such as genetics, environmental
factors, neuroendocrinology, inflammation, neuroplasticity, and
monoamines (2). All these molecular and cellular alterations
ultimately result in brain network structure and functional
network connectivity. Several studies have confirmed that MDD
is relevant to specific brain circuits or networks, such as the
default mode network (DMN) (3), affective-salience circuit (4),
and frontoparietal cognitive control circuit (5). Concomitantly,
abnormal brain circuits/networks have also been confirmed to
be related to the symptoms of MDD. Frontoparietal network
hypoconnectivity was found in MDD and was associated with
attention regulation (6). Major depressive disorder is related to
activity within the subcallosal cingulate cortex, an extensively
connected element of the limbic system that regulates feelings
of sadness (7). Major depressive disorder was also associated
with decreased connectivity between the ventromedial prefrontal
cortex and dorsal striatum, which correlated with motor speed
and psychomotor slowing (8).

With the rapid development of neuroimaging technology,
particularly resting-state functional magnetic resonance imaging
(fMRI), our understanding of MDD mechanisms may move
a step further. Due to its non-invasive characteristics, resting-
state fMRI has been widely used in the neuropathology
of neuropsychiatric disorders, such as autism (9), obsessive-
compulsive disorder (10), anxiety disorders (11), and MMD
(12). Resting-state fMRI relies on the spontaneous low-frequency
fluctuation in the blood oxygen level-dependent signal, which
could reflect the spontaneous activity of neurons (13). During
resting-state fMRI, subjects were asked to be awake and
quiet without conscious mental activity. Compared with task-
state fMRI, resting-state fMRI is more convenient for clinical
application. Several analysis methods of resting-state fMRI
have been widely used in the assessment of disease processes
and disease diagnostics, such as regional homogeneity (14),
voxel-based morphometry (15), network homogeneity (16),
voxel-mirrored homotopic (17), functional connectivity (18),
and mean-square successive difference (19). Although most
resting-state fMRI studies have confirmed correlations between
spatially different brain regions from functional integration, these
methods do not intuitively provide information on the amplitude
of brain activity in all brain regions. For instance, regional

homogeneity is employed mainly in the measurement of the
functional coherence of a given voxel with its nearest voxels
(20), and functional connectivity is used mainly for measuring
connections between brain areas or individual voxels within a
network (21, 22).

The fractional amplitude of low-frequency fluctuation
(fALFF) is frequently used for the brain function evaluation and
can be used to characterize spontaneous brain activity (23). Due
to the high temporal stability, fALFF was confirmed to have high
potential value as a diagnostic marker in a previous study (24).
Compared with amplitude of low-frequency fluctuation (ALFF)
analysis (the original approach), fALFF has fewer physiological
noise effects (25). Although the number of MDD studies using
fALFF is increasing; few studies have reported the combination
of fALFF and support vector machine (SVM) methods. The
SVM method is a multivariable pattern recognition technology
that can be used to analyze the data and detect patterns (26).
Meanwhile, the SVM is ideally suited for high-dimensional data,
with many more features than the number of samples, which
is often true of experiments. An optimal separating hyperplane
of the high-dimensional space can be confirmed via the SVM,
and the samples that are closest to the hyperplane are called
the support vector. In the fMRI analysis, a discrimination map
can be generated by superimposing the SVM weights back
onto the original brain space, so the most significant weights
can be visually traced back to the most discriminatory parts
of the brain (27). The SVM method has great potential to
provide clinically useful criteria for decision-making from such
high-dimensional neuroimaging data (28). In this study, we
investigated fALFF in first-episode MDD patients, screened
brain regions that showed altered fALFF, and discussed their
value as potential neuroimaging markers through the SVM
method. This study will contribute to the rapid and efficient
diagnosis of first-episode MDD.

METHODS

Subjects
One hundred ninety-eight right-handed first-episode MDD
patients were consecutively recruited from the Department of
Psychiatry, Tianyou Hospital Affiliated to Wuhan University of
Science and Technology. Two hundred thirty-four age-matched
(MDD patients: 28.01 ± 7.442, healthy controls: 27.87 ± 6.492)
and gender-matched (MDD patients: men/women = 102/96,
healthy controls: 130/104) right-handed healthy controls were
recruited from those who underwent a standard physical
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examination at the medical examination center of the Tianyou
Hospital Affiliated to Wuhan University of Science and
Technology. The diagnosis of depression was based on the
Diagnostic and Statistical Manual of Mental Disorders-Fourth
Edition (DSM-IV) criteria (29), and all the patients were
independently diagnosed by two experienced psychiatrists.
Depression severity was assessed by the 17-itemHamilton Rating
Scale for Depression (HRSD-17) score, and the patients had
a score of more than 18. In the process of clinician-rated
depression, the application of HRSD-17 was most prevalent.
Based on the HRSD-17, the severity of depression was divided
into four categories: <7 scores = normal people, 8–16
scores = mild depression, 17–23 scores = moderate depression,
and >24 scores = severe depression. The exclusion criteria
for patients were as follows: other Axis I disorders, such as
bipolar disorder, acute physical illness, schizophrenia, substance
abuse or dependence, substance-induced mood disorder, and a
history of head injury resulting in the loss of consciousness. The
healthy controls had no history of psychiatric disorders or severe
physical illness and no family history of psychiatric disorders.
All participants gave written informed consent before the study.
Our study was approved by the Medical Ethics Committee of the
Tianyou Hospital Affiliated to Wuhan University of Science and
Technology and performed in accordance with the Declaration
of Helsinki.

Behavioral Paradigms
The executive control function was assessed by the attentional
network test (ANT) (30). The stimulus signals of ANT visually
appear on a screen, and the subjects were required to correctly
and quickly identify the orientation in which a central target
arrow pointed. The reaction time (RT) of all the subjects was
recorded, and the executive control reaction time (ECRT) was
calculated by subtracting the consistent arrow direction RT from
the inconsistent arrow direction RT. A longer ECRT indicated
inferior executive control performance [the detailed steps were
excerpted from our previous study (31), and detailed information
can be found in the Supplementary Material].

Image Acquisition
All the resting-state MRI data were acquired on an Achieva
3.0T scanner (Philips, Amsterdam, the Netherlands) at the
Tianyou Hospital Affiliated to Wuhan University of Science and
Technology. All the participants were instructed to lie still and
stay awake with their eyes closed. The scanning parameters were
as follows: repetition time/echo time (TR/TE) 2,000/30ms; 31
slices; 90◦ flip angle; 220 × 220mm field of view; 5mm slice
thickness; and 1mm pitch [the detailed steps were excerpted
from our previous study (32), and detailed information can be
found in the Supplementary Material].

Data Preprocessing
Imaging data from the resting-state fMRI were preprocessed
using the DPARSF software in MATLAB (23). To reduce the
influence of participants’ adaption time and the instability of
the initial signal, the first five-time points were discarded.
Slice time and head motion were corrected. None of the

participants had more than 2mm of maximum displacement
in the x-, y-, or z-axis, or more than 2◦ of maximum rotation.
The corrected imaging data were spatially normalized to the
standard Montreal Neurological Institute space and resampled
with 1 × 1 × 1 mm3. Then, the obtained images were band-pass
filtered (0.01–0.08Hz) and linearly detrended. Several spurious
covariates were removed, such as the signal from a region
centered in the white matter and the signal from a ventricular
seed-based region of interest, as well as the six head-motion
parameters obtained by rigid body correction. The global signal
was retained during the processing of the resting-state functional
connectivity data [the detailed steps were excerpted from our
previous study (32), and detailed information can be found in
the Supplementary Material].

fALFF Analysis
The fALFF analysis was performed with REST software. The
fALFF values were calculated according to the previous study
(33). The time series for each voxel were transformed to
the frequency domain by using fast Fourier transform, and
the power spectrum was then computed and square root-
transformed at each voxel. The averaged square root was obtained
as the ALFF across 0.01–0.08Hz at each voxel. After that
ALFF was calculated, the sum of amplitudes across 0.01–0.08Hz
was divided by that across the entire frequency range, and
fALFF was acquired (detailed information can be found in the
Supplementary Material).

Classification Analysis
The SVM method was operated using the LIBSVM software
package in MATLAB and was applied to test the ability to
differentiate MDD from healthy controls using the extracted
fALFF values in abnormal brain regions. The best parameters,
C (penalty coefficient), and g (gamma) were selected, and the
LIBSVM tool was used to evaluate a grid of parameters. Through
the LIBSVM, all the parameter settings’ accuracies were acquired,
and then, the highest cross-validation accuracy of the parameters
was determined (detailed information can be found in the
Supplementary Material).

Statistics
The two-sample t-test was used to analyze the age, years of
education, HRSD-17, and ECRT between MDD patients and

TABLE 1 | The p-value for the gender distribution was obtained by the Chi-square

test.

Characteristics Patients (n = 198) HCs (n = 234) p-values

Gender (men/women) 198 (102/96) 234 (130/104) 0.401

Age, years 28.01 ± 7.442 27.87 ± 6.492 0.832

Years of education, years 12.05 ± 3.325 12.55 ± 2.931 0.100

HRSD-17 23.63 ± 2.547

ECRT (ms) 141.10 ± 49.400 84.11 ± 52.746 0.000

The other p-values were obtained by two sample t-tests. HC, healthy controls; ECRT,

executive control reaction time; HRSD-17, 17-item Hamilton rating scale for depression.
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healthy controls, and the Chi-squared test was used to analyze the
gender distributions using SPSS 22.0. Age, years of education, and
frame-wise displacement all were used as covariates. Spearman
correlation was used to detect any correlations between abnormal
fALFF and clinical variables. The significance level was set
at p < 0.05.

To identify the group differences, an analysis of covariance
was used on individual whole-brain fALFF maps of the two
groups in a voxel-by-voxel manner. The voxel-based mean
fALFF values were withdrawn from the abnormal values in brain
regions. The results were thresholded at p < 0.01, GRF-corrected
using cluster-extent based thresholding in REST with primary
threshold of p < 0.001.

RESULTS

Characteristics of the Subjects
A total of 198 first-episode MDD patients and 234 healthy
controls were involved in this research. The demographic and
clinical data of the participants are provided in Table 1. No
significant differences were observed in terms of age, sex, or
educational level. However, first-episode MDD patients had a
longer ECRT than healthy controls.

Group Differences in fALFF
The two-sample t-test was used to test significant differences
in fALFF values between first-episode MDD patients and
healthy controls. Patients showed significantly higher
fALFF in the left mid cingulum, right precuneus, and
left superior frontal gyrus (SFG) than healthy controls
(Figure 1; Table 2).

SVM Results
The increased fALFF values of these three brain regions (left
mid cingulum, right precuneus, and left SFG) in the first-
episode MDD patients were analyzed by the SVM method. The
classification accuracies were as follows: left mid cingulum =

72.9167% (315/432), right precuneus= 71.7593% (310/432), and
left SFG = 73.8426% (319/432). The increased fALFF in the left
SFG showed the highest diagnostic accuracy of 73.8426%, with
a sensitivity of 81.82% (162/198), and a specificity of 72.65%
(170/234) (Figure 2). Meanwhile, the SVM results showed that
a combination of increased fALFF in the right precuneus and
left SFG exhibited the highest accuracy of 76.3889% (330/432),
with a sensitivity of 84.34% (167/198), and a specificity of 70.51%
(165/234) (Figure 3).

Correlation of fALFF With Clinical Variables
As shown in Figure 4, increased fALFF values in the left
mid cingulum, right precuneus, and left SFG were positively
correlated with ECRT. The increased fALFF values in the left

TABLE 2 | Clusters with abnormal fractional amplitude of low-frequency

fluctuation in the patients with major depressive disorder.

Cluster location Peak (MNI) Number of voxels T-value

X Y Z

Left mid cingulum −24 −27 30 145 8.0602

Right precuneus 15 −48 21 235 8.5775

Left SFG −21 24 24 58 8.0042

MNI, Montreal neurological institute; SFG, superior frontal gyrus.

FIGURE 1 | Differences in fractional amplitude of low-frequency fluctuation (fALFF) values between first-episode major depressive disorder patients and healthy

controls. Increased fALFF values (left mid cingulum, right precuneus, and left superior frontal gyrus) were presented on the red color, and the color bar indicates the T

values of the group analysis. Left: transverse plane; Right: sagittal plane.
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FIGURE 2 | Visualization of classifications through support vector machine (SVM) using the increased fractional amplitude of low-frequency fluctuation (fALFF) values

in the left superior frontal gyrus (SFG) to discriminate the MDD patients from healthy controls. Left: SVM parameters result of 3D view. g means gamma, c means

penalty coefficient. Right: Classified map of the fALFF values in the left SFG. Blue circle means true value and the red asterisk means predict value.

FIGURE 3 | Depiction of classifications based on the support vector machine (SVM) method using a combination of fractional amplitude of low-frequency fluctuation

(fALFF) values in the right precuneus and left SFG to differentiate the first-episode major depressive disorder (MDD) patients from the healthy controls. Left: SVM

parameters result of 3D view. g means gamma, c means penalty coefficient. Right: dimension 1 and dimension 2 represent the fALFF values in the right precuneus

and left SFG, respectively. Green crosses represent the first-episode MDD patients, and the red crosses represent the healthy controls.

mid cingulum and left SFG were positively correlated with the
HRSD-17 scores (Figure 5).

DISCUSSION

The objective and rapid diagnosis of MDD have always been
a hot spot in clinical research; however, there are no objective
lab-based diagnostic methods for MDD, and its diagnosis still
depends on depression scales and subjective analysis. With the
development of brain imaging technology, fMRI research is
increasingly used to assist clinical diagnosis. To the best of our
knowledge, this study was the first to explore the utility of altered
fALFF values in the left mid-cingulum, right precuneus, and

left SFG as neuroimaging markers for the first-episode MDD,
combined with the SVMmethod.

The cingulum is a key component of the limbic lobe, and
it is a major interconnecting apparatus of all cerebral lobes
(34). It has been described as the “seat of dynamic vigilance
by which environmental experiences are endowed with an
emotional awareness” by Papez (35). Due to its cytoarchitectonic
characteristics and the distribution of receptors, the cingulate
gyrus is divided into four subregions, such as the anterior
cingulate cortex, middle cingulate cortex, posterior cingulate
cortex, and retrosplenial cortex (36). The middle cingulate cortex
has been implicated in negative affect and cognitive control (37)
and is mainly enrolled in the selection of responses according
to their motivational relevance (34). Moreover, several memory
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FIGURE 4 | Correlations between abnormal fractional amplitude of low-frequency fluctuation (fALFF) and executive control reaction time (ECRT). Left: Positive

correlation between the fALFF values in the left mid cingulum and ECRT; Mid: Positive correlation between the fALFF values in the right precuneus and ECRT; Right:

Positive correlation between the fALFF values in the left SFG and ECRT.

FIGURE 5 | Correlations between abnormal fractional amplitude of

low-frequency fluctuation (fALFF) and 17-item Hamilton Rating Scale for

Depression (HRSD-17) scores. Positive correlation between the fALFF values

in the left superior frontal gyrus and HRSD-17 scores.

task studies have shown evidence that the cingulum participates
in working memory (38), especially the mid cingulum. Although
the memory task was not included in the present study, similar
results were noticed. In our study, an ANT was performed
to evaluate executive control function, and first-episode MDD
patients showed longer ECRT than healthy controls. Consistent
with our study, Rao et al. (39) confirmed that the left mid
cingulum is closely related to attention networks, which also
modulate cognitive-linguistic conflict. Cerebral perfusion single-
photon emission computed tomography (40) revealed that the
number of depressive episodes was negatively correlated with
perfusion of the right anterior cingulum, and the depression
duration was negatively correlated with perfusion of the right
anterior cingulum. In our study, increased fALFF values of the
left mid cingulum were found in the patients with MDD, and
the altered fALFF values were positively correlated with ECRT.
As mentioned above, a longer ECRT indicated inferior executive

control performance, and thus we speculated that abnormal
fALFF in the left mid cingulum has a critical role in the executive
function of MDD.

The precuneus is one of the highest resting metabolic rates
of all brain structures and is located on the posteromedial
portion of the parietal lobe. As the precuneus is hidden
in the interhemispheric fissure and rarely damaged in brain
diseases such as ischemic stroke and accidents, this cortical area
has traditionally received little study. The precuneus, as the
functional core of the DMN, was one of the most important
findings of recent neuroimaging studies (41, 42). However, the
precuneus is closely related to the DMN, which is thought
to be tightly associated with MDD, we confirmed in our
present study that the precuneus is involved in the process
of MDD. Hermesdorf et al. (43) found that compared with
never-depressed controls, MDD patients showed lower voxel-
mirrored homotopic connectivity (VMHC) in the precuneus. In
the present study, we observed increased fALFF values in the
right precuneus, and the SVM results showed an accuracy of
71.7593% (310/432) to differentiate the first-episode MDD from
healthy controls. Although no correlation between fALFF and
HRSD-17 scores was found in our study, the increased fALFF of
the right precuneus was positively correlated with ECRT.

The SFG is an important functional region located in
the superior prefrontal cortex. Based on diffusion tensor
tractography, the SFG can be divided into three subregions:
the anteromedial SFG, dorsolateral SFG, and posterior SFG
(44). Remarkably, both the anteromedial SFG and dorsolateral
SFG were mainly correlated with the DMN (44), similar to
the precuneus. Meanwhile, the SFG also plays a critical role in
working memory, similar to the cingulum (45, 46). From all
the descriptions discussed above, it is not difficult to find that
there is a tight functional correlation among these three brain
regions (precuneus, cingulum, and SFG) in our study. Several
studies on the abnormal SFG in MDD have been reported;
for example, Xiong et al. (47) confirmed that altered left SFG
gyrificationmeans state-independent changes inMDD. Lebedeva
et al. (48) found that atrophy in the left SFG developed in parallel
with depressive symptoms. In the present study, we observed
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increased fALFF values in the left SFG, and the SVM results
showed an accuracy of 73.8426% (319/432) to differentiate the
first-episode MDD from healthy controls. However, a previous
study showed the opposite result, which suggested that decreased
fALFF in the left SFG may be a trait neuroimaging marker for
MDD (49). We hypothesized that the number of samples was the
key factor (only 14 MDD patients were enrolled in the previous
study). Our results showed increased fALFF values in the left
SFG, and the altered fALFF values were positively correlated
with the ECRT and HRSD-17 scores. Thus, our data suggested
that increased fALFF of the left SFG may contribute to the
pathophysiological processing of MDD.

Over recent years, neuroimaging markers have become an
intense focus of MDD diagnosis. Many neuroimaging studies
have been reported, such as brain volumetric MRI (50), diffusion
tensor imaging (51), and single-photon emission computed
tomography (52). However, the results of these studies are
inconsistent, and several factors, such as different study designs
and small sample sizes, may contribute to this inconsistency.
In this study, we collected a large sample size and chose
the SVM method, which has been widely used for computer-
aided diagnosis and prediction in disease diagnosis. Fractional
amplitude of low-frequency fluctuation is a common index
of resting-state fMRI, which is closely associated with the
pathophysiological mechanisms of MDD. By measuring the
abnormal fALFF values of MDD and first-degree relatives,
Song et al. (53) suggested that fALFF could be utilized as a
neuroimaging marker for monitoring MDD progression. Qiu
et al. (54) reported that after electroconvulsive therapy, MDD
patients showed obviously decreased fALFF. In our study, SVM
analysis showed that increased fALFF values in the left mid
cingulum, right precuneus, and left SFG could be used to
distinguish first-episode MDD patients from healthy controls,
and the combination of increased fALFF in the right precuneus
and left SFG exhibited the highest accuracy of 76.3889%
(330/432), with a sensitivity of 84.34% (167/198), and a specificity
of 70.51% (165/234).

Some limitations exist in our study. The influence of
physiological noises such as cardiac and respiratory rhythm
cannot be completely removed. Another limitation is the sample
source as all the subjects were recruited from the China’s
Hubei province.

CONCLUSION

In conclusion, the altered fALFF in the left mid cingulum, right
precuneus, and left SFG may be state-related changes of MDD.
And, the combination of increased fALFF in the right precuneus
and left SFG may be a potential neuroimaging marker for the
first-episode MDD.
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