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Background: Auditory event-related potentials (ERPs) have been utilized to study defective 
information processing of patients with schizophrenia. To delineate the pathophysiological 
processes from pre-psychotic state to first-episode psychosis, a study on subjects from 
ultra-high-risk (UHR) state to first-episode psychosis, ideally in an antipsychotic-free 
condition, can add important information to our understanding.

Methods: Patients with UHR state or at their first-episode psychosis (FEP) who were 
drug-naive or only have been temporarily treated with antipsychotics were assessed by 
auditory ERPs measurement, including P50/N100 (sensory gating) and duration mismatch 
negativity (MMN; deviance detection). A group of age-matched healthy subjects served 
as their controls.

Results: A total of 42 patients (23 UHR and 19 FEP) and 120 control subjects were 
recruited, including 21 pure drug-naive and 21 with very short exposure to antipsychotics. 
Collapsing FEP and UHR as a patient group, they exhibited significant sensory deficits 
manifested as larger P50 S2 amplitude, larger N100 ratio, and smaller N100 difference, and 
significantly less deviance detection response revealed by MMN. Such differences were 
less significant when treating FEP and UHR separately for comparisons. Comparisons 
of ERP results between drug-naive subjects and antipsychotic-short-exposure subjects 
revealed no significant difference in any P50/N100 and MMN parameter.

Conclusion: Our study is one of the few studies focused on drug-naive or minimally 
treated patients at pre- or early-psychotic states. Our results exhibited impaired 
performance in sensory gating and deviance detection shown by certain parameters. 
A longitudinal study with larger sample sizes will be helpful to provide more evidence to 
elucidate the role of antipsychotics on an individual’s neurophysiological performance at 
different stages of psychosis.

Keywords: event-related potentials, first-episode psychosis, mismatch negativity, N100, P50, schizophrenia, 
ultra-high risk
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INTRODUCTION

Neuroscience tools have been widely employed in schizophrenia 
research in recent decades (1–3). Neurobiological impairments 
precede the onset of a full clinical syndrome. Therefore, we can 
delineate psychopathological progresses by careful assessment 
throughout the pre-psychotic and early-psychotic states (4). 
Among the various neuroimaging methods, auditory event-
related potentials (ERPs) have been utilized to study normal versus 
defective information processing of neuropsychiatric disorders, 
such as schizophrenia (1, 3, 5). Successful processing of sensory 
inputs requires two kinds of ability: sensory gating, the ability to 
inhibit intrinsic responses to redundant stimuli, and deviance 
detection, the ability to facilitate responses to less frequent salient 
stimuli (6). Using ERP components as measuring instruments, 
P50/N100 suppression represents the extent of inhibitory failure 
(impaired sensory gating), while MMN (mismatch negativity) 
indicates the magnitude of impaired deviance detection. 
Both processes are thought to be “pre-attentive” (passive, not 
demanding on subject’s active attention) and have been found 
to be impaired in patients with schizophrenia (3, 5, 7). Evidence 
suggests that auditory P50, N100, and MMN could be candidate 
endophenotypes of schizophrenia with intermediate relationship 
to susceptible genes of schizophrenia (3, 6, 8), serve as potential 
biomarkers to specify the progress of illness (9–12), and even help 
to predict if a subject would convert to full-blown psychosis (13).

As most neurobiological studies of schizophrenia were 
conducted in chronic patients, the possible negative impact 
brought by long duration of illness and long-term use of 
antipsychotics on brain neurochemistry and possibly on brain 
morphology (14) could be confounders and make it difficult 
to interpret those neurobiological findings (15–17). Similarly, 
even though P50 suppression and MMN has been regarded as 
endophenotypes for schizophrenia (6, 18, 19), the findings of 
duration MMN deficits were absent in a few studies focused 
on subjects at their first-episode psychosis (FEP) (7, 20–23), 
as well as there are studies that failed to reveal P50/N100 
sensory gating deficits in this population (24, 25). However, in 
the studies including first-episode psychosis, whether patients 
were drug-free, continuing antipsychotics, or temporarily 
holding off antipsychotics was not all well controlled during 
assessment of ERPs. Ignoring such a difference in medication 
status may lead to confusing results (26), while administration 
of antipsychotics have been shown to influence ERP results, 
although the direction and extent of impact were diverse in 
different antipsychotics (27–32).

To circumvent the impact of long duration of illness and use of 
antipsychotics, examining subjects with drug naivety is an ideal 
approach. In schizophrenia research, attention has been directed 
towards the early state or even “pre-psychotic” state of full-blown 
psychosis. A lot of studies have been focused on this critical 
period, not only for identifying factors predicting conversion 
to psychosis or how to modify the trajectories of psychosis 
(33), but also for disentangling the complex pathogenesis 
of schizophrenia-related psychosis (34). The ultra-high risk 
(UHR), also known as late prodrome, model depicting a group 
of subjects who had subthreshold psychotic symptoms yet not 

developed full-blown psychosis (35), has been transformed into 
an attenuated psychosis syndrome in the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5), Section III, as a category 
in need of more investigations (36). Furthermore, theoretically, 
Keshavan et al. pushed the model back to the beginning in the 
course of psychosis and named an early prodromal state with non-
specific symptoms and/or basic symptoms as the “early/broadly 
defined at-risk mental states” (E-BARS) (37) to capture all possible 
features that happened during the formation of psychosis.

Our research team has started a prospective study on the 
psychopathological progress of the pre-psychotic state (the SOPRES 
study) in 2006 (38). We have recruited subjects at a gradient of 
clinical severities spanning from the E-BARS to UHR and FEP, 
together with a group of normal controls. Our ERP results of this 
cohort revealed a gradient of P50/N100 sensory-gating deficits 
across different levels of clinical severity (likely a state marker), 
while impaired deviance detection exhibited by duration MMNs 
was already detectable in people at pre-psychotic states and not 
much different from that in FEP (likely a trait marker) (39). But 
like most previous studies, the SOPRES did not control a patient’s 
medication status. In 2008, we initiated an open-label drug trial 
on UHR and first-episode psychosis, focused on those who were 
drug-naive or have only received a short period of antipsychotic 
treatment (40). The baseline assessment of this sample allows us 
to examine to what extent the auditory ERP components (P50/
MMN/N100) will be different between subjects with UHR state 
and patients at first-episode psychosis, spared from the influence of 
antipsychotics, and compared to a large group of healthy controls.

METHODS

Subjects
This study was approved by the Institutional Review Board of the 
National Taiwan University Hospital. Written informed consent 
was received from all participants, including written assent given 
by minors with informed consent from their parents. Subjects 
were those who participated in a 4-week open-label clinical trial 
using flexible dose of aripiprazole on patients with UHR state or 
at their first-episode psychosis between July 2008 and June 2016. 
Details of the clinical trial procedures have been addressed in our 
previous publication (40), and the definition of clinical cases is 
briefed below. The controls were recruited by responding to ads 
of various studies conducted by our schizophrenia research team 
with the prerequisite of having no lifetime or current psychiatric 
diagnosis or family history of psychotic disorders. Those who 
had a psychotic episode for more than 1 year, a mood episode, 
current use of psychoactive substance, a history of central 
nervous system illness or traumatic brain injury, an IQ below 70, 
and pregnancy were excluded from recruitment.

Definition of Clinical Cases
The FEP subjects were those who developed full-blown psychosis 
that met the Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition (DSM-IV) criteria for schizophrenia 
or schizophreniform disorder within the recent 1 year. The UHR 
subjects presented subthreshold psychotic symptoms meeting the 
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comprehensive assessment of at-risk mental status criteria (41) 
either with attenuated psychotic symptoms or with brief limited 
intermittent psychotic symptoms. Subjects have never received 
antipsychotic treatment before were designated as the “drug-naive” 
group. Subjects reported to have received a known antipsychotic or 
psychotropic agent that exerted an effect or adverse event very likely 
to be associated with antipsychotics for a total of less than 3 months 
were designated as the “antipsychotic-short-exposure” group.

The antipsychotic-short-exposure group was asked to remain 
antipsychotic-free for at least 1 week before baseline assessments. 
Patient’s clinical severity was assessed by a Mandarin version 
of the Positive and Negative Syndrome Scale (PANSS) for 
schizophrenia and received ERP studies at baseline and 4 weeks 
after completing treatment with aripiprazole. In this paper, we 
focused on their baseline ERP results that were not affected by 
antipsychotic treatment.

Testing Environment
Before ERP recording, audiometry testing was used to exclude 
subjects who could not detect 40-dB sound pressure level tones 
at 500, 1,000, and 6,000 Hz presented to either ear. The standard 
procedures for auditory P50/N100 and MMN paradigm were 
based on established protocols (42–45). The participants had not 
smoked for at least 1 h before sessions (46) and were asked to lie 
down in supine position in a comfortable recliner in a sound-
attenuating, electrically shielded booth and instructed to relax 
with his/her eyes open and to focus on a fixation point (P50 
and N100 session) or a cartoon running with no sound on the 
video monitor (MMN session). There were no tasks performed 
during the test. During the testing, electroencephalography 
and stimuli would be recorded continuously, and subjects 
were closely observed through a video monitor. They would be 
monitored visually and by electroencephalography (EEG) for 
signs of sleep or slow wave activity, which, if present, prompted 
the experimenter to speak briefly with the subject.

The EEG signals were recorded with a Quik-Cap 
(Compumedics Neuroscan, El Paso, TX, USA) from 32 scalp 
locations. According to the Quik-Cap website, all electrodes 
were placed according to the International 10–20 electrode 
placement standard. Electrodes placed at the tip of the nose and 
at Fpz served as the reference and ground, respectively. Four 
additional electrodes were located above and below the left eye 
and at the outer canthi of both eyes to monitor blinks and eye 
movements. All electrode impedances were kept below 5 kΩ 
prior to recording.

Stimuli Session and ERP Recording
The auditory stimuli were generated by a Neuroscan STIM 
system, and data were recorded on a Neuroscan ACQUIRE 
system (Compumedics Neuroscan, El Paso, TX, USA). Stimuli 
were digitized at a rate of 1 kHz, and an online band-pass filter at 
0.5–100 Hz, without 60-Hz notch filter, was applied. Auditory stimuli 
were presented to the subjects binaurally via foam insert earphones 
in two consecutive sessions, i.e., the session of paired-click paradigm 
for P50/N100 followed by the duration MMN session.

Online averaging was used to monitor the number of trials 
free from gross artifacts (defined as activities exceeding ±100  μV 
in the −100 to 500 ms time window following stimuli). Regarding 
the paired-click P50/N100 paradigm, paired auditory clicks (1 ms, 
85 dB) were presented every 8–12 s through the whole test session 
(average: 10 s), with a 500-ms interstimulus interval (47, 48). The 
paired-click P50/N100 session was terminated when a minimum of 
120 artifact-free trials had been obtained, which took about 30 min. 
For the duration MMN paradigm, pure tone stimuli (1 kHz, 85-dB 
SPL, 5-ms rise/fall) were generated by the Neuroscan STIM system. 
The auditory stimuli consisted of standard stimuli (90%, 50-ms 
duration) and deviant stimuli (10%, 100-ms duration) delivered in a 
pseudo-random order with the constraint that deviant stimuli could 
not be repeated back to back. The cartoon soundtrack was turned 
off and replaced by the experimental auditory stimuli that were 
presented at a fixed 500-ms onset-to-onset asynchrony. The MMN 
session was continued until a minimum of 225 artifact-free deviant 
trials had been collected online, which took approximately 30 min.

Offline Data Processing
Details regarding offline signal analysis, using Neuroscan Edit 
4.5 software (Compumedics Neuroscan, El Paso, TX, USA), were 
followed as our previous publications (39, 44, 49). All data were 
processed by researchers who were blind to the subject’s group 
(50). Semi-automated procedures using the Tool Command batch 
processing language (TCL) began with electrooculography (EOG) 
artifact reduction through a built-in pattern-recognition algorithm 
(51). For P50/N100, the data were epoched for the time window 
from −100 to 923 ms of the first click, covering both S1 and S2 in 
the same epoch. All epochs containing activities exceeding ±50 μV 
were excluded. To prevent temporal aliasing, epochs were averaged 
and digitally band-pass-filtered (10 to 50 Hz for P50, 1 to 50 Hz for 
N100) in the frequency domain. Trials with artifacts were manually 
rejected. By using preset intervals, peaks and preceding troughs were 
then automatically detected at the Cz electrode. The P50 peak was 
defined as the largest positive deflection between 45- and 75-ms 
poststimulus, and its amplitude was assessed as the difference 
between this peak and the preceding negative trough (not earlier 
than 30-ms poststimulus). The N100 component was identified as 
the most negative deflection within 80- to 150-ms poststimulus, 
and N100 amplitude was defined as the absolute difference between 
the N100 peak and the preceding positive trough. P50 and N100 
parameters included the S1 amplitude, S2 amplitude, amplitude 
difference (S1 − S2), and P50/N100 gating ratio (S2/S1). A maximum 
gating ratio of 2 was used to prevent outliers from disproportionately 
affecting the group means (39, 44, 52).

For duration MMN analysis, each subject’s continuous data 
file to 500-ms poststimulus. EEG responses to standard and 
deviant stimuli were separately averaged to create a standard 
ERP and a deviant ERP, and both were low-pass filtered at 20 Hz 
(0-phase shift and 24-dB/octave roll-off) to remove any residual 
high-frequency artifacts. MMN waveforms were generated 
by subtracting the standard ERP from the deviant ERP. MMN 
indices were measured as the mean voltage from 135 to 205 ms 
of the Fz electrode (18, 39, 53–55).
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Statistical Analysis
Statistical analyses were performed using SPSS v16.0 software (SPSS, 
Chicago, IL). For demographic characteristics and ERP parameters, 
the results are presented in means and standard deviations (±SD). 
Chi-square tests were used for categorical variables. Putting subjects 
with UHR state and first-episode psychosis together as a patient 
group, we compare control vs. patient group in demographics and 
ERP results. In addition, comparison between controls, UHR, and 
FEP groups with analysis of variance (ANOVA) was performed, 
and we also calculated comparison between control/drug-naive/
antipsychotic-short-exposure groups. All post hoc comparisons 
were made using the Scheffe test. Statistical significance was set at 
p < 0.05. Cohen’s d effect size was calculated for all ERP parameters.

RESULTS

A total of 42 patients (19 FEP and 23 UHR) and 120 control 
subjects were recruited. Among them, 21 patients endorsed pure 
drug naivety (7 FEP and 14 UHR), and the other 21 patients (12 
FEP and 9 UHR) have only been exposed to antipsychotics for 
no longer than 3 months. Indeed, the majority of these 21 short-
exposure patients took antipsychotics at a low dose level no longer 
than 4 weeks and they could endure a washout period of 1 week 
prior to receiving ERP assessment with no apparent worsening of 
symptoms. Both paired-click P50/N100 paradigm and duration 
MMN paradigm took about 30 min in duration. Although all 42 
patients had ERP recorded, 9 patients (3 UHR/6 FEP) could not 

finish the P50/N100 paradigm, while 8 patients (5 UHR/3 FEP) 
could not tolerate duration MMN paradigm, yielding the numbers 
of subjects with data available for further analysis to be 33 and 34 
for P50/N100 and MMN, respectively.

Demographic and Clinical Characteristics
In Table 1, UHR and FEP were treated collectively as a patient 
group to compare with the control group, while in Table 2, UHR 
and FEP were examined separately for any difference between 
these two groups. There were no statistical differences in age and 
gender when the patient group is compared to the control group, 
although the UHR group was significantly younger than the FEP 
group (23.64 ± 5.08 vs. 28.45 ± 8.33, p = 0.022). The controls had 
1.6 years more in education and reported much lower amount 
of smoking compared to the patient group, while there was no 
difference in these two variables between the UHR and FEP 
groups. In terms of clinical severity shown by PANSS scores, the 
UHR patients only exhibited lower scores in positive symptom 
subscales than the FEP patients (15.0 ± 2.9 vs. 19.4 ± 4.6, p < 
0.001), while their scores in negative symptoms and general 
symptoms subscales were comparable to each other.

Comparisons of Event-Related Potentials
Also presented in Table 1, the patient group had a smaller 
magnitude in MMN, a larger P50 S2 amplitude, a larger N100 
amplitude ratio, and a smaller N100 difference compared to 
the control group. However, as detailed in Table 2, the patient 

TABLE 1 | Demographics and ERP results of control and patient groups (SD in parentheses).a

Control Patients Statistics Effect size (Cohen’s d)

n = 120 n = 42
 Age 26.63 (5.09) 25.82 (7.08) 0.424
 Male gender (%)b 63 (52.5%) 21 (50%) χ2 = 0.08, p = 0.78 
 Education (years) 15.62 (1.88) 14.00 (2.51)  <0.001**
 Smoking PPD 0.03 (0.1) 0.15 (0.4) 0.035*
 PANSS
 Positive symptoms (P1 to P7) — 17.0 (4.3)
 Negative symptoms (N1 to N7) — 14.1 (5.9)
 General psychopathology (G1 to G16) — 35.3 (8.6)

MMN Fz −1.36 (0.81) −1.05 (0.78) 0.047* 0.39
P50
 S1 amplitude 2.44 (1.06) 2.53 (1.4) 0.679 0.07
 S2 amplitude 1.09 (0.64) 1.45 (0.84) 0.008** 0.48
 P50 ratio 0.51 (0.34) 0.63 (0.38) 0.075 0.33
 P50 difference 1.35 (1.07) 1.08 (1.39) 0.239 0.22
N100
 S1 amplitude 6.73 (3.27) 5.82 (2.95) 0.150 0.29
 S2 amplitude 2 (1.31) 2.46 (1.3) 0.073 0.35
 N100 ratio 0.36 (0.31) 0.51 (0.34) 0.017* 0.46
 N100 difference 4.73 (3.35) 3.36 (2.62) 0.030* 0.46

UHR, ultra-high-risk group; FEP, first-episode psychosis group. ERP, event-related potential. MMN, mismatch negativity.
aSome subjects failed to stay before the ERP session was terminated. The number of analyzable P50/N100 subjects was 20 UHR and 13 FEP. The number of analyzable MMN 
subjects was 18 UHR and 16 FEP.
bChi-square tests.
*p < 0.05.
**p < 0.01.
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group’s smaller amplitude of MMN was not so evident when 
pairwise comparisons were made between UHR and controls as well 
as between FEP and controls. Similarly, when UHR and FEP were 
compared to the control group separately, no significant difference 
could be found in P50 parameters. The only significant differences 
remained in N100-related parameters: the FEP had a significant 
lower amplitude in N100 S1 amplitude compared to the controls, 

and the UHR had a higher N100 S2 amplitude than the controls, 
while the larger N100 amplitude ratio became insignificant in both 
groups, but the N100 difference remained significantly smaller in 
the FEP group but not in the UHR group. Comparisons between 
control subjects and patients in P50 ratios, N100 differences and 
MMN values are shown in Figure 1. The average MMN waveforms 
are demonstrated in Figure 2.

TABLE 2 | Demographics and ERP results of three groups (SD in parentheses).a

Control UHR FEP Statistics

Post hoc Scheffe
p values

Effect size (Cohen’s d)

A (n = 120) B (n = 23) C (n = 19)
 Age 26.63 (5.09) 23.64 (5.08) 28.45 (8.33) A vs. B: 0.064

A vs. C: 0.417
B vs. C: 0.022*

 Male gender (%)b 63 (52.5%) 14 (60.9%) 7 (36.8%) χ2 = 2.48, p = 0.29
 Education (years) 15.62 (1.88) 13.74 (2.83) 14.32 (2.08) A vs. B: 0.000**

A vs. C: 0.040*
B vs. C: 0.6655

 Smoking PPD 0.03 (0.1) 0.15 (0.4) 0.16 (0.4) A vs. B: 0.044*
A vs. C: 0.057
B vs. C: 0.997

 PANSS
 Positive symptoms (P1 to P7) 15.0 (2.9) 19.4 (4.6) B vs. C: 0.001** 1.14
 Negative symptoms (N1 to N7) 14.2 (5.5) 14.0 (6.5) B vs. C: 0.923 0.03
 General symptoms (G1 to G16) 35.4 (8.4) 35.6 (9.1) B vs. C: 0.923 0.02
MMN Fz −1.36 (0.81) −0.99 (0.88) −1.11 (0.68) A vs. B: 0.195

A vs. C: 0.517
B vs. C: 0.905

0.44
0.33
0.15

P50
 S1 amplitude 2.44 (1.06) 2.83 (1.59) 2.07 (0.89) A vs. B: 0.366

A vs. C: 0.550
B vs. C: 0.180

0.07
0.38
0.59

 S2 amplitude 1.09 (0.64) 1.48 (0.8) 1.41 (0.93) A vs. B: 0.071
A vs. C: 0.280
B vs. C: 0.967

0.54
0.4

0.08
 P50 ratio 0.51 (0.34) 0.58 (0.34) 0.71 (0.42) A vs. B: 0.706

A vs. C: 0.139
B vs. C: 0.563

0.21
0.52
0.34

 P50 difference 1.35 (1.07) 1.35 (1.53) .66 (1.05) A vs. B: 1
A vs. C: 0.125
B vs. C: 0.242

0
0.65
0.52

N100
 S1 amplitude 6.73 (3.27) 6.84 (2.92) 4.25 (2.3) A vs. B: 0.991

A vs. C: 0.030*
B vs. C: 0.076

0.04
0.88
0.99

 S2 amplitude 2 (1.31) 2.81 (1.1) 1.93 (1.43) A vs. B: 0.037*
A vs. C: 0.982
B vs. C: 0.164

0.67
0.05
0.69

 N100 ratio 0.36 (0.31) 0.48 (0.29) 0.55 (0.41) A vs. B: 0.282
A vs. C: 0.118
B vs. C: 0.824

0.40
0.52
0.20

 N100 difference 4.73 (3.35) 4.02 (2.48) 2.33 (2.58) A vs. B: 0.657
A vs. C: 0.038*
B vs. C: 0.331

0.24
0.80
0.67

UHR, ultra-high-risk group; FEP, first-episode psychosis group.
aSome subjects failed to stay before the ERP session was terminated. The number of analyzable P50/N100 subjects was 20 UHR and 13 FEP. The number of analyzable MMN 
subjects was 18 UHR and 16 FEP.
bChi-square tests.
*p < 0.05.
**p < 0.01.
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A head-to-head comparison of ERP results between the drug-
naive subjects and the antipsychotic-short-exposure subjects is 
shown in Table 3. Apparently, there was no significant difference 
in any P50/N100 and MMN parameter between these two 
groups.

DISCUSSION

It is believed that clinical and cognitive deficits of psychosis 
may be due to dysfunction at the earlier stages of information 
processing (56). Bora and Murray’s meta-analysis highlighted that 
cognitive deficits are already established before the prodromal 

phases of psychosis (57), compatible with our previous publication 
regarding neurocognitive performance in different stages of pre- 
and early-psychotic states (58). Such neurocognitive disturbance 
might represent different components of auditory modality 
in sensory processing dysfunctions in schizophrenia, and our 
neurophysiological paradigms measuring “pre-attentive, passive” 
auditory ERPs in UHR and first-episode psychosis subjects can add 
valuable information to this field (59).

Although many studies of MMN were conducted on subjects 
with UHR states, only few have also measured P50/N100 in the 
same study (60). Also, several studies have included patients 
with first-episode psychosis and examined them separately 
from chronic schizophrenia, and most publications reported 

FIGURE 1 | P50 ratios (S2 amplitude/S1 amplitude) (A), N100 differences (μV; S2 amplitude − S1 amplitude) (B), and mismatch negativity (MMN) at electrode Fz 
(C) of individual participants between groups. The horizontal lines indicate the mean values within control vs. patient group, while the patient group consists of 
ultra-high-risk (UHR; oval) and first-episode psychosis (FEP; X) subjects. For P50 and N100, a larger ratio (S2/S1) and a smaller difference (S1 − S2) indicate poorer 
sensory gating. For MMN, a larger (less negative) value indicates poor deviance detection.
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auditory pre-attentive (passive) ERPs after the patients had 
been treated with antipsychotics. For example, Koshiyama et al. 
investigated duration vs. frequency MMN in 14 FEP patients, 
16 UHR individuals, and 16 healthy controls. They concluded 
that duration MMN is superior to frequency MMN as a trait 
marker in the early stages of psychosis, and a smaller duration 
MMN amplitude in early stages of psychosis may reflect altered 
developmental process rather than progressive brain pathology 
(61). However, most of their patients with either FEP or UHR 
have been treated with antipsychotic medication prior to the 
experiment, leaving a possible confounder in their interpretation 
of results.

As Haigh et al.’s meta-analysis of MMN in first-episode 
schizophrenia patients highlighted a need to conduct study on 
medication-naive individuals (26), our report is one of the few 

studies focused on P50/N100/duration MMN in drug-naive or 
minimally treated FEP and UHR patients. Consistent with our 
previous report when drug naivety was not strictly defined in 
that study population, a linear trend of more deviance from 
controls across different levels of clinical severity was noticed 
in P50 ratios (S2/S1) and N100 differences, even though the 
differences in P50 and N100 between control and clinical 
groups were not statistically significant (39). Specific to study 
on sensory gating adopting P50/N100 paradigms, our findings 
are in line with Shaikh et al.’s 36 unmedicated patients who 
met attenuated psychosis syndrome (equivalent to our UHR) 
and have already exhibited P50 sensory gating deficits at this 
pre-psychotic state (62). Similarly, Brockhaus-Dumke et al. 
found impaired P50 suppression (S2/S1 ratio) in all clinical 
severities (at risk, true prodromal, first episode, and chronic 

FIGURE 2 | (A) Demonstrated grand average MMN waveforms for healthy control subjects (in blue) and patients (in red). The arrows indicated the waveform 
reversed in polarity at the mastoid electrodes, which is typical for MMN. A close-up of grand average waveform at electrode Fz and A1 (mastoid) electrodes is 
shown in (B) and (C).
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schizophrenia), while impaired N100 suppression (S1  − S2 
difference) was also seen in all clinical groups except in the 
at-risk subjects (63); the latter is exactly the same with our 
finding. Specific to studies on MMN, our results are similar to 
Mondragon-Maya et al.’s (23) and During et al.’s (64) MMN and 
P3a studies, which revealed no impaired deviance detection 
ability among antipsychotic naive first-episode psychosis 
patients and individuals at clinical high risk for psychosis and 
control subjects.

In addition to verifying previous studies, we took a closer 
look into our findings. When UHR and FEP were compared 
to normal controls separately, the directions of changes of 
ERP parameters are of great interest. Based on the sensory 
gating failure theory, the patients are expected to reveal 
smaller S1 and larger S2 in P50 signals. This pattern could 
only be seen in our FEP subjects but not the UHR patients, 
while the latter exhibited larger, but not smaller, S1, together 
with larger S2. Although none of these findings reached 
statistical significance, our findings derived from subjects not 
confounded by antipsychotic medication might give a hint to 
understand the dynamic changes of sensory gating in patients 
with schizophrenia during the progress of their illness. Also, 

even though no difference in MMN could be detected when 
UHR and FEP were compared to normal controls separately, 
collectively as a patient group, their MMN deviance detection 
ability is lower than that of normal controls, also a finding not 
confounded by antipsychotics.

Two major limitations of the current study are worth 
noting. The relatively small sample size of the UHR (n = 
23) and FEP (n = 19) groups limits our statistical power to 
detect smaller differences between groups, such as dividing 
the pure drug-naive UHR and FEP from those who had short 
exposure to antipsychotics in either group, but we believe 
that the majority of our participants had limited impact by 
antipsychotic treatment, comprising a very valuable sample. 
Future studies recruiting a larger sample would be necessary 
to verify our findings. Second, none of our UHR patients 
converted to full-blown psychosis during a period of 4 weeks. 
We did not know how many of them would eventually develop 
psychosis after 1 or 2 years, while previous studies suggested 
that ERP performance of the converters were likely worse than 
that of the nonconverters (11, 13, 65).

In summary, our ERP results of antipsychotic-free 
subjects with UHR state and first-episode psychosis are 

TABLE 3 | ERP results of control/drug-naive/antipsychotic-short-exposure groups (SD in parentheses).a

Control (n = 120) Drug-naive (n = 21) Antipsychotic short 
exposure (n = 21)

Statistics

Post hoc Scheffe
p values

Effect size 
(Cohen’s d)

A B C
MMN Fz −1.36 (0.81) −1.08 (0.88) −1.00 (0.67) A vs. B: 0.396

A vs. C: 0.267
B vs. C: 0.967

0.34
0.45
0.10

P50
 S1 amplitude 2.44 (1.06) 2.77 (1.77) 2.33 (1.00) A vs. B: 0.572

A vs. C: 0.936
B vs. C: 0.551

0.29
0.10
0.31

 S2 amplitudeb 1.09 (0.64) 1.32 (0.56) 1.56 (1.02) A vs. B: 0.480
A vs. C: 0.027b

B vs. C: 0.600

0.36
0.67
0.28

 P50 ratio 0.51 (0.34) 0.54 (0.24) 0.71 (0.45) A vs. B: 0.942
A vs. C: 0.083
B vs. C: 0.402

0.09
0.56
0.46

 P50 difference 1.35 (1.07) 1.45 (1.51) 0.77 (1.23) A vs. B: 0.947
A vs. C: 0.141
B vs. C: 0.239

0.09
0.53
0.50

N100
 S1 amplitude 6.73 (3.27) 6.06 (3.01) 5.61 (2.96) A vs. B: 0.751

A vs. C: 0.391
B vs. C: 0.923

0.21
0.35
0.15

 S2 amplitude 2 (1.31) 2.64 (0.92) 2.32 (1.56) A vs. B: 0.209
A vs. C: 0.631
B vs. C: 0.783

0.50
0.24
0.24

 N100 ratio 0.36 (0.31) 0.50 (0.21) 0.52 (0.42) A vs. B: 0.270
A vs. C: 0.149
B vs. C: 0.989

0.47
0.49
0.06

 N100 difference 4.73 (3.35) 3.43 (2.40) 3.30 (2.86) A vs. B: 0.336
A vs. C: 0.214
B vs. C: 0.993

0.40
0.43
0.05

aSome subjects failed to stay before the ERP session was terminated. The number of analyzable P50/N100 subjects was 15 for drug-naive and 18 for antipsychotic short 
exposure. The number of analyzable MMN subjects was 18 for drug-naive and 16 for antipsychotic short exposure.
bPost hoc Scheffe test revealed significant differences between control and antipsychotic-short-exposure groups (p = 0.027).
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not much different from those studies that did not control 
antipsychotic medication status. Our drug-naive subjects 
showed no significant difference from their antipsychotic-
short-exposure counterparts as well. If this is true, it will be 
convenient to use this modality to measure patient’s sensory 
gating performance regardless of the impact of antipsychotics, 
at least at the pre- and early-psychotic states. Nonetheless, 
we will examine if there are differences in ERP performance 
between baseline and by the end of a 4-week exposure to 
antipsychotic treatment. A longer follow-up of prospective 
longitudinal study will be helpful to provide more evidence 
to elucidate the role of antipsychotic medication on an 
individual’s neurophysiological performance at different 
stages of psychosis.
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