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Background: Signal processing tools are required to efficiently analyze data

collected in body-surface-potential map (BSPM) recordings. A limited number

of such tools exist for studying persistent atrial fibrillation (persAF). We propose

two novel, spatiotemporal indices for processing BSPM data and test their

clinical applicability through a comparison with the recently proposed non-

dipolar component index (NDI) for prediction of single-procedure catheter

ablation (CA) success rate in persAF patients.

Methods: BSPM recordings were obtained with a 252-lead vest in 13 persAF

patients (8 men, 63 ± 8 years, 11 ± 13 months sustained AF duration) before

undergoing CA. Each recording was divided into seven 1-min segments of high

signal quality. Spatiotemporal ventricular activity (VA) cancellation was applied

to each segment to isolate atrial activity (AA). The two novel indices, called

error-ratio, normalized root-mean-square error (ERNRMSE) and error-ratio,

mean-absolute error (ERABSE), were calculated. These indices quantify the

capacity of a subset of BSPM vest electrodes to accurately represent the AA,

and AA dominant frequency (DF), respectively, on all BSPM electrodes over time,

compared to the optimal principal component analysis (PCA) representation.

The NDI, quantifying the fraction of energy retained after removal of the three

largest PCs, was also calculated. The two novel indices and the NDI were

statistically compared between patient groups based on single-procedure

clinical CA outcome. Finally, their predictive power for univariate CA

outcome classification was assessed using receiver operating characteristic

(ROC) analysis with cross-validation for a logistic regression classifier.

Results: Patient clinical outcomes were recorded 6 months following

procedures, and those who had an arrhythmia recurrence at least 2 months

post-CA were defined as having a negative outcome. Clinical outcome

information was available for 11 patients, 6 with arrhythmia recurrence.

Therefore, a total of 77 1-min AA-BSPM segments were available for

analysis. Significant differences were found in the values of the novel indices

and NDI between patients with arrhythmia recurrence post-ablation and those
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without. ROC analysis showed the best CA outcome predictive performance for

ERNRMSE (AUC = 0.77 ± 0.08, sensitivity = 76.2%, specificity = 84.8%).

Conclusion: Significant association was found between the novel indices and

CA success or failure. The novel index ERNRMSE additionally shows good

predictive power for single-procedure CA outcome.

KEYWORDS

atrial fibrillation, catheter ablation, body surface potential mapping, spatiotemporal
analysis, outcome stratification

1 Introduction

In contrast to the many studies that have analyzed the 12-

lead electrocardiogram (ECG) for the study of atrial fibrillation

(AF), relatively few have developed AF analysis tools for body-

surface potential map (BSPM) signals. Despite the development

of these 12-lead ECG based indices, to our knowledge, the use of

ECG for AF in clinical practice is still limited to its diagnosis

(Lankveld et al., 2014). The traditional 12-lead ECGwas designed

to capture mainly ventricular activity (VA), therefore, BSPM

signals could harbor additional information from the atrial

activity (AA) relevant for AF analysis.

Various studies have performed analyses of BSPM data for

the study of AF. For example (Bonizzi et al., 2010), applied

principal component analysis (PCA) to BSPM data and

proposed two novel parameters derived from the resulting

PCA mixing matrices to quantify complexity and stationarity

in BSPM recordings, finding a significant inverse correlation

between the two. It was additionally found that these

parameters formed clusters for organized vs. disorganized

AF, but no further clinical application was proposed by the

authors. The study in (Di Marco et al., 2012) proposed four

parameters to quantify spatial organization, variability, spectral

concentration, and spectral variability of BSPM signals. They

found that greater spatial organization was associated with

reduced variability of spatial organization over time, and

that lower spectral variability was associated with increased

spectral concentration. However, the clinical impact of the

parameters was not assessed. Later (Meo et al., 2018),

proposed the non-dipolar component index (NDI), which

was calculated as the residual variance not accounted for by

the first three principal components (PCs) of concatenated TQ

segments of BSPM signals. It was found that the NDI correlated

with AF complexity and AF termination at the end of catheter

ablation (CA) procedures. However, correlation with clinical

CA outcome was not reported, and the NDI leaves unexploited

the temporal variability of BSPM signals found to be indicative

of AF organization in (Bonizzi et al., 2010; Di Marco et al.,

2012). These parameters do however show promise for

capturing information from BSPM signals relevant for the

computational analysis of AF signals. Additionally, they are

all linked in that they use PCA in the computation of their

indices. However, insufficient attention has been paid to the

temporal aspect of the data, with most of the parameters using

concatenated TQ segments. While this method has merit as it

eliminates the possibility of interfering VA, it precludes a

temporal analysis, and we aim to address this with our novel

indices.

Despite the above research, the use of BSPM for persAF

treatment remains limited in clinical practice, and there are

not many tools available for its efficient analysis. Apart from

its use in electrocardiographic imaging (ECGI), the clinical

advantage of BSPM over 12-lead ECG signal analysis for AF

remains unclear. In this study, we draw on the above research

to propose two novel indices also employing PCA: error ratio,

normalized root-mean square error (ERNRMSE) and error

ratio, mean absolute error (ERABSE), which exploit

spatiotemporal information in BSPM recordings. The

indices make use of the full set of BSPM electrodes by

measuring how well only a subset of electrodes can

represent AA on all BSPM electrodes compared to the

optimal PCA-representation. The indices also encapsulate

the temporal variability of the AA using long-duration

BSPM recordings. We hypothesized that when subsets can

represent AA nearly as well as the optimal PCA-

representation, the AF is more organized and stable with

time, and thus more likely to respond well to CA

treatment. When the optimal PCA representation is much

better than the electrode subset representation, we

hypothesized that this could be indicative of a disorganized

AF that is more variable over time, manifested as greater

spatial variability in the recorded AA on the BSPM vest. In this

way, we aim to provide additional tools which efficiently

utilize the large amount of data incurred when working

with BSPM recordings and show their clinical relevance for

persAF disease quantification through correlation with and

prediction of single-procedure CA outcome. We first discuss

the study population and BSPM signal acquisition and pre-

processing. An overview of the novel indices and BSPM vest

electrode subset selection required for their calculation is then

given. The statistical cross-validation protocol used to

evaluate their clinical relevance is then presented. Finally,

the results, implications, and limitations of the study are

discussed.
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2 Methods

2.1 Study population

We studied a total of 13 patients admitted for CA of drug-

refractory persAF. Their baseline characteristics are reported in

Table 1. The CA endpoint was complete pulmonary vein

isolation (PVI). Electrical cardioversion was performed on

patients still in AF after PVI completion to restore sinus

rhythm (SR). Patients were then monitored throughout a

follow up period and divided into two groups: 1) SR and

arrhythmia recurrence (AR), according to whether they

experienced an AR within 6 months, but at least 2 months

after undergoing CA. The study protocol was approved by the

TABLE 1 Study population baseline characteristics.

n = 13

Sex (M/F) 8/5

Age, mean ± std, years 63 ± 8

Hypertension, n 6

Coronary artery disease, n 2

Heart Failure, n 3

Valvular Disease, n 3

Diabetes, n 2

Left ventricular ejection fraction, mean ± std, % 51 ± 13

Sustained AF duration, mean ± std, months 11 ± 13

std, standard deviation.

FIGURE 1
CardioInsight™ BSPM vest with 252 unipolar electrodes.
The reference electrode is not shown. (A) Anterior part of vest
with 126 electrodes. (B) Posterior part of vest with
126 electrodes.

FIGURE 2
Atrial activity extraction. In black, the original recorded signal
on vest lead 56, which corresponds to lead V1 of the standard 12-
lead ECG configuration. In red, the signal after spatiotemporal
QRST cancellation.
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Lausanne University Hospital Human Research Ethics

Committee, and all patients provided written informed consent.

2.2 BSPM signal acquisition and
preprocessing

BSPMs were recorded with a 252-lead vest (CardioInsight™,
Medtronic, MN, United States) at a sampling frequency of 1 kHz

in persAF patients the day before undergoing CA at Lausanne

University Hospital in Switzerland. A schematic of the vest is

shown in Figure 1. Mean signal recording duration was 17 ±

4 min. Electrode contact and signal quality varied considerably

over the course of the recording duration. Recordings were

therefore visually inspected, and 1-min segments with good

signal quality were extracted from the long duration

recordings for further analysis. Remaining leads with poor

signal quality were removed (up to 30 leads), and signals from

high quality leads were used to estimate BSPM signals at the

removed locations using interpolation. Recordings were then

processed for removing baseline drift and high frequency noise

(bandpass filter 1–30 Hz). R-peaks were detected and QRST

delineation was performed in each lead using an open source

ECG delineation toolbox (Pilia et al., 2021). In order to evaluate

BSPM signals free of ventricular interference and enable a

temporal analysis, the spatiotemporal method for QRST

cancellation was applied (Stridh and Sornmo, 2001). This

method, which operates on a single-beat, multi-lead basis, was

chosen due to its exploitation of multiple leads and its tested

performance (Langley et al., 2006). Clustering was applied to

QRST complexes across all leads, so that the complexes used in

each ensemble average had similar shapes. The extracted 1-min

atrial activity BSPM segments (AA-BSPM) devoid of VA were

then further normalized to have zero mean and unit variance,

and low-pass filtered by a 10th order Butterworth filter with a

cutoff frequency of 30 Hz to eliminate signal discontinuities

introduced by spatiotemporal VA cancellation. An example of

a BSPM signal before and after AA extraction is shown in

Figure 2.

The power spectral densities (PSD) of all AA-BSPM

segments were computed using a Welch periodogram (2-s

Hamming window with a 4,096 Fast Fourier transform per

window and 50% window overlap) to determine the body

surface distribution of the atrial DF. The DF was defined as

the highest peak in the power spectrum.

2.3 AA-BSPM reconstruction using a
subset of BSPM electrodes

The purpose of this section is to describe how only a subset of

vest electrode signals may be used to reconstruct the signals on all

vest electrodes, as this is an important concept in the

development of the novel indices ERNRMSE and ERABSE

(elaborated in Section 2.5). Each AA-BSPM segment may be

represented by amatrixX ∈ Rm×n, withm consecutive samples in

the rows, and n synchronously recorded signals in the columns,

one from each BSPM vest electrode. Given an arbitrary subset of

signals recorded on k vest electrodes, S ∈ Rm×k, k < n, the

minimum least-squares transformation of the subset matrix S

to approximate the full BSPM signal matrix X is given by:

argmin
A

‖X − SA‖2F (1)

whose known solution is A = S+X, where (·)+ and ‖ ·‖F denote the
Moore-Penrose pseudoinverse and the Frobenius norm of a

matrix, respectively. Then, to represent the full BSPM signal

matrix X as accurately as possible, one should aim to find a subset

S of vest electrode signals such that the AA-BSPM segment X is

best represented by S, most commonly in terms of the Frobenius

norm:

argmin
S

‖X − SS+X‖2F (2)

Finding the subset S is thought to be an NP-hard problem, with

(nk) solutions, (Civril, 2014; Altschuler et al., 2016). Therefore,

finding the optimal solution would involve searching the (nk)
solutions, which for n and k of reasonable size is not feasible. The

goal for electrode subset selection is then to find good, but not

necessarily optimal subsets, and this will be discussed in the next

section. An upper limit on the performance of a subset of k

electrode signals for reconstructing the signals on all n electrodes

is given by reconstruction using the first k principal components

(PCs), since the explicit goal of PCA is to minimize the Frobenius

reconstruction criterion. The PCs may be obtained efficiently by

singular value decomposition (SVD) of X, X = UΣVT. The first k

PCs are the columns of the matrix UkΣk, where Uk contains the

first k columns of U, and Σk contains the k × k upper-left portion

of Σ. The corresponding rank-k reconstruction of X is given by:

Xk � UkΣkV
T
k (3)

where Vk contains the first k columns of V. Then the minimum

approximation error ‖X − Q‖2F which can be attained by an

arbitrary rank-k matrix is achieved when Q = Xk. Note that

each PC is a linear combination of the signals on all n electrodes

of X. Therefore, the rank-k PCA solution Xk is distinct from

reconstruction using a subset S of k vest electrode signals and

serves only as an upper bound to compare how well a given S

captures the information on all BSPM electrodes.

2.4 Electrode subset selection and
comparison

The purpose of this section is to describe the different subsets

of vest electrodes we used for the calculation of the novel indices
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ERNRMSE and ERABSE, which will be elaborated in the next

section. We also describe the characterization of the vest

electrode subsets in terms of their capacity to accurately

represent AA-BSPM signal information on all vest electrodes

and compare this to the optimal PCA representation, as this is an

important concept for the understanding of the novel indices.

1) Sequential: This algorithm was first proposed by (Lux

et al., 1978) and later used by (Guillem et al., 2008, 2009) for

selecting electrode subsets from a wider array of body vest

electrodes. As its name suggests, this sequential approach

greedily chooses electrodes one after the other, at each step

picking the column containing the electrode signal which

minimizes the reconstruction error, i.e., Eq. 2. This algorithm

is in no way guaranteed to be optimal, since at each step it only

considers that one additional electrode must be selected, rather

than considering the entire subset. However, it can be relatively

efficient (Farahat et al., 2011; Altschuler et al., 2016) and in

general has had good performance for electrode selection.

Therefore, it was chosen for use in this study. We call SEQk

the subset of k vest electrodes (columns) chosen sequentially

from the BSPM signal matrix X, for k = 8 : 30 electrodes. The

lower limit of k = 8 electrodes was chosen to equal the number of

independent leads used in the standard ECG, and the upper limit

of k = 30 electrodes was chosen as a result of suggestions that

roughly 30 electrodes are necessary to accurately represent AA in

AF (Guillem et al., 2009).

2) Standard ECG: A subset of BSPM vest electrodes closest to

the positions of the six precordial leads plus two limb leads used

in the standard 12-lead ECG was extracted. We refer to this

subset, which contains eight electrodes, as ECG8.

3) Augmented ECG: Additionally, there have been

suggestions that posterior electrodes may be desirable to better

capture left atrial activity in AF. Therefore, a subset of vest

electrodes closest to the augmented ECG suggested in (Petrutiu

et al., 2009) consisting of the eight electrodes in the ECG8 subset

plus three posterior electrodes, V8, V9, and V10 in the same

horizontal plane as V6, was tested. We refer to this subset, which

contains 11 electrodes, as ECG11.

Subsets were compared regarding how well they could

represent the full BSPM signal matrix as follows. SEQ8:30,

ECG8, ECG11, and PCA8:30 subset reconstructions were

calculated for 5-s windows of each AA-BSPM segment. Given

X̂ the reconstruction (Eq. 2) and X the full BSPM signal matrix

for a window, two error measures were calculated and averaged

over all windows in a segment. The first was the normalized root-

mean square reconstruction error (NRMSE), given by:

NRMSE � ‖ X − X̂‖F
‖ X‖F (4)

The second was the mean absolute difference (ABSE) across

all electrodes between the atrial DF on each vest electrode signal

of X and X̂, where the DF was obtained as described at the end of

the previous section:

ABSE � 1
L
∑
l�L

l�1
|DF X : , l( )( ) −DF X̂ : , l( )( )| (5)

where L = 252 vest electrodes in our case. The above measures

were calculated on 5-s windows of the 1-min AA-BSPM

segments extracted from each patient and then averaged over

all windows, for X̂ found for the ECG8, ECG11, and SEQ8:30

subsets determined for each window. Finally, for comparison, the

above measures were calculated for X̂ � Xk, the rank-k PCA

reconstruction as described in Eq. 3 for k = 8 : 30.

2.5 Novel spatiotemporal indices ERNRMSE
and ERABSE

The purpose of this section is to combine the concepts

discussed in Sections 2.3, 2.4 to introduce the novel indices

ERNRMSE and ERABSE. These indices quantify the capacity of a

subset of BSPM vest electrodes to accurately represent the AA,

and the atrial DF, respectively, on all BSPM electrodes over time,

compared to the optimal PCA representation of the same rank as

the electrode subset.

For the calculation of the indices, the 1-min AA-BSPM

segments were divided into windows of 5-s as in Section 2.4.

The SEQ8 and SEQ11 subsets were obtained for the first

window, and reconstructions were obtained on subsequent

windows using these subsets and the corresponding matrices

A from Eq. 1 determined for the first window. Concretely, for

the first 5-s window, the solution to Eq. 1 is A1 � S1kX
1, where

X1 is the full BSPM signal matrix for the first window, and S1k
contains the signals on a subset of k vest electrodes. The

reconstruction for the ith window Xi is given by X̂
i � SikA

1,

where Sik contains the signals of X
i on the SEQ8/SEQ11 subset

electrodes determined for the first 5-s window X1, or the

ECG8/ECG11 subset electrodes. In addition, the

optimal rank-k (k = 8, 11) PCA reconstruction for each

window, Xi
k, was determined as previously described,

using the first k PCs, which we refer to as PCAk. Then, the

first index, ERNRMSE, is given by the ratio of the reconstruction

error obtained using SEQ8, SEQ11, ECG8, or ECG11, and the

optimal same-rank reconstruction obtained with PCA8 or

PCA11:

ERNRMSEi �
‖ Xi − X̂

i‖F
‖ Xi −Xi

k‖F
(6)

The second index, ERABSE, is given by the ratio of the mean-

absolute error between the atrial DFs extracted on each electrode

of the subset vs. PCA reconstructions:
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ERABSEi � ∑l�L
l�1 |DF Xi : , l( )( ) −DF(X̂i

: , l( ))
∑l�L

l�1 |DF Xi : , l( )( ) −DF Xi
k : , l( )( )

(7)

The above indices were calculated on each 5-s window following

the first window of the 1-min AA-BSPM segments, then averaged

across all windows, for one value per 1-min AA-BSPM segment.

We chose to calculate these indices for the SEQ8 and SEQ11

subsets to allow a direct comparison with the standard and

augmented ECG subsets, ECG8 and ECG11.

We hypothesized more organized, easier to treat forms of AF

should have lower error ratios (ER), indicating stability in the AF

dynamics between windows. This is because for lower ERs, the

subset of electrodes chosen for the first window and A1 permit a

reconstruction of the ithwindow that is closer to the optimal PCA

reconstruction of the same rank. As a comparison to another

BSPM index utilizing PCA for AF analysis, we calculated the NDI

proposed by (Meo et al., 2018), which was found to be useful for

quantifying AF complexity, choosing patients eligible for AF

ablation and assessing therapy impact. The NDI was calculated as

the residual variance not accounted for by the first three PCs of

each AA-BSPM window. Note also that this index uses only PCA

and therefore is not dependent on any particular subset of

electrodes.

2.6 Performance metrics and statistical
analysis

The purpose of this section is to describe how the different

electrode subsets introduced in Section 2.4 were compared in

terms of their capacity to accurately represent AA-BSPM signal

information on all vest electrodes compared to the optimal PCA

representation. We also describe the methods used to quantify

the relationship between the indices ERNRMSE, ERABSE and NDI,

and single-procedure CA success rate.

Calculated values of continuous parameters are expressed as

mean ± standard deviation. The statistical distributions of all

parameters were checked using a Lilliefors test. Statistical inter-

group differences were calculated as mean p-values across 3-folds,

with 20% of the parameter values left out of each fold. One-way

analysis of variance (ANOVA) was used for normally distributed

data, or Wilcoxon’s rank sum test was used for non-normally

distributed data. Statistical tests were performed across folds to

reduce the likelihood of chance group differences due to a small data

set, and statistical significance was considered for p-values less than

0.05. For comparing the different electrode subsets in terms of their

capacity to accurately represent AA-BSPM segments, we checked for

statistical differences of the NRMSE and ABSE parameters

calculated using the different electrode subsets (SEQk, ECG8,

ECG11), or using the corresponding number of PCs (PCAk). For

comparing the relationships between single-procedure CA outcome

and ERNRMSE, ERABSE, and NDI, we checked for statistical

differences between these indices calculated for AA-BSPM

segments associated with AR and SR outcome groups.

For indices ERNRMSE, ERABSE, and NDI displaying statistically

significant differences between groups, univariate logistic

regression classifiers were used to test their predictive power for

single-procedure CA outcome. We used group-wise 3-fold cross-

validation (CV) to ensure that indices calculated from different

AA-BSPM segments of the same patient were only assigned to

either the train or test set (80/20) for each fold. The resulting

receiver operating curves (ROC) were analyzed to obtain area

under the curve (AUC) to compare the predictive power of each

index. We reported the AUC for AA-BSPM segment-wise

classification as mean ± standard deviation over all CV folds,

and the sensitivity and specificity were reported for the optimal

classification threshold value determined through ROC analysis.

The sensitivity and specificity were the fraction of true positive and

true negative cases correctly identified, respectively, where AR was

considered a positive case, and SR was considered a negative case.

3 Results

3.1 Study population

At the time of this study, clinical outcome information was

available for 11 patients, six of whom experienced an AR (55%)

(3.4 ± 0.9 months post-CA). Therefore, only BSPM data from

11 patients were available for the part of the study associating the

novel indices to CA outcome. Patients experiencing an AR were

offered repeat procedures, however, in this study, only signals

recorded prior to the first procedure and associated clinical

outcomes were analyzed. Seven high quality 1-min AA-BSPM

segments were extracted from the long duration BSPM

recordings of each patient. Therefore, 91 1-min AA-BSPM

segments were available for the analysis with results described

in Section 3.2, and 77 AA-BSPM segments for the results

described in Sections 3.3, 3.4, with each segment associated

with an SR or AR outcome.

3.2 AA-BSPM reconstruction with BSPM
electrode subsets

A representation of the spatial distributions of the SEQ8,

SEQ11, ECG8, and ECG11 subsets used for AA-BSPM

reconstruction is shown in Figure 3. For each subset type, the

color of each electrode represents its occurrence in all the subsets

used to calculate NRMSE and ABSE, that is, in what ratio of the

tested subsets the electrode was included. It can be seen in Figures

3A,B, that for SEQ subsets, both anterior and posterior electrodes

were included in the subsets, with certain torso regions (upper

and lower) being less represented in the subsets, while the mid-

section regions were in general more represented. For the ECG
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subsets, the same subset of electrodes was applied to each 5-s

window of AA-BSPM data, as seen in Figures 3C,D.

The similarity between reconstructed and original BSPM

signals is shown in Figure 4. A 5-s window of a signal

recorded on vest lead 57, close to the position of precordial

lead V1, as well as its optimal least-squares reconstructions using

the ECG8 and SEQ8 subsets associated with the window and its

PCA8 reconstruction are demonstrated in Figure 4A. It can be

seen that morphological characteristics of the signal were mostly

captured in the reconstructed signals, however, the amplitude of

the recorded signal was not perfectly reconstructed. The power

spectral densities of the original and reconstructed signals are

shown in Figure 4B. It can be seen that the DF was correctly

captured on this electrode. The NRMSE and ABSE as a function

of number of electrodes included in the subsets are shown in

Figures 4C,D, taken as a mean across all patients, with error bars

representing the 95% confidence interval. In addition, the PCAk

reconstruction obtained for k PCs equaling the number of

electrodes is shown. As expected, reconstructions using ECG8

and ECG11 subsets had higher NRMSE and ABSE values than

reconstructions using SEQ8 and SEQ11, and this difference was

statistically significant (p < 0.01). In addition, it can be seen that

PCAk reconstruction consistently performed better than SEQk

reconstruction, and this difference was also statistically

significant for k = 8 : 30, (p < 0.01). An example showing the

DF of each electrode for original recorded AA-BSPM and AA-

BSPM using ECG8, SEQ8, and PCA8 reconstruction is shown in

the Supplementary Materials, where it can be seen that spatial

differences in the original DFs at different parts of torso were

mostly captured by SEQ8 and PCA8 reconstruction, and to a

lesser extent by ECG8 reconstruction.

3.3 BSPM AF spatiotemporal indices and
CA outcome

For the analysis of ERNRMSE and ERABSE, only the indices

calculated using SEQ8, SEQ11, PCA8, and PCA11 were used, to

FIGURE 3
Occurrence of each electrode in the (A) SEQ8, (B) SEQ11, (C) ECG8, and (D) ECG11 subsets. The color of each electrode indicates its occurrence
in all of the subsets used to calculate reconstruction performance measures, where, for example, one indicates the electrode was present in every
subset tested, and 0.1 indicates the electrode was present in 10% of subsets.
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allow for comparison with ECG8 and ECG11. Shown in

Figure 5 are the (A) ERNRMSE, (B) ERABSE, and (C) NDI

values according to CA outcome. The associated mean ±

standard deviation values of the indices are shown in

Table 2. There was a statistically significant difference in

the NDI value between the SR and AR groups, with NDI

greater in the SR group. Greater ERNRMSE values were

associated with AR following single-procedure CA, while

lower ERNRMSE values were associated with SR, for all

electrode subsets tested. Finally, for ERABSE, greater values

were again observed for AR than SR, with statistical

significance only for the ECG8 and SEQ11 subsets.

3.4 Predictive power of spatiotemporal
indices for single-procedure CA outcome
classification

A summary of the ROC analysis of the NDI, ERNRMSE, and

ERABSE parameters for prediction of CA outcome is shown in

Table 3. Note that sensitivity and specificity values are shown

for segment-wise classification. It can be seen that ERNRMSE

displayed the most consistent performance across folds and

electrode subsets, with AUC = 0.77 ± 0.08, sensitivity = 76.2%,

and specificity = 84.8% for ERNRMSE calculated with the SEQ11

electrode subset. Despite the associations between NDI and

ERABSE and CA outcome, the predictive performances of these

indices were not as consistent as for ERNRMSE. The ROC

curves associated with ERNRMSE calculated for each subset

are shown in Figure 6. The ROC curves associated with NDI

and ERABSE (for statistically significant subsets) are shown in

the Supplementary Materials.

To further test the efficacy of ERNRMSE, we repeated the

statistical comparison and predictive performance analysis for

SEQ subsets with 8–30 electrodes, to see whether performance

changed for different numbers of electrodes included in the

SEQ subset. The results are shown in Figures 7, 8. It can be

seen in Figure 7A that the ERNRMSE was greater in the AR

group than SR group when calculated with all SEQ8:30 subsets.

However, this difference was only statistically significant for

ERNRMSE calculated with SEQ8:24 subsets, as shown in

Figure 7B, with the p-values from significance testing

transformed as −log10(p)
max(−log10(p)) to allow for a graphical

representation. In Figure 8 are shown AUC values

associated with the ROC analysis of the ERNRMSE calculated

with SEQ8:30 subsets. It can be seen that the AUC increased,

FIGURE 4
Atrial activity reconstruction. (A) A 5-s window of the original recorded (in grey) and reconstructed signals, for vest electrode 57, close to V1.
Reconstruction with the ECG8 subset (green), SEQ8 subset (blue), and PCA8 (orange). (B) The corresponding power spectral densities (PSD) of the
original recorded and reconstructed signals. (C)Normalized root-mean square reconstruction error (NRMSE), and (D)mean absolute error (ABSE), as
a function of number of principal components or vest electrodes used in subset for reconstruction.
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and variance of the AUC decreased, for up to

15 electrodes included in the SEQ subset. For more than

15 electrodes, the AUC generally decreased, and variance of

the AUC increased.

4 Discussion

In this study, we developed two novel, fully spatiotemporal

indices for the efficient processing of long-duration BSPM signals

collected from patients with persAF. The use of spatiotemporal

ventricular activity cancellation rather than short,

nonconsecutive TQ segments allowed the incorporation of a

temporal component in the analysis. By combining PCA and the

temporal component, a true spatiotemporal characterization was

achieved. To the best of our knowledge, this is the first study to

propose indices exploiting temporal irregularity in long-duration

BSPM recordings for persAF analysis, with a view to predicting

AR following single procedure CA. The selection of which

electrodes to use for the calculation of the novel indices can

be automatically performed using the sequential subset selection

method, or can be adapted for different subsets of electrodes,

such as the standard or augmented ECG lead configurations.

Finally, in our study, we have investigated the relationship

between the proposed novel indices and their correlation with

and predictive power for CA outcome. We found that a mean

AUC of up to 0.8 may be achieved for predicting arrhythmia

recurrence in persAF patients who underwent single-procedure

CA for the novel index ERNRMSE.

4.1 Electrode subset capacity to represent
AA-BSPM

PCA-based indices have been used extensively in ECG signal

processing (Castells et al., 2007), with applications including

extraction of atrial fibrillatory waves, quantification of AF spatial

complexity and organization, and efficient analysis of BSPMdata.

In this study, we have included a framework for understanding

how PCA-based reconstruction of AA-BSPM signals compares

to reconstruction using a subset of vest electrode signals. The use

of vest electrode reconstruction was based on previous studies,

which have demonstrated that the full BSPM signal matrix may

be projected onto a smaller matrix containing only a subset of

BSPM vest electrode signals (Lux et al., 1978; Guillem et al., 2008,

2009; Feng et al., 2019). The resulting reconstruction error

between the original and projected matrices has been shown

to depend on the number of electrodes included in the subset, as

well as the type of BSPM signals. For example, in (Guillem et al.,

2009), it was found that with the same number of electrodes,

reconstruction error was lower for ventricular than atrial activity.

In our study, as the number of electrodes included in the ECG or

SEQ subsets increased, the NRMSE and ABSE both decreased, in

line with results from (Guillem et al., 2009). We also showed for

the first time in our study the same trend for optimal PCA

reconstruction. It can be noted that for all numbers of electrodes

tested, there is a greater overlap between the ABSE values than

NRMSE values between the different subset types. This could be

FIGURE 5
BSPM analysis indices, grouped according to clinical
outcome. (A) Error ratio NRMSE to PCA (ERNRMSE); (B) Error ratio
ABSE to PCA (ERABSE); (C) Non-dipolar component index (NDI).
Significant differences between AR and SR outcome means
are indicated by asterisks. (*p < 0.05, **p < 0.01.).
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because the reconstruction method used optimizes for NRMSE,

and not ABSE.

Regarding the comparison of different BSPM electrode subsets,

it was found that SEQ subsets more accurately represent BSPM

signal data than standard and augmented ECG subsets in both signal

domains, manifested through lower NRMSE and ABSE values for

both k = 8 and k = 11 electrodes included in the vest subset. This

reinforces the idea that standard ECG electrode configurations are

not optimal in terms of accurately representing the full BSPM signal

matrix. Since results from previous works have suggested that the

addition of posterior electrodes may be useful to better reflect left

atrial activity in AF (Ihara et al., 2007; Petrutiu et al., 2009; Buttu

et al., 2013; Guillem et al., 2013), we did include the augmented

ECG11 subset. Interestingly, it was found that the decrease in

reconstruction error between the ECG8 and ECG11 subsets was

greater than the decrease in error between the SEQ8 and SEQ11

subsets, lending support to the argument that the addition of

carefully positioned posterior electrodes may indeed be beneficial

for representing AA-BSPM data. Additionally, it was found that

PCA-based reconstruction performs better than electrode subset

based reconstruction, in both the temporal and frequency domains.

This is to be expected, since PCA explicitly optimizes for the

reconstruction criterion. However, this remains an important

result since to our knowledge, the gap between electrode subset

and PCA reconstruction had not been previously investigated. We

hypothesized that this gapmay contain useful information related to

AF signal analysis.

4.2 Statistical comparison of novel indices

The finding in our study that ERNRMSE, ERABSE, and NDI all

show statistically significant differences between AA-BSPM

segments associated with AR or SR outcomes demonstrates

that each of these indices shows some potential to be used as

computational tools for AF disease management. Since

calculation of ERNRMSE and ERABSE required selection of a

subset of vest electrodes, these indices were calculated for

standard and augmented ECG subsets (ECG8 and ECG11,

respectively), as well as for sequentially chosen subsets (SEQ8

and SEQ11), which differ between AA-BSPM segments, to test the

robustness of the indices with respect to both which and how

many electrodes were included in the subsets.

Many previous studies have investigated capturing AF

information using surface recorded ECG signals, however, most

often using a single or limited number of leads. This prevents the

exploitation of the spatial diversity of multi-lead ECGs and is

dependent on the available electrode signal containing

information representative of the underlying AF. Since electrode

placement cannot be exact, and patient anatomy varies widely, this is

not always guaranteed. Further, it has already been shown that

inclusion ofmultiple leads is beneficial, leading to greater correlation

between calculated 12-lead ECG indices and AF complexity and

TABLE 2 ERNRMSE, ERABSE, and NDI values by vest electrode subset (not applicable for NDI) and single procedure CA outcome, expressed as mean ±
standard deviation. p-values were computed as means across three folds of data, in which a p-value for the statistical significance between index
values by outcome was computed using 80% of the AA-BSPM segments in each fold.

Subset Outcome ERNRMSE p-value ERABSE p-value NDI p-value

SEQ8 SR 1.349 ± 0.034 0.010 1.352 ± 0.078 0.294 0.517 ± 0.070 0.018

AR 1.385 ± 0.053 1.38 ± 0.096 0.484 ± 0.041

ECG8 SR 1.499 ± 0.091 0.008 1.607 ± 0.171 0.045

AR 1.589 ± 0.102 1.796 ± 0.253

SEQ11 SR 1.464 ± 0.041 0.002 1.448 ± 0.093 0.033

AR 1.515 ± 0.075 1.497 ± 0.159

ECG11 SR 1.605 ± 0.082 0.037 1.700 ± 0.150 0.107

AR 1.667 ± 0.100 1.760 ± 0.351

TABLE 3 Predictive power of BSPM indices for CA outcome, for each of
the tested subsets. Sensitivity and specificity indicate the rate of
detection of arrhythmia recurrence and sinus rhythm 6 months post
single-procedure CA, respectively. AUC, area under the curve.

AUC (mean ± std) Sensitivity (%) Specificity (%)

NDI 0.37 ± 0.45 33 98.9

ERNRMSE ERABSE ERNRMSE ERABSE ERNRMSE ERABSE

SEQ8 0.72 ± 0.09 - 61.9 - 84.8 -

ECG8 0.81 ± 0.26 0.76 ± 0.23 64.3 57.1 98.9 98.9

SEQ11 0.77 ± 0.08 0.52 ± 0.29 76.2 28.6 84.8 98.9

ECG11 0.69 ± 0.28 - 57.1 - 84.8 -
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outcomes in (Meo et al., 2013; Zarzoso et al., 2016). The idea in this

study was therefore to add to the limited number of BSPM indices

for AF analysis, integrating both temporal and spatial information.

In (Bonizzi et al., 2010), it was shown that reconstruction error

using the PCA rank-3 approximation of TQ segments of BSPM

signals recorded during AF was capable of separating AA signals

into clusters based on levels of AF organization, with greater

reconstruction error corresponding to higher AF complexity and

lower stationarity. Later, (Di Marco et al., 2012), using PCA-based

indices, found that higher spatial organization, indicating easier to

treat forms of AF, was correlated withmore temporally stable atrial

activation patterns. We hypothesized that lower ERNRMSE values

would therefore be observed among SR patients, indicating more

stability in the AF dynamics between BSPMwindows, and this was

indeed the case. The finding that ERNRMSE displayed greater values

in AR AA-BSPM segments than SR segments for all four electrode

FIGURE 6
ROC Analysis for ERNRMSE for predicting CA outcome calculated with (A) SEQ8; (B) ECG8; (C) SEQ11; and (D) ECG11 vest electrode subsets. The
optimal tradeoff between true positive rate and false positive rate is indicated by a black dot.

FIGURE 7
(A) ERNRMSE values grouped according to clinical outcome, calculated with SEQ8:30 subsets; (B) Representation of p values associated with
statistical comparison of ERNRMSE mean values for AR and SR patient groups. The p = 0.05 and p = 0.01 significance levels are indicated by dashed
lines.
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subsets lends support to its use as a robust index for predicting

single-procedure AF outcome. Further, also in (Di Marco et al.,

2012), it was found that greater temporal variability was associated

with lower spectral concentration. Therefore, we hypothesized

again that lower ERABSE values would be observed for SR patients.

While the ERABSE calculated for AR patients was greater than that

for SR patients, this difference was only statistically significant for

two of the electrode subsets tested, potentiallymaking it less robust

than ERNRMSE. This lower robustness could relate to the finding

discussed above that there was a greater overlap in ABSE values

calculated for subset vs. PCA reconstruction.

The NDI was unexpectedly found to be greater for SR

segments than AR segments, meaning that the remaining

variance unexplained by the first three PCs of the BSPM

signal data was on average greater for SR segments than AR

segments. This is contrary to the result in (Meo et al., 2018),

which found smaller NDI values in concatenated TQ segments of

BSPM data collected from patients with successful procedural

CA outcome. Several key differences in our study could explain

the contradictory results, including our use of longer duration

AA-BSPM segments rather than concatenated TQ segments.

Additionally, the study in (Meo et al., 2018) compared NDI

values calculated for procedural outcomes, while in this study we

used single-procedure clinical outcomes. Future studies testing

the NDI may shed light on this discrepancy.

4.3 Assessment of clinical impact of novel
indices

The clinical impact of the indices tested in this study

depends not only on their association with CA outcomes but

also their ability to predict CA outcomes. Therefore, we tested

classification performance of univariate logistic regression

classifiers for ERNRMSE, ERABSE, and NDI. The use of

group-wise CV was important to ensure AA-BSPM

segments extracted from the same patient were included

only in either the train or test set of each fold. Reporting

both mean and standard deviation values of the AUC for each

classifier also gave an indication of the CA outcome prediction

model variance for different folds of the data. These were

important features of our methodology considering the small-

size of our data set.

Importantly, only ERNRMSE displayed consistent results in

predictive power across tested vest electrode subsets. The AUCs

for this index calculated with each subset (SEQ8: 0.72 ± 0.09,

ECG8: 0.81 ± 0.26, SEQ11: 0.77 ± 0.08, ECG11: 0.69 ± 0.28) were

as good or better than the AUC associated with NDI (0.69),

found in (Meo et al., 2018), and the model variance was not

reported in their study. Additionally, the (Meo et al., 2018)

study also tested prediction performance for NDI combined

with clinical parameters, achieving an AUC of 0.7. Our results

were also as good or better than those described in (Lankveld

et al., 2016), in which predictive performance varied from

AUC = 0.76 ± 0.15 for 12-lead ECG derived complexity

parameters alone to AUC = 0.79 ± 0.13 for ECG plus

clinical parameters. Additionally, the results were in line

with those obtained in (Zeemering et al., 2018), for which an

AUC of 0.66, 95% confidence interval [0.64–0.67] was obtained

for the best ECG parameter studied (dominant atrial frequency

in lead II). The study also reported better performance when

several ECG parameters were combined (AUC

0.78 [0.76–0.79]), and best performance for combining ECG

plus clinical parameters (AUC = 0.81 [0.79–0.82]). It is

important to note that the variance across CV folds was less

for ERNRMSE calculated with SEQ subsets compared to ECG

subsets, and in general lower than model variances reported in

other studies. This result was also found to be true in our

additional analysis calculating ERNRMSE with SEQ8:30

electrodes, finding high predictive performance for nearly all

numbers of electrodes included in the subset. That ERNRMSE

showed the best results and lowest variance when calculated

with SEQ electrode subsets could indicate that when working

with BSPM signals, an informed patient or segment specific

selection of subset electrodes may be useful, for example using

the sequential algorithm. This is logical given the nonstationary

nature of BSPM recordings in AF. This was further supported

by the lack of a clear pattern of specific electrodes included in

the SEQ subsets as seen in Figure 3; rather, certain regions of the

vest contain electrodes picked by the sequential algorithm more

often than other regions. The finding that specificity was

generally higher than sensitivity across all indices tested

could indicate that this index would be more useful for

selecting which patients would be most likely to benefit from

CA, as opposed to selecting those least likely to benefit. Note

FIGURE 8
Mean and standard deviation of the area under the ROC curve
(AUC) computed using three cross-validation folds, for ERNRMSE

performance for predicting CA outcome when calculated with
SEQ8:30 electrodes.
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that specificity was also higher than sensitivity for the NDI in

the original study (Meo et al., 2018). The other two indices

appear less robust to predict CA outcome, with low AUC and

sensitivity values for NDI. For ERABSE, the results appear more

promising, but still displaying relatively low sensitivity and

more variable AUC values across CV folds than ERNRMSE.

These results all point towards the potential value of

ERNRMSE as a clinically useful tool that could be used to

analyze BSPM data in persAF. If confirmed by future studies,

the use of ERNRMSE could be important in assisting in prediction

of successful CA outcomes, which would be useful for improving

informed decision making regarding treatment for persAF. This

would be particularly important given the low success rate of CA

for treating persAF. Finally, the added clinical value of using

BSPM data in AF remains unclear, as evidenced by its being

largely limited to research use (Salinet et al., 2021). However, if

indices calculated using BSPM data, such as ERNRMSE, could be

shown to be consistently associated with and good predictors of

CA outcomes, this could confirm the validity of using BSPM data

for AF analysis.

4.4 Limitations

The study population, at 13 patients, and 11 patients with

clinical outcome data, was small; however, the effort in

obtaining BSPM recordings is considerable, due to the

high number of electrodes which are used. The use of

group-wise CV on segments of data extracted from each

patient did however permit a robust analysis using this

data set. In addition, the randomized inclusion criteria

enhances our conclusions on BSPM AF characterization,

though this may not be representative of the general

characteristics of a wider population. Given the variation

in experimental set up and parameters used, comparing with

parameters from previous studies was challenging, and a

more systematic study would be required for integration of

the contributions of this work into clinical practice. Further,

the small size of the population precluded the analysis of

correlation with clinical indices, or whether the proposed

indices could be combined with clinical indices for predicting

CA outcome, as it has been shown previously in several

studies that combining ECG-based indices with clinical

parameters yields the best clinical performance (Lankveld

et al., 2016; Meo et al., 2018; Zeemering et al., 2018).

Additionally, the follow-up duration was relatively limited,

and again due to the small study size, the impact of anti-

arrhythmic medications could not be assessed since these

were used by most patients. Finally, while we have shown the

usefulness of the proposed indices for predicting CA

outcome, we were unable to examine these indices for

quantifying AF complexity due to a lack of available

simultaneous intracardiac recordings.

4.5 Conclusion

In this study, we have proposed two novel indices for AF

analysis with BSPM signals, ERNRMSE and ERABSE. We have

shown clinical applicability by demonstrating correlation

between the novel indices and single-procedure CA outcome

and also promising outcome prediction performance. However,

only ERNRMSE values were found to be statistically greater for the

AR patient group than SR patient group, and demonstrate

consistently high CA outcome predictive performance when

calculated with ECG subsets, and independent of the number

of electrodes included in the SEQ subset used for its calculation.

These results, combined with previous studies also employing

PCA-based methods, suggest that continued study of BSPM

signals for AF analysis is warranted.
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