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SUMMARY

Cardiovascular disease (CVD) is associated with genetic variants and environmental factors. A consequence 

of multiple risk factors is DNA damage. To examine how DNA damage influences the cardiomyocyte prote-

ome and its relationship to CVD risk, we treated human induced pluripotent stem cell (iPSC)-derived cardi-

omyocytes with the DNA-damaging agent doxorubicin (DOX). A network constructed from 4,178 proteins re-

veals 12 co-expressed modules with 403 hub proteins. Five modules correlate with DOX and associate with 

RNA processing, chromatin regulation, and metabolism. DOX-correlated hub proteins are depleted for pro-

teins that vary in expression across individuals due to genetic variation but are enriched for proteins encoded 

by loss-of-function intolerant genes. While not enriched for known CVD risk proteins, DOX-correlated hub 

proteins are enriched for the physical protein interactors of CVD risk proteins. These data demonstrate 

that protein connectivity in DNA-damage-associated modules influences the tolerance to genetic variation 

and supports the use of dynamic networks to explore complex traits.

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mortality 

globally.1 CVD risk factors including age, diagnosis of metabolic 

disease, and treatment with chemotherapeutics can result in 

oxidative stress and apoptosis, leading to accumulated DNA 

damage and activation of the DNA damage response in the 

heart.2 The amount of DNA damage in the myocardium, as deter-

mined by the DNA double-strand break (DSB) marker γH2AX, is 

predictive of heart failure.3 Persistent DNA damage in cardiac 

cell types can lead to disease and has been detected among 

some of the most prevalent CVDs, including heart failure and 

atrial fibrillation.4 The myocardium is composed of cardiomyo-

cytes that produce the contractile force of the heart necessary 

to circulate oxygenated blood throughout the body, and there-

fore damage to these cells can lead to cardiac dysfunction. Adult 

human cardiomyocytes are also particularly susceptible to DNA 

damage, given that they are post-mitotic and unable to regen-

erate.4 This means that DNA damage, induced through DSBs, 

can only be repaired through error-prone non-homologous end 

joining, unlike proliferative cell types that can also repair DNA 

through homologous recombination.5

Doxorubicin (DOX) is an effective anthracycline chemothera-

peutic that can adversely induce cardiac dysfunction through 

the formation of DSBs in cardiomyocytes.6 This is primarily 

mediated through its interaction with the DNA topology regulator 

topoisomerase II (TOP2). Physiologically, the TOP2A and TOP2B 

isoforms resolve torsional stress in DNA by DSBs; however, in 

the presence of DOX, TOP2 is trapped on DNA where it gener-

ates DNA lesions.7 The predominant TOP2 isoform expressed 

in the heart is TOP2B. TOP2B has been shown to mediate the 

cardiotoxic effects of DOX in in vivo animal models and in vitro 

human disease models.8,9 While DOX can lead to cellular effects 

through mechanisms including the generation of ROS, at clini-

cally tolerated sub-micromolar doses, DSBs induced through 

interactions with TOP2B are the main contributors to DOX- 

induced cardiotoxicity.10 Clinically, DOX-induced cardiac 

dysfunction is not a unique pathology but shares characteristics 

of multiple CVDs.6 For example, 9% of individuals receiving DOX 

exhibit reductions in their left ventricular ejection fractions within 

values that would constitute heart failure.11,12 Similarly, treat-

ment with DOX increases the risk for electrophysiologic dysfunc-

tion and atrial fibrillation by 10-fold and is associated with other 

related clinically measurable phenotypes, such as an increased 

QT-interval.13,14 These pathologies overlap with those influ-

enced by DNA damage and are impacted by genetic risk.4,15

Genome-wide association studies (GWASs) have identified 

hundreds of risk loci associated with complex CVDs including 
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atrial fibrillation, heart failure, and clinical cardiovascular pheno-

types, highlighting the genetic component of CVD.15 Although 

GWASs identify genetic risk loci that can be mapped to genes 

that implicate putative regulatory effects, they do not explain 

the molecular mechanisms of the diseases that they associate 

with.16,17 This ultimately impedes our understanding of the effect 

of genetic variation on CVD and its applicability to identify poten-

tial drug targets.17

One approach to understand a complex disease phenotype is 

to construct networks based on molecular phenotypes such as 

global mRNA or protein expression levels. For example, while 

transcriptome profiling of human brain regions has provided 

insight into cell-type specificity for the risk for neuropsychiatric 

diseases,18 it has been shown that expression networks differ 

at the mRNA and protein level and that many complex disease 

phenotypes are observed only at the proteome level.19–21 Tar-

geted studies investigating the protein interactomes of proteins 

encoded in GWAS loci have identified convergent points in the 

interaction network for autism spectrum disorder and coronary 

artery disease, highlighting disease-relevant biology.22,23 Com-

plex disease networks are likely to exert tissue- and cell-type- 

specific effects. Indeed, proteins relevant to late onset Alzheimer 

disease are localized within glial cells in the brain.21 Similarly, the 

appropriate cellular context, such as cell type and state, is 

important for understanding the basis of CVD. Clinically 

observed CVDs such as DOX-induced cardiotoxicity can be 

recapitulated in human induced pluripotent stem cell (iPSC)- 

derived cardiomyocyte models,24 allowing for the study of dis-

ease-relevant states such as exposure to DOX and hypoxia to 

understand CVD risk.25–27 However, a protein network has not 

been generated in this context to understand the interplay be-

tween a cellular stressor relevant to CVD and proteins encoded 

by genes that are implicated in complex CVDs.

We therefore designed a study to determine the effects of the 

DNA-damaging drug, DOX, on the proteome of human cardio-

myocytes. We differentiated cardiomyocytes from iPSCs from 

three healthy individuals, treated them with a sub-lethal dose 

of DOX, and measured global protein expression levels. We 

construct a protein expression network consisting of co-expres-

sion modules correlated with DNA-damaging treatment, define 

the tolerance of network components to genetic variation, and 

localize CVD risk proteins and their interactors within the 

network.

RESULTS

iPSC-CM proteome resembles the heart ventricle 

proteome and is affected by DNA damage

We differentiated iPSCs from three healthy female donors into 

cardiomyocytes (iPSC-CMs) using biphasic WNT modulation 

(Figure 1A and Table S1). iPSC-CMs were metabolically selected 

and matured for 27 days post-differentiation initiation (See STAR 

Methods).26 Flow cytometry analysis of two individuals indicated 

high-purity cultures with a median of 97% of cells expressing 

cardiac troponin T (Figure S1).

To determine the effect of DNA damage on the cardiomyocyte 

proteome, we treated iPSC-CMs with a TOP2B-inhibiting, clini-

cally relevant concentration of DOX (0.5 μM) and a water vehicle 

control (VEH) for 24 h. This dose of DOX causes minimal cell 

death in iPSC-CMs but induces thousands of mRNA expression 

changes for genes in pathways related to p53 signaling, base 

excision repair, and DNA replication.28 We confirmed the DNA- 

damaging effects of DOX under these conditions by assaying 

the expression of the DNA DSB marker γH2AX (Figure 1B). 

DOX-treated cardiomyocytes have significantly higher γH2AX 

expression compared to VEH-treated cardiomyocytes (Figure 

1C; 90% vs. 7%; t test; p < 0.05). To account for technical vari-

ability in the drug treatment and proteomic data collection, the 

DOX and VEH treatment in iPSC-CMs from one individual was 

replicated three times, resulting in a total of 10 samples across 

individuals and treatments.

Global protein expression data were inferred from peptide 

identification and quantification using data-independent acqui-

sition mass spectrometry (DIA; see STAR Methods). Peptides 

were mapped to 4,261 proteins present in at least one sample 

(Data S1). Four non-human proteins and proteins that were pre-

sent in less than half of the samples were filtered out. To enable 

construction of as complete a network as possible, we used the 

remaining 4,178 proteins to impute protein abundance data for 

the 246 proteins with missing data using a feature-clustering- 

based imputation method commonly used for proteomics data 

(Figure S2A).29,30 On average, imputed proteins are less abun-

dant than proteins present in all 10 samples (median log2 abun-

dance all = 19.83, median log2 imputed abundance = 16.98; 

Figure S2B). We took advantage of the technical replicates to re-

move unwanted variation in the data (see STAR Methods).31 Af-

ter correction, principal-component analysis reveals that PC1, 

which accounts for 32% of variation in the data, associates 

with drug treatment, whereas PC2, accounting for 29% of the 

variation in the data, associates with individual (Figures S2C 

and S2D). Similarly, when comparing all pairwise sample corre-

lations, the data primarily separate into two clusters correspond-

ing to DOX and VEH treatment (Figure 1D).

To gain insight into the utility of our iPSC-CM proteome data 

for understanding the effect of DNA damage on the heart, we 

correlated the median expression of our set of proteins with 

the expression of proteins measured in 26 postmortem human 

tissues from hundreds of individuals.20 The iPSC-CM proteome 

is most similar to the proteome from heart left ventricle and atrial 

appendage, followed by skeletal muscle (Figure 1E). iPSC-CMs 

express cardiac-specific and cardiac-abundant proteins, 

including myosin heavy chain 7 (MYH7), myosin heavy chain 6 

(MYH6), and troponin I (TNNI3; Figure 1F). Together, these find-

ings affirm that the proteome of our iPSC-CMs closely resembles 

ventricular and atrial tissue, includes key cardiomyocyte pro-

teins, and demonstrates the influence of DNA damage as the 

main contributor to variation of protein abundance values within 

our experimental model.

Network analysis reveals DOX-correlated modules, 

response proteins, and hub proteins

In order to identify sets of co-expressed proteins within our 

data, we utilized weighted correlation network analysis 

(WGCNA).32 WGCNA assumes the co-expression network fol-

lows a scale-free topology, where few nodes (proteins) have 

high connectivity and many nodes have low connectivity, and 
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requires a soft power threshold to determine the weights of 

edges connecting nodes. We regressed total network connec-

tivity on the connectivity frequency distribution at different po-

wer thresholds and determined that the lowest power threshold 

that yielded the best fit to a scale-free network (0.71 regression 

coefficient) was 20 (Figure S3A). The scale-free fit is further sup-

ported by decreasing connectivities at higher power thresholds, 

where we find that at a power threshold of 20, our network has a 

median connectivity score of 53.6, mean connectivity of 65.4, 

and maximum connectivity of 216 (Figure S3B). Using these 

Figure 1. iPSC-CM protein samples cluster by DOX treatment and most closely resemble the heart ventricle proteome 

(A) Flowchart representing the study design. iPSCs from three individuals (Ind), Ind 1 (blue), Ind 2 (green), and Ind 3 (orange), were differentiated into car-

diomyocytes (iPSC-CMs). iPSC-CMs were exposed to 0.5 μM doxorubicin (DOX) or a vehicle control (VEH) for 24 h. The treatment was replicated in Ind 3 three 

times, yielding 10 total samples. Peptides were isolated and quantified by mass spectrometry, allowing the construction of an iPSC-CM network from 4,178 

proteins. 

(B) Immunostaining of the DNA damage marker, γH2AX, and Hoechst nuclear stain in VEH- and DOX-treated iPSC-CMs. Scale bar: 100 μm 

(C) Percentage of VEH- and DOX-treated iPSC-CMs that stain positive for γH2AX. Data representative of treatment experiments from three individuals. Data are 

presented as mean ± SD. Asterisk represents a statistically significant change in γH2AX expression (**p < 0.01). 

(D) Pairwise Pearson correlation of the median protein abundance across all 10 samples. 

(E) Pearson correlation of the median iPSC-CM protein abundance for all proteins across all experimental samples to the median abundance of those proteins 

across different human postmortem tissues.20

(F) Median protein abundance across experimental samples of select proteins known to be elevated in heart tissue in comparison to other tissue types.
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Figure 2. Network analysis of the iPSC-CM proteome identifies protein co-expression modules correlated with DOX treatment 

(A) Hierarchical clustering of 12 co-expression module eigen (ME) proteins based on their Pearson correlation. Height represents the dissimilarity between ME 

proteins (1-corr.). Each module is represented by a color and the number of proteins in the module specified. The "Unassigned" module, shaded gray, includes 

proteins that cannot be represented by one of the 12 ME proteins. The correlation between each ME protein and the known biological variables: Individual (Ind) 

and DOX treatment is shown. Asterisk represents a significant correlation between the ME protein and the trait (*p < 0.01). Modules are designated by Greek 

letters in order of decreasing correlation with DOX and summarized as DOX-correlated modules (red) and non-DOX-correlated modules (dark blue). 

(B) Volcano plot representing proteins that are differentially abundant (DAPs; adjusted p < 0.05; blue) and not differentially abundant (salmon) between VEH- and 

DOX-treated iPSC-CMs. 

(legend continued on next page) 
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criteria, we generated a network comprising 21 co-expressed 

modules with at least 40 proteins per module (Figure S3C), sum-

marized by 21 eigen proteins (Figure S3D). All combinations of 

proteins in the co-expression network are summarized as pair-

wise correlations (Data S2). To better distinguish individual 

modules, we merged modules with highly correlated eigen pro-

teins (Pearson correlation >0.85) and overlapping gene ontol-

ogies, which collapsed the data into 12 distinct modules 

(Figures 2A and S3E–S3G). These modules contain between 

45 and 798 proteins (Table S2) and represent diverse gene on-

tologies (Table S3). One hundred six proteins (2.5% of all ex-

pressed proteins) do not fit the profile of any module and were 

categorized as ‘‘unassigned’’ (Table S2). These proteins are 

not co-expressed and have lower intra-modular connectivity 

(kIN) than the median kIN across assigned modules (normalized 

kIN unassigned = 0.015, normalized kIN assigned = 0.06; Wil-

coxon rank-sum test; p < 0.05). This set of proteins is not en-

riched for any gene ontology. Imputed proteins are distributed 

across modules representing 1.6%–16% of all proteins within 

a module. We associated each module with the two biological 

features of our data, namely DOX treatment and Individual 

(IND). To do so, we measured the correlation between each 

module’s eigen protein and either IND or DOX treatment 

(Figure 2A). We named each of the 12 modules based on the or-

der of their absolute correlation with DOX treatment: α, β, γ, δ, ε, 

ζ, η, θ, ι, κ, λ, and μ. Eigen proteins from the α, β, γ, ε, and δ mod-

ules exhibited significant correlations with DOX treatment (Pear-

son correlation; p < 0.01) and were therefore categorized as 

DOX-correlated modules. Modules α, δ, and ε have strong nega-

tive DOX correlations of − 0.97, − 0.81, and − 0.79, whereas 

modules β and γ have similar positive correlations of 0.89 and 

0.86, respectively. In contrast, eigen proteins from the μ, ι, 
and θ modules are significantly correlated with IND. This delin-

eation indicates that 5 of the 12 co-expressed modules in our 

iPSC-CM protein abundance correlation network are specif-

ically associated with DOX treatment.

To support the categorization of five modules as DOX-corre-

lated, we performed an independent pairwise differential abun-

dance (DA) test. Using this approach, we identified 319 DA pro-

teins among the 4,178 evaluated proteins (adjusted p < 0.05; 

Table S2; see STAR Methods). One hundred twenty-four DA pro-

teins exhibit increased abundance in the DOX-treated iPSC- 

CMs, whereas 195 DA proteins show decreased abundance 

(Figure 2B). The percentage of DA proteins in a module corre-

lates with the module’s correlation to DOX (rho = 0.75; 

p < 0.05; Figure 2C). Similarly, proteins within DOX-correlated 

modules tend to have a greater response to DOX treatment as 

measured by their log fold change, compared to proteins in 

non-DOX-correlated modules (Figure 2D).

In order to test the robustness of our approach for identifying 

DOX-responsive proteins, we also acquired protein measure-

ments of the same samples by data-dependent acquisition 

(DDA) on the mass spectrometer (see Methods). We identified 

4,501 proteins using this method. All proteins identified by DIA 

were also identified by DDA, and the abundance of the 3,027 

proteins present across all samples in both datasets is highly 

correlated (rho = 0.75; p < 0.001; Figure S4). Following imputa-

tion and unwanted variance removal of the DDA data, we identi-

fied 223 DA proteins among 3,954 proteins. The effect size of the 

response to DOX treatment among proteins included in both 

acquisition methods is correlated (Pearson correlation coeffi-

cient = 0.35; p < 0.001; Figure S5), and the proportion of DA pro-

teins is similar (7% for DDA and 8% for DIA). These results sug-

gest that protein abundance changes in response to DOX 

identified by DIA are replicated when abundance data are 

collected through data-dependent acquisition.

We identified a set of proteins with a high level of intra-modular 

connectivity that are likely to play a central role in the biological 

processes associated with each module. These 403 hub pro-

teins have the highest correlation with the module eigen proteins 

and the highest intra-modular connectivity (kIN) score (top 10% 

of all network proteins; see STAR Methods; Figure S6 and 

Table S2). Hub proteins predominantly reflect the module’s col-

lective response to DOX or VEH treatment. For example, DDX27 

in the α module is downregulated in response to DOX treatment, 

whereas PIGQ in the λ module shows no difference in abun-

dance in response to DOX (Figure 2E). We then focused on the 

relationship between hub proteins across the five DOX-corre-

lated modules (n = 202). The resulting network revealed not 

only strong intra-modular connections but also significant in-

ter-modular correlations among proteins with a similar direction 

of effect in response to DOX treatment, indicating potential roles 

in inter-modular overlap for biological processes (Figure 2F).

Module proteins differ in their tissue specificity and 

cellular localization

Having identified modules of co-expressed proteins that are 

correlated with DOX treatment, we next sought to investigate 

the properties associated with each module. To determine the 

specificity of module proteins to heart tissue, we utilized data 

from the Human Protein Atlas (HPA) and the Genotype-Tissue 

Expression (GTEx) projects.20,33 These resources provide exten-

sive gene and protein expression measurements across various 

tissues. The HPA database highlights 419 genes with elevated 

expression in heart tissue, defined as at least a 4-fold higher 

mRNA level in the heart compared to the average in other tis-

sues. We detect 277 proteins corresponding to heart-elevated 

genes in our data. Heart-elevated proteins constitute only a small 

(C) Correlation between the proportion of DAPs in a module and the correlation of the module to DOX. The best-fit line together with 95% confidence interval is 

shown. 

(D) Distribution of effect sizes of response to DOX treatment (log2 fold change from pairwise differential abundance model) for the five DOX-correlated and seven 

non-DOX-correlated modules. 

(E) Examples of hub protein abundance values in VEH- and DOX-treated iPSC-CMs in a DOX-correlated module (α; DDX27) and a non-DOX-correlated module 

(λ; PIGQ). 

(F) DOX-correlated hub protein co-expression correlation network, where nodes are hub proteins and edges represent the weighted correlation between them. 

Connections among DOX-correlated proteins with a correlation of ≥0.9 are depicted for visualization.
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proportion of proteins in each module regardless of DOX-corre-

lation status (median all = 4.5%; range all = 0%–8%; Figure S7A). 

For a quantitative analysis of tissue specificity of DOX-correlated 

module proteins, we obtained tissue specificity (TS) scores for 

proteins in heart left ventricle tissue from GTEx. For each module 

in the network, module TS scores were compared to the mutually 

exclusive set of all other network proteins (network TS median = 

0.33). We find significant deviations in TS scores from DOX- 

correlated modules α, β, γ, and δ, as well as non-DOX-correlated 

modules κ and ι (Wilcoxon rank-sum test; p < 0.05). Modules β, δ, 

κ, and ι have higher TS scores, whereas α and γ have lower TS 

scores (Figure S7B). While the module with the strongest corre-

lation to DOX, α, contains proteins that are the least specific to 

heart ventricle tissue (TS score = − 0.47), there is no correlation 

between tissue specificity and correlation to DOX (rho = 0.18; 

Figure S7C). Both DOX-correlated proteins and DOX-correlated 

hub proteins are neither enriched nor depleted in the set of 419 

elevated heart proteins compared to non-DOX-correlated pro-

teins and hub proteins (Figure S7D). These findings suggest 

that while there may be heterogeneous tissue-specific effects 

of proteins at the modular level, proteins that are central to the 

DNA damage response in cardiomyocytes are not specific to 

the heart ventricle.

We next asked whether proteins within each module are 

restricted to specific intracellular or extracellular locations. We 

first investigated the localization of module proteins across 

four broad categories: intracellular, membrane-bound, plasma- 

detected, and secreted proteins as defined by HPA. We find 

that DOX-correlated modules α, β, and δ contain proteins that 

are enriched in the intracellular category compared to proteins 

not contained within each of these modules (Fisher’s exact 

test; odds ratio [OR] = 1.8, 1.3, and 1.5, respectively; p < 0.05; 

Figure S8A). Module γ is the only DOX-correlated module en-

riched for membrane proteins (OR = 1.4; p < 0.05), along with 

non-DOX-correlated modules η, λ, and μ. Plasma-detected pro-

teins are only enriched in module β (OR = 1.61; p < 0.05), whereas 

secreted proteins are only enriched in module μ (OR = 2.3; 

p < 0.05). The ε module is the only DOX-correlated module not 

enriched for any category. These results suggest that the cellular 

localization of proteins differs across modules. We then asked 

whether the sub-cellular localization of intracellular proteins dif-

fers across modules using annotation data from the UniProt 

database.34 Network proteins are generally distributed across 

multiple sub-cellular organelles including the sarcomere, nu-

cleus, mitochondrion, lysosome, Golgi apparatus, endoplasmic 

reticulum, cytoskeleton, cytoplasm, cell membrane, and auto-

phagosome (Figure S8B). Nuclear proteins are enriched in mod-

ules α, β, and ε (Fisher’s exact test; p < 0.05). Modules α and ε 
also share enrichment for cell membrane, cytoplasm, endo-

plasmic reticulum, and mitochondrial and lysosomal proteins. 

Module δ is enriched for mitochondrial proteins, whereas γ is en-

riched for endoplasmic reticulum and cell membrane proteins.

DOX-correlated module proteins are enriched for 

distinct biological processes

To elucidate the broad functional roles of proteins within the 

DOX-correlated modules, we tested whether proteins associ-

ated with distinct biological processes are enriched in each 

module (see STAR Methods). We found that the α, β, δ, and ε 
modules show enrichment for various biological processes 

(Fisher’s exact test; adjusted p < 0.05; Figures S9 and S10). 

The α module is enriched for 160 unique processes related to 

the DNA damage response, gene regulation via RNA splicing 

and metabolism, as well as chromatin regulating processes 

such as histone methylation and acetylation (Table S3). The β 
module is uniquely enriched for 35 processes related to protein 

localization within the nucleus and metabolism of carbohydrates, 

organophosphates, and oxoacids. Proteins in the δ module are 

uniquely enriched for 13 processes related to mitochondrial 

gene expression, translation, and ATP synthesis. The ε module 

is uniquely enriched for 26 processes related to DNA replication 

and chromatin assembly. There are no processes significantly 

enriched within the γ module; however, the most represented 

processes include glutamine family amino acid catabolic pro-

cesses and ion homeostasis. Biological processes shared 

across modules include cytoplasmic translation (enriched in δ 
and ε), post-transcriptional regulation of gene expression (α 
and ε), and ribosome and ribonucleoprotein complex biosyn-

thesis (α, ε, and δ). Biological process enrichment testing using 

only hub proteins of each module identified similar enrichment 

patterns to those in the complete module (for example, RNA 

metabolism and processing in the α module), indicating that 

the set of module hub proteins captures the core set of biological 

processes most representative of the entire module. Together, 

these data show a diversity of processes enriched among 

DOX-correlated modules.

We then asked whether proteins in each module are enriched 

for specific protein families consistent with their distinct biolog-

ical processes. The α module is enriched for the splicing factor 

SR family and Rnase PH family (Fisher’s exact test; adjusted 

p < 0.05; Figure S11), whereas β is enriched for the TCP-1 chap-

eronin family, and δ is enriched for signaling proteins in the 14-3- 

3 family. Domain-enriched modules therefore generally corrobo-

rate the biological process enrichment analysis results.

We selected five key protein categories to investigate further 

based on our module-specific functional enrichment results 

(Figure S12A; see STAR Methods).20,35–37 The α module is 

uniquely enriched for transcription factors (Fisher’s exact test; 

OR = 5.6; adjusted p < 0.05; Figure S12B), particularly the home-

odomain, GATA, and C2H2 Zinc Finger families that include the 

GATA4, MEIS1, and ZNF629 transcription factors (Figure S12C). 

Mutations in GATA4 are associated with atrial septal defects, 

arrhythmia, and a reduced capacity for the cardiac hypertrophic 

response38 and have been implicated in DOX-induced cardio-

toxicity.39 Both the α and ε modules show enrichment for stress 

granule components and RNA-binding proteins (adjusted 

p < 0.05; Figure S12A). RNA-binding proteins related to multiple 

post-transcriptional processes including splicing, translation, 

and mRNA stability are enriched (Figure S12D) and include pro-

teins such as QKI, YBX3, and GNL3 (Figure S12E). QKI regulates 

pre-mRNA splicing, export of mRNAs from the nucleus, protein 

translation, and mRNA stability40 and is implicated in cardiomyo-

cyte calcium dynamics and contractility,41 cardiomyopathies,40

and attenuation of DOX-induced cardiotoxicity.42 The β module 

uniquely exhibits enrichment for enzymes (OR = 1.9; adjusted 

p < 0.05; Figure S12A) including glutathione metabolism, fatty 
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acid activation, and drug metabolism (Figure S12F). The most 

DOX-responsive enzymes include NDUFB7, a member of the δ 
module and critical component of the mitochondrial membrane 

respiratory chain complex I (Figure S12G). These results are 

consistent with the biological processes enriched in each 

module.

Hub proteins in DOX-correlated modules are depleted 

for pQTLs

We next focused our attention on the properties of the 403 hub 

proteins within the network. We were particularly interested in 

understanding the tolerance of these central proteins to physio-

logical genetic variation. To do so, we investigated proteins 

whose expression level varies across individuals depending on 

the genotype of an associated SNP, i.e., protein quantitative trait 

loci (pQTLs; Figure 3A). Prior research focused on serum pro-

teins has shown that highly connected proteins central to co- 

expression networks are typically depleted for pQTLs.43 Howev-

er, how network centrality interacts with the dynamic molecular 

response to perturbation to shape the distribution of pQTLs is 

not known. We therefore obtained a set of pQTLs identified in hu-

man plasma from thousands of individuals17 and overlapped 

these with iPSC-CM network proteins (Table S2). We first asked 

whether pQTL proteins associated with either cis- or trans-SNPs 

are enriched among hub proteins. Hub proteins are neither en-

riched nor depleted for pQTLs (Fisher’s exact test; OR = 1.1; 

95% confidence interval [CI] = 0.8–1.5 for cis-pQTLs and OR = 

1.0; 95% CI = 0.8–1.4 for trans-pQTLs; Figure 3B). We then 

asked whether pQTL proteins are enriched among proteins 

that respond to DNA damage. DOX-correlated proteins are 

modestly depleted for pQTL proteins associated with either 

cis- (OR = 0.7; 95% CI = 0.6–0.8; p < 0.05; Figure 3B) or trans- 

SNPs (OR = 0.8; 95% CI = 0.7–1.0; p < 0.05, Figure 3B). Howev-

er, DOX-correlated hub proteins show an even more pro-

nounced depletion for pQTL proteins mapped to cis- (OR = 

0.2; 95% CI = 0.1–0.5; p < 0.05; Figure 3B) or trans-SNPs 

(OR = 0.4; 95% CI = 0.2–0.6; p < 0.05; Figure 3B).

Next, we investigated those pQTLs that correspond to pro-

teins expressed within our network and asked whether the 

SNP effect size of the pQTLs differed across network compo-

nents. We assigned each pQTL protein to the cis- or trans-SNP 

with the greatest effect size. As expected, the median effect 

size for cis-pQTL proteins in the network is greater than that 

for trans-pQTLs (0.2 vs. 0.1). There is no difference in the cis- 

or trans-pQTL effect sizes between DOX-correlated and non- 

DOX-correlated proteins (Figure 3C). However, DOX-correlated 

hub proteins have lower cis- and trans-pQTL effect sizes than 

hub proteins that are not correlated with DOX (Wilcoxon rank- 

sum test; p < 0.05; Figure 3D).

Given the depletion of pQTLs among DOX-correlated hub pro-

teins and not the total set of hub proteins, we next asked if there 

is a relationship between the intra-modular connectivity of a pro-

tein and the probability of that protein being a pQTL that is influ-

enced by DOX. We assigned proteins into two groups based on 

their DOX-correlation status, stratified proteins within each 

group into deciles based on their connectivity, and calculated 

the percentage of pQTL proteins in each decile. In the non- 

DOX-correlated group, the decile with the highest connectivity 

shows the greatest percentage of pQTL proteins (21%), whereas 

the decile with the lowest connectivity shows the lowest percent-

age of pQTL proteins (9%). Across deciles, there is a general up-

ward trend in the percentage of pQTL proteins as intra-modular 

connectivity increases (Figure 3E). In the DOX-correlated group, 

the highest connectivity decile shows a reduction in the percent-

age of pQTL proteins (8%) relative to the lowest connectivity 

decile (16%) and more variability for the percentage of pQTL pro-

teins across deciles. Therefore, the percentage of pQTL proteins 

across different deciles showed opposite trends depending on 

their correlation to DOX. The decrease in pQTL proteins with 

the highest connectivity among DOX-correlated proteins sug-

gests that hub proteins correlated to DOX treatment are under 

stronger evolutionary constraints, leading to reduced genetic 

variation in these highly connected proteins.

We also tested for enrichment of pQTLs across modules. The 

α module, with the highest correlation to DOX, is depleted for 

pQTLs (Fisher’s exact test; OR = 0.6; CI = 0.5–0.8; adjusted 

p < 0.05; Figure S13). Conversely, the μ module, with the lowest 

correlation to DOX, is the only module enriched for pQTLs (OR = 

1.4; CI = 1.1–1.7; adjusted p < 0.05) and is one of three modules 

correlated with Individual. There are no modules correlated with 

both Individual and DOX, which supports differences in toler-

ance to variation across these protein sets.

In summary, our analysis reveals that DOX-correlated hub pro-

teins are less likely to be associated with pQTLs, indicating their 

likelihood to play an essential role in maintaining network stability 

and function under stress conditions.

DOX-correlated hub proteins are enriched for loss-of- 

function-intolerant proteins

Given that DOX-correlated hub proteins are depleted for pro-

teins that vary in their expression across healthy individuals, 

we next asked about the tolerance of these proteins to variation 

more broadly. We utilized several genetic tolerance scores to 

assess the functional impact and evolutionary constraint of 

genes encoding proteins within specific modules. First, we 

considered the probability of each protein in a module being 

haploinsufficient (pHaplo), which estimates whether a single 

copy of a gene can maintain normal function, or triplosensitive 

(pTriplo), which estimates the risks of gene dose increases, 

that can be equally detrimental. Genes with a high pHaplo score 

(≥0.86) or a high pTriplo score (≥0.94) are deemed haploinsuffi-

cient or triplosensitive, respectively, and likely precipitate health 

consequences.44 We compared the gene dose scores of DOX- 

correlated module proteins against the broader network (see 

STAR Methods). The α and ε modules have higher pHaplo scores 

compared to network proteins, whereas δ module proteins have 

lower pHaplo scores (Wilcoxon rank-sum test; p < 0.05; 

Figure S14A). The α module also shows increased pTriplo scores 

compared to the network average, whereas the δ module’s pTri-

plo scores are lower (p < 0.05; Figure S14B). These results show 

that the most DOX-correlated module, α, is most sensitive to 

gene dosage changes.

Next, we examined the tolerance of module proteins to muta-

tions that reduce or eliminate protein function. Genes with a high 

probability (≥0.9) of loss-of-function intolerance (pLI) are consid-

ered loss-of-function intolerant, meaning they cannot withstand 
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Figure 3. DOX-correlated hub proteins are depleted for protein quantitative trait loci 

(A) Schematic representing the rationale behind the test design. Protein expression can be influenced by cis- or trans-SNPs, resulting in differential abundance of 

proteins across individuals with different genotypes. We integrated existing protein quantitative trait loci (pQTL) data from plasma samples17 with our DOX- 

treated iPSC-CM protein network. 

(B) Enrichment of cis- (blue) and trans-pQTLs (green) among hub proteins, DOX-correlated proteins, and DOX-correlated hub proteins. 

(C) Maximum pQTL effect sizes for cis- and trans-pQTLs among all proteins in DOX-correlated modules and non-DOX-correlated modules. 

(D) Maximum pQTL effect sizes for cis- and trans-pQTLs among all hub proteins in DOX-correlated modules and non-DOX-correlated modules. Asterisk rep-

resents a significant difference in effect sizes between DOX-correlated and non-DOX-correlated modules (*p < 0.05). 

(E) Percentage of pQTL proteins across connectivity deciles for normalized kIN for proteins in DOX-correlated (red) and non-DOX-correlated (blue) modules. 

Deciles are ordered by increasing kIN scores.
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loss-of-function mutations without significant phenotypic 

impact. Conversely, genes with a low probability (≤0.1) can 

tolerate loss-of-function mutations with minimal phenotypic con-

sequences and are considered loss-of-function tolerant.44,45

Both α and ε module proteins exhibit significantly higher pLI 

scores than proteins outside these modules (Wilcoxon rank- 

sum test; p < 0.05; Figure 4A and Table S2), indicating that 

they are less tolerant to genetic variation. In contrast, the β mod-

ule is characterized by lower pLI scores (p < 0.05; Figure 4A), 

suggesting these proteins can better tolerate loss-of-function 

mutations. These results emphasize that the α module contains 

proteins that are highly intolerant to pathogenic variation.

To test the relationship between modular connectivity and pLI 

across the network, we identified the set of loss-of-function- 

tolerant and loss-of-function-intolerant proteins. We find that 

loss-of-function-intolerant proteins have a higher level of intra- 

modular connectivity (normalized kIN) compared to loss-of- 

function-tolerant proteins (Wilcoxon rank-sum test; p < 0.05; 

Figure 4B). To understand the relationship between different 

types of connectivity and DOX-correlation, we next considered 

the spectrum of tolerance to mutation across all proteins in the 

network. First, we classified all proteins into two groups based 

on their DOX-correlation status. We then generated deciles for 

intra-modular connectivity (kIN), inter-modular connectivity 

(kOut), and total network connectivity (kTotal) for both DOX- 

correlated and non-DOX-correlated proteins. For DOX-corre-

lated proteins, there is a marked increase in pLI scores in the 

highest kTotal and kIN deciles (Figure 4C). Conversely, pLI 

scores for kOut appeared more variable at higher connectivity 

deciles. In comparison to DOX-correlated proteins, median pLI 

scores for non-DOX-correlated proteins remain consistently 

low across deciles for all measures of connectivity. These find-

Figure 4. DOX-correlated hub proteins are 

enriched for loss-of-function-intolerant 

proteins 

(A) Probability of loss-of-function intolerance (pLI) 

for all proteins in each DOX-correlated module 

(x) and all proteins outside of the module (Non-x). 

Asterisk represents a significant difference be-

tween x and Non-x (*p < 0.05; ***p < 0.001). 

(B) Connectivity (normalized kIN) among mutation- 

tolerant (pLI ≤0.1) and mutation-intolerant 

(pLI ≥0.9) proteins. Asterisk represents a signifi-

cant difference in scores between module-spe-

cific proteins and all proteins outside of modules 

(*p < 0.05). 

(C) Median pLI scores across proteins in con-

nectivity deciles (kTotal (solid line), normalized kIN 

(dashed line), and normalized kOut (dotted line)) 

for proteins in DOX-correlated modules (red) and 

non-DOX-correlated modules (blue). Deciles are 

ordered by increasing connectivity scores. 

(D) Enrichment of mutation-intolerant (orange) and 

mutation-tolerant (brown) proteins among hub 

proteins, DOX-correlated proteins, and DOX- 

correlated hub proteins.

ings highlight that DOX-correlated pro-

teins with the highest total connectivity, 

primarily driven by intra-modular connectivity, are essential for 

cellular function under DNA damage conditions and are under 

strong evolutionary constraints to maintain their functional integ-

rity. In contrast, non-DOX-correlated proteins do not exhibit a 

relationship between connectivity and mutation intolerance, 

suggesting a less critical role in maintaining network stability.

We next asked whether loss-of-function-intolerant proteins 

are enriched among proteins central to the protein network given 

that there are increased pLI scores in the highest decile for intra- 

modular connectivity. DOX-correlated proteins are modestly en-

riched for proteins whose encoding genes are loss-of-function 

intolerant (Fisher’s exact test; OR = 1.5; CI = 1.3–1.7; p < 0.05; 

Figure 4D) and depleted for proteins that are tolerant to mutation 

(OR = 0.7; CI = 0.6–0.8; p < 0.05). Hub proteins are modestly en-

riched for loss-of-function-intolerant proteins (OR = 1.4; 

CI = 1.1–1.8; p < 0.05) and depleted for mutation-tolerant pro-

teins (OR = 0.7; CI = 0.6–0.9; p < 0.05). However, DOX-correlated 

hub proteins are highly enriched for mutation-intolerant proteins 

(OR = 2.9; CI = 1.8–4.6; p < 0.05) and depleted for mutation- 

tolerant proteins (OR = 0.4; CI = 0.2–0.6; p < 0.05; Figure 4D). 

Similarly, Individual-correlated module proteins are more 

tolerant of loss-of-function mutations than DOX-correlated mod-

ule proteins, and modules correlated with neither Individual nor 

DOX (Wilcoxon rank-sum test; p < 0.05, Figure S14C). These 

data demonstrate that DOX-correlated hub proteins are likely 

to be the most critical proteins to the DNA damage response 

network.

DOX-correlated modules contain cardiovascular- 

disease-associated proteins

DOX treatment in cancer patients is associated with increased 

risk for atrial fibrillation (AF) and heart failure (HF).46–49 We 
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Figure 5. DOX-correlated modules contain proteins associated with risk for atrial fibrillation 

(A) Schematic representing how risk proteins for the anthracycline-associated CVD traits atrial fibrillation (AF) and heart failure (HF; ‘‘heart disease’’ GWAS catalog 

ontology class EFO_0003777) are obtained. AF- and HF-associated SNPs (AF/HF-SNP) from GWAS are mapped to nearby genes (AF/HF mapped gene) and 

converted to the corresponding protein identifier (AF/HF risk protein). 

(legend continued on next page) 
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therefore obtained data for genetic loci associated with these 

two CVDs from the GWAS catalog50 and asked whether these 

loci are nearexpressed proteins belonging to DOX-correlated 

modules (Figure 5A). Seventy mapped AF genes and 20 mapped 

HF genes are expressed as proteins in our iPSC-CM data. The α 
module shows nominal enrichment for AF proteins (OR = 1.89; 

CI = 1.0–3.4; nominal p < 0.05; Figure 5B) but is not enriched 

for HF proteins (Figure 5C). No other DOX-correlated module 

shows evidence for enrichment with either trait. We next investi-

gated the response of individual disease-associated proteins to 

DOX; 31 of 70 expressed AF risk genes and 6 of 20 expressed HF 

risk genes are within DOX-correlated modules (Figure 5D). Many 

AF risk genes in the α module, including CASZ1, CGNL1, GATA4, 

GTF2I, LRRC10, and SLIT3, are also DAPs that are downregu-

lated in response to DOX. GTF2I is the only DOX-correlated pro-

tein that is associated with both AF and HF. NUCKS1 is an AF- 

associated DAP in the γ module and is therefore upregulated in 

response to DOX. Transcription factors CASZ1, GATA4, and 

GTF2I are the only risk proteins for AF or HF in DOX-correlated 

modules that are both DAPs and hub proteins. These results 

show that several CVD risk proteins respond to DNA damage.

DOX-correlated hub proteins are enriched for physical 

protein-protein interactors of CVD-associated proteins

To understand how proteins in our network correspond to CVD 

more generally, we obtained GWAS data for 84 CVD traits avail-

able in the GWAS catalog. We assessed the relative likelihood for 

key network proteins to be contained in the set of proteins map-

ped to CVD (Figure 6A). CVD-associated proteins are neither en-

riched nor depleted among hub proteins, DOX-correlated pro-

teins, or DOX-correlated hub proteins (Figure 6B), suggesting 

that they do not contribute to the key features of our protein 

network. These results are in line with the observation that 

DOX-correlated hub proteins are depleted for pQTLs and are 

intolerant to genetic mutation.

We next reasoned that proteins that are known to physically 

interact with CVD-associated proteins may provide a mecha-

nism through which DNA damage associates with CVD risk. 

We therefore identified pairwise interactions between all 4,178 

network proteins (STRINGdb; confidence score ≥0.9) and 

generated a total physical protein-protein interaction (PPI) 

network (n = 13,750 edges). We extracted the subnetwork con-

taining CVD proteins (n = 213) and their interactors (n = 798; 

n = 909 edges; Data S2 & Table S4). We then asked whether 

CVD proteins and their interactors differ in their tolerance to mu-

tation. CVD proteins have lower pLI scores than proteins they 

interact with (0.07 vs. 0.69; Wilcoxon rank-sum test; p < 0.05; 

Figure 6C). To test the robustness of these results, we analyzed 

10,000 randomly generated subnetworks from the total network 

that maintained a similar degree distribution as the CVD 

protein network (See STAR Methods). The enrichment p value 

of CVD-associated proteins and their interactors is lower than 

the 5th percentile of the random distribution (p = 0.00001 vs. 

p = 0.006), and the median pLI score difference between our 

test sets (0.63) is within the 95th (0.64) and 96th (0.62) percentiles 

of the randomly generated networks. These findings suggest 

that genes encoding CVD risk proteins are less likely to be 

essential compared to their interacting partners.

We next asked about the relative likelihood for hub proteins in 

the network to be contained in the set of CVD protein interactors. 

We first calculated the frequency of protein interactors falling in 

the same module. We find that the proportion of interacting pro-

teins expressed in the same module is higher for interactions 

where one of the proteins is a hub protein compared to interac-

tions that do not include a hub protein (Wilcoxon rank-sum test; 

p < 0.05; Figure S15). Although hub proteins are more likely to 

be co-expressed in the same module with their physical protein 

interactors, hub proteins are not enriched among CVD protein in-

teractors (Figure 6D). However, CVD protein interactors are en-

riched for DOX-correlated proteins in comparison to proteins 

that are not DOX-correlated (Fisher’s exact test; OR = 1.5; 

CI = 1.1–2.1; p < 0.05; Figure 6D). We further find that CVD protein 

interactors are enriched for DOX-correlated hub proteins in com-

parison to hub proteins that are not DOX-correlated (OR = 5.1; CI = 

1.8–15.1; p < 0.05; Figure 6D). We similarly observe a significant 

enrichment of CVD protein interactors among DOX-correlated 

hub proteins when identifying interactors with a lower stringency 

score (n = 49,020 interactions; STRINGdb confidence score ≥0.4; 

OR = 2.3; p < 0.05). These data suggest that the pathogenicity of 

CVD variants identified by GWASs might not only be a conse-

quence of a direct effect on a protein’s function but also indirectly 

through interactions with essential proteins that are highly corre-

lated to the DNA damage response in cardiomyocytes. We there-

fore illustrate the CVD protein and CVD protein interactor network 

together with our experimentally derived DOX-correlation and 

hub protein status annotations (Figures 6E and S16).

We posit that the DNA-damage-associated CVD protein 

network in cardiomyocytes can also be used to reduce the 

search space for druggable targets that might have the greatest 

impact on influencing various CVD phenotypes. We therefore 

also annotated each network protein by whether they are a target 

of an FDA-approved drug (Table S2).33 We identified 79 proteins 

in DOX-correlated modules that are druggable, including the 

chromatin-modifying enzymes HDAC1, HDAC2, and HDAC3. 

Seven of the druggable DOX-correlated proteins are CVD pro-

teins (FADS1, FADS2, FINC, IGF1R, AT2B1, RL3, and TRXR1), 

and five have elevated expression in heart tissue (RYR2, ADT1, 

LDHB, ODO1, and AAPK2), thereby opening further avenues of 

investigation.

DISCUSSION

Many genetic loci have been associated with CVD. While the 

genes in these loci can be inferred to play a role in disease 

(B) Enrichment of 70 expressed atrial fibrillation risk proteins across network modules. 

(C) Enrichment of 20 expressed heart failure risk proteins across network modules. 

(D) Response of AF and HF risk proteins to DOX. A positive fold change indicates proteins that increase in expression in response to DOX. Asterisk represents 

differentially abundant proteins (DAPs; adjusted p < 0.05).
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risk, the mechanisms behind these associations is often unclear. 

We hypothesized that a relevant environmental factor may pro-

vide insight. DNA damage is a ubiquitous stressor that is both 

implicated in and predictive of CVD.3 It can be induced through 

exogenous factors including through administration of drugs 

used in the treatment of cancer. To understand how DNA dam-

age in cardiomyocytes influences CVD risk, we used an in vitro 

model of iPSC-CMs from multiple individuals to study the effects 

of DOX on the proteome. We constructed a co-expression 

network and identified many proteins that change in their abun-

dance in response to DOX and characterized their network prop-

erties and tolerance to variation.

DOX induces changes to the cardiomyocyte proteome 

relevant to anthracycline-induced cardiotoxicity

The effects of genetic variation and environmental perturbations 

on mediating risk for complex disease have most often been as-

sayed through the transcriptome. This includes studies investi-

gating the influence of DOX on cardiomyocytes.24,27,28 Here, 

we measured the effects of DOX on the cardiomyocyte prote-

ome using both a pairwise differential abundance test and a 

co-expression network correlated with DOX treatment. We iden-

tified 319 differentially abundant proteins (8% of the proteome) 

and determined that 5 out of 12 co-expressed modules are 

correlated with DOX treatment. A previous study that assayed 

the proteomic response to anthracyclines, including DOX, using 

both human microtissues and tissues from heart failure patients 

identified four anthracycline-associated hub proteins.51 We find 

two of these proteins, BAG3 and hub protein CAND1, in DOX- 

correlated modules in cardiomyocytes, indicating the relevance 

of our cardiomyocyte model. In addition, our study generated 

protein data for thousands more proteins, implicating many 

more proteins in DOX toxicity. Conversely, we found little overlap 

between our data and DOX-treated rodent cardiac proteomic 

data from rat cardiomyocytes52 and rat heart tissue,53 suggest-

ing species specificity in DOX responses.

Our network analysis identified the α module as the most DOX- 

correlated co-expression module. The 579 proteins in this mod-

ule decrease in their abundance following DOX treatment and 

are enriched for proteins in gene regulatory processes and 

DNA damage repair. The most enriched processes relate to 

RNA processing and splicing. The associated proteins likely 

contribute to the large-scale splicing changes that have previ-

ously been identified following DOX treatment.27 Processes 

related to chromatin organization and histone modifications are 

also enriched, in line with previous work in a murine DOX toxicity 

model indicating effects on histone eviction and histone-modi-

fying enzymes.54 This module is also enriched for transcription 

factors including GATA4, CTCF, ZNF629, ESSRA, GATAD2B, 

ZNF346, YBX3, GTF2I, and GATAD2A, indicating potential 

drivers of the gene expression changes observed due to DOX 

treatment in heart cells.38,39,55–65 Many of these processes are 

important across cell types, and we correspondingly observe 

decreased heart tissue specificity for proteins in this module. 

Indeed, DOX can lead to neurotoxicity, hepatotoxicity, and 

nephrotoxicity in addition to cardiotoxicity.66–68 Conversely the 

DOX-correlated δ module includes proteins with higher heart 

specificity than proteins in other modules and is enriched for pro-

cesses related to mitochondrial functions such as oxidative 

phosphorylation. Proteins in this module may thus contribute 

to some of the in vivo tissue-specific effects of DOX on the heart.

The target of DOX is TOP2, expressed in the heart as both the α 
and β isoforms. It is TOP2B that is thought to mediate the cardio-

toxic effects of anthracycline chemotherapeutics such as DOX. 

While we do not detect a change in TOP2B protein abundance 

in response to DOX, it is co-expressed in the ε module, which is 

DOX-correlated and consists of proteins downregulated in 

response to DOX. Notably, ∼75% of proteins shown to physically 

interact with TOP2B (10/13 expressed in iPSC-CMs), including 

CTCF, are present in DOX-correlated modules α and ε and exhibit 

high connectivity.69 GWASs have identified 10 risk loci associated 

with anthracycline-induced cardiotoxicity.70–72 We find three pro-

teins encoded by genes mapped to these risk loci expressed in 

our network, where two are localized in the ε module. These pro-

teins include POLRMT and RPL7. Decreased abundance of 

POLRMT, a DNA-directed RNA polymerase located in mitochon-

dria, and RPL7, a component of the large ribosomal subunit, sug-

gest that these proteins concordantly lead to decreased mito-

chondrial transcription and translation due to DOX treatment. 

Together, the proteins that we identify as responding to DOX in 

cardiomyocytes have been implicated in DOX-induced cardiotox-

icity through molecular and genetic approaches.

While our study was designed to understand general princi-

ples of DOX treatment on cardiomyocytes using three individ-

uals, our data suggest that there may be individual-specific ef-

fects on protein abundance and response to DOX and that 

studies including more individuals are warranted.

DOX-induced protein expression changes are relevant 

to CVD

Our network approach allowed us to intersect sets of DOX-corre-

lated proteins with proteins implicated in risk for complex CVDs. 

Figure 6. DOX-correlated hub proteins are enriched for physical protein interactors of CVD risk proteins 

(A) Schematic representing the rationale behind the test design. CVD-associated SNPs (CVD-SNP) are mapped to nearby genes (CVD gene) that are translated 

into proteins (CVD proteins) that may physically interact with other proteins (CVD protein interactors). 

(B) Enrichment of CVD risk proteins among hub proteins, DOX-correlated proteins, and DOX-correlated hub proteins. 

(C) pLI score distribution of CVD risk proteins and CVD risk protein interactors. Asterisk represents a significant difference in the scores between protein groups 

(*p < 0.05). 

(D) Enrichment of CVD risk protein interactors among hub proteins, DOX-correlated proteins, and DOX-correlated hub proteins. 

(E) Protein-protein interaction network for CVD proteins (square) and CVD protein interactors (circle) expressed within the co-expression network. Color rep-

resents if the protein is in a DOX-correlated module (red) or a non-DOX-correlated module (blue). Edges represent weighted correlation within the co-expression 

network. Node size indicates if a protein is a hub (large icon) or not a hub (small icon) protein. A CVD protein subnetwork containing the most highly connected 

proteins is presented here with the full CVD protein network displayed in Figure S16.
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However, there are hundreds of proteins within each DOX-corre-

lated module and hundreds of DAPs. Prioritization of proteins as 

diagnostic and therapeutic targets therefore remains a challenge. 

We provide annotations to subset module proteins by including 

DOX response effect size and direction, hub status, pLI score, 

druggability, and association with CVD, which may help in target 

selection for proteins most likely to modulate the cardiomyocyte 

response to DNA damage (Table S2). For example, the applica-

tion of these filters uncovered highly responsive proteins that 

are central to the DOX response network, such as downregulated 

proteins GATA4, QKI, and TFAM, which have been shown to 

directly improve DOX-induced cardiotoxicity when their expres-

sion is increased.39,73,74 We highlight some proteins below that 

may contribute to a CVD trait and inform on cardioprotective 

drug development.

The α module contains proteins encoded by genes in loci 

associated with atrial fibrillation. These proteins include 

GATA4, LRRC10, RBM20, SLIT3, CAND2, GTF2I, HSPG2, 

FILIP1, MYO18B, CASZ1, and DPF3 that are downregulated in 

response to DOX treatment. Many of these proteins show evi-

dence for independently impacting atrial fibrillation risk, as well 

as playing an essential role in cardiac development.38,39,55–65,75

The co-expression of these proteins involved in the genetic risk 

for atrial fibrillation indicates that DNA damage may mediate 

atrial fibrillation by collectively reducing the abundance of these 

critical proteins. Atrial fibrillation can be a cause or consequence 

of many complex CVD traits,76 highlighting the importance of 

these proteins to disease.

The β module, containing proteins with increased abundance 

due to DOX treatment, shows enrichment for both metabolic pro-

cesses as well as processes involved in the translocation of enzy-

matic proteins to the nucleus, uniquely placing it at the intersec-

tion between the proteomic and metabolomic response to DNA 

damage. This includes the hub protein PRDX1, which has been 

shown to translocate to the nucleus upon DNA double-strand 

breakage and clear damage-induced nuclear reactive oxygen 

species and γH2AX.77 Similarly, four TCA cycle proteins help pre-

vent DOX-mediated cellular damage by translocating from the 

mitochondria to the nucleus upon DNA damage.78 Three of these 

proteins, PDH-E1, MDH-2, and CS, are co-expressed in the β 
module. Therefore, the β module may identify proteins for future 

studies investigating how the nuclear translocation of enzymatic 

proteins can attenuate DOX-induced cardiotoxicity.

Highly connected DNA-damage-associated proteins are 

intolerant to mutation

Our network analysis identified not only modules of co-expressed 

proteins but also subsets of highly connected hub proteins 

belonging to DOX-correlated and non-DOX-correlated modules. 

This allowed us to investigate the relationship between DNA- 

damage-associated connectivity and tolerance of these proteins 

to physiological and pathological variation. We find that DNA- 

damage-associated hub proteins are not only depleted for pQTLs 

but also enriched for loss-of-function-intolerant proteins, indi-

cating the importance of these proteins. Considering the spec-

trum of connectivity, beyond the highly connected hub proteins, 

revealed increasing pLI values with increasing protein connectiv-

ity for DOX-correlated module proteins. pLI values remain low 

across a range of connectivities for non-DOX-correlated module 

proteins. The trend for DOX-correlated proteins was observable 

in both total connectivity and intra-modular connectivity, but 

not inter-modular connectivity, suggesting that intolerance to mu-

tation in the network is centered around DOX-correlated modules 

and their related biological processes. The opposite trend is true 

for pQTLs, where enrichment tends to decrease with increased 

connectivity of DOX-correlated proteins. It has previously been 

shown that pQTLs are depleted among hub proteins in a 

steady-state network.43 Here, we show that DOX-correlated 

hub proteins are depleted for cis- and trans-pQTLs compared 

to non-DOX-correlated hub proteins, and those that are pQTLs 

have lower effect sizes in the DOX-correlated set. These results 

suggest that the proteins most central to the DNA damage 

response are constrained in their expression with little variation 

across individuals and support the observation that these pro-

teins are intolerant to loss-of-function mutations. We note that 

the set of unassigned proteins are neither enriched nor depleted 

in mutation-intolerant genes or pQTLs, suggesting that as a group 

these do not have distinct genetic tolerance properties. The dif-

ferential relationship between connectivity, genetic influence, 

and pLI emphasizes the evolutionary constraint of DOX-corre-

lated hub proteins by purifying selection to minimize potential dis-

ruptions in their expression.

Highly connected DNA-damage-associated proteins 

influence CVD risk proteins through protein-protein 

interactions

While CVD risk proteins are not enriched among hub proteins or 

DOX-correlated proteins, physical protein interactors of CVD risk 

proteins are enriched among DOX-correlated proteins and DOX- 

correlated hub proteins in particular. This suggests that DNA 

damage can affect the expression of proteins that interact with 

proteins implicated in CVD risk, hinting at the mechanism through 

which some of the disease-associated loci might exert their ef-

fects. For example, DOX-correlated hub proteins PBRM1 and 

SMARCC1 are both chromatin regulators that interact with 

atrial-fibrillation-associated protein DPF3.65 These findings are 

also corroborated by the observation that GWAS risk proteins 

are generally very tolerant to mutation, but their physical PPIs 

are not. However, there are exceptions to this trend such as is 

observed in atrial fibrillation, where GATA4, GTF2I, and CASZ1 

are both CVD proteins and DOX-correlated hub proteins. These 

data support the notion that genetic variation could contribute 

to CVD phenotypes by altering the stability and functionality of 

regulatory proteins that are central to the proteomic DNA damage 

response network through physical protein interactions. There-

fore, our network pinpoints CVD risk proteins that are highly con-

nected to proteins central to the cardiomyocyte DNA damage 

response that can be prioritized for cell-type-specific co-immu-

noprecipitation studies that have proved informative for under-

standing mechanisms behind genes implicated in coronary artery 

disease and autism spectrum disorder.22,23

Considering the DNA damage response network in the 

context of the omnigenic model

The omnigenic model for complex phenotypes posits that thou-

sands of genes expressed in disease-relevant cell types can 
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influence complex traits, whereby core genes have a direct 

impact on the phenotype, while peripheral genes influence it 

indirectly through distant gene interactions.79 In an omnigenic 

architecture, the majority of the heritability influencing complex 

traits with polygenic architecture is distributed across peripheral 

genes and involves extensive regulatory networks connecting 

them to core genes.79,80 In practice, core genes are likely identi-

fied on a graded scale rather than a binary classification, where 

heritability decreases as the degree of separation from core 

genes is reduced. The use of co-expression networks to investi-

gate the omnigenic model provides a powerful approach to un-

tangle the complex interactions specified in this framework.

Co-expression networks across different conditions or tissues 

can use connectivity as a method to identify core and peripheral 

genes and specify the distribution of heritability across degrees 

of separation. For example, Mähler et al., used a transcriptional 

co-expression network from Populus tremula leaf buds to 

demonstrate that eQTL genes are predominantly located at the 

network’s periphery and that connectivity is inversely correlated 

with eQTL effect sizes, implying that core genes (hub genes) 

within modules experience strong selective pressures.81 The 

purifying selection predominantly acting on core genes implies 

an evolutionary conservation that possibly underscores their 

fundamental biological roles. This finding is also consistent 

with the notion that damage to core genes by loss-of-function 

mutations tends to have strong effects on disease risk.79,81 Fóthi 

et al. evaluated the omnigenic model’s application to autism 

spectrum disorder using brain-specific gene interaction net-

works and found that autism gene clusters are significantly 

more connected to each other and the peripheral genes in 

brain-related tissues than in non-brain-related tissues.82 These 

data support the notion that disease-relevant tissues are the 

appropriate context for assessing omnigenic architectures to 

better understand complex traits. Hartl et al. used this foundation 

to generate a co-expression network derived from gene expres-

sion profiles across 12 brain regions to contextualize the func-

tional pathways of risk genes for multiple neuropsychiatric dis-

eases.18 Despite the omnigenic model’s suggestion that 

disease risk is mediated by a small number of core genes indi-

rectly influenced by peripheral genes, the study indicated that 

gene effects are distributed more continuously across the net-

works rather than being separated into distinct core and periph-

eral categories.

The omnigenic model suggests that the connections between 

peripheral and core genes vary by trait and include transcrip-

tional networks, post-translational modifications, and protein- 

protein interactions79,83 and that genetic variants influencing dis-

ease may affect expression in specific cell types or conditions.79

The aforementioned studies all utilize steady-state expression 

data to construct their networks, whereas an omnigenic archi-

tecture relevant to disease may emerge under the conditions 

of specific cell stressors that drive the purifying selection pres-

sure that core genes are placed under. The results obtained for 

DOX-correlated modules resemble what would be predicted 

by an omnigenic architecture, where there is a negative correla-

tion between the influence of genetic variation and network con-

nectivity. However, the opposite is true for proteins that are not 

correlated to DOX. This suggests that the core-periphery struc-

ture may develop in response to selective pressures. Our dy-

namic network differentiates proteins that are actively respond-

ing to stress from those that are not. While modules derived from 

steady-state networks can enrich for various biological pro-

cesses, the connectivity observed at steady state may not accu-

rately reflect gene relationships under disease-relevant condi-

tions. Instead, the core-periphery structure may be dynamic, 

shifting according to different cellular states. If true, it means 

that networks constructed in response to various stressors might 

establish a connectivity profile that pinpoints unique or shared 

core-peripheral relationships to different cell states. Therefore, 

networks generated from cell models that capture the dynamic 

molecular responses to selective pressures or disease-associ-

ated stimuli may be needed to more accurately understand 

how the core-periphery structure described in the omnigenic 

model emerges in the transition from non-disease to disease 

states.

In summary, there are no studies integrating proteomic data 

from cardiomyocytes subjected to DNA damage with measures 

of genetic tolerance to variation and disease. Here, we profiled 

protein abundance in cardiomyocytes treated with DOX across 

multiple individuals. We found that the level of protein connectiv-

ity in DNA-damage-associated co-expression modules influ-

ences the tolerance to genetic variation. We believe that the 

data and analysis presented here will be a resource for further 

studies into the mechanistic effects of DNA damage on the car-

diomyocyte proteome and DOX-induced cardiotoxicity, as well 

as for studies investigating the architecture of complex traits in 

response to perturbation.

Limitations of the study

We generate cardiomyocytes through directed differentiation of 

iPSCs as it allows us to include multiple individuals and use these 

cardiomyocytes in carefully controlled experiments where we 

can treat the same batch of cells with DOX and measure their 

protein abundance. However, it is possible that our in vitro sys-

tem may not fully recapitulate the in vivo molecular profile. We 

also selected a single, sub-lethal, dose of DOX to study the pri-

mary effects of DNA damage on the proteome. It is possible that 

different doses of DOX would apply different selective pressures 

on the proteome and identify different response proteins and 

mutation tolerance. However, we believe our results using a clin-

ically relevant dose of a widely used chemotherapeutic agent 

allow us to provide useful insights. Similarly, the response to 

DNA damage may be temporally dynamic and hence our results 

may not extrapolate to shorter or longer exposure times.

While mass spectrometry is a powerful tool for measuring pro-

tein abundance, it has inherent limitations that can affect the 

comprehensiveness and accuracy of the data acquired. For 

example, it may not detect low-abundance proteins effectively, 

leading to an incomplete representation of the proteome. 

Further, while protein abundance is a critical metric, it is not 

the only relevant measure when assessing protein function and 

cellular responses. Other important protein metrics include 

post-translational modifications such as phosphorylation, 

ubiquitination, and glycosylation, which can significantly alter 

protein function, stability, localization, and interactions. Future 

studies that integrate more comprehensive transcriptional and 
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proteomic networks that capture multiple time points and 

greater protein coverage may enhance the findings from similarly 

designed studies.
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82. Fóthi, Á., Pintér, C., Pollner, P., and L}orincz, A. (2022). Peripheral gene 

interactions define interpretable clusters of core ASD genes in a 

network-based investigation of the omnigenic theory. npj Syst. Biol. 

Appl. 8, 28.

83. Ratnakumar, A., Weinhold, N., Mar, J.C., and Riaz, N. (2020). Protein- 

Protein interactions uncover candidate ‘core genes’ within omnigenic 

disease networks. PLoS Genet. 16, e1008903.

84. Blischak, J.D., Carbonetto, P., and Stephens, M. (2019). Creating and 

sharing reproducible research code the workflowr way. F1000Research 

8, 1749.

85. Panopoulos, A.D., D’Antonio, M., Benaglio, P., Williams, R., Hashem, S. 

I., Schuldt, B.M., DeBoever, C., Arias, A.D., Garcia, M., Nelson, B.C., 

et al. (2017). iPSCORE: a resource of 222 iPSC lines enabling functional 

characterization of genetic variation across a variety of cell types. Stem 

Cell Rep. 8, 1086–1100.

86. Streeter, I., Harrison, P.W., Faulconbridge, A., The HipSci Consortium; 

Flicek, P., Parkinson, H., and Clarke, L. (2017). The human-induced 

pluripotent stem cell initiative—data resources for cellular genetics. Nu-

cleic Acids Res. 45, D691–D697.

87. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to 

ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.

88. Herrmann, G.K., Russell, W.K., Garg, N.J., and Yin, Y.W. (2021). Poly 

(ADP-ribose) polymerase 1 regulates mitochondrial DNA repair in an 

NAD-dependent manner. J. Biol. Chem. 296, 100309.

89. Searle, B.C., Swearingen, K.E., Barnes, C.A., Schmidt, T., Gessulat, S., 
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Cardiac Troponin T antibody BD Biosciences Cat# 564767; RRID: AB_2738939

Phospho-Histone H2A.X (Ser139) Rabbit mAb Thermo Fisher Scientific Cat# NC1602516; RRID: AB_2898141

Donkey anti-Rabbit Alexa Fluor 594 antibody Invitrogen Cat# A-21207; RRID: AB_141637

Chemicals, peptides, and recombinant proteins

mTESR1 Stem Cell Technology Catalog No. 85850

Penicillin/Streptomycin Corning Catalog No. 30-002-Cl

Matrigel hESC-qualified Matrix Corning Catalog No. 354277

CHIR99021 trihydrochloride Tocris Bioscience Catalog No. 4953

RPMI 1640 Corning Catalog No. 15-040-CM

B-27 minus insulin Thermo Fisher Scientific Catalog No. A1895601

GlutaMAX Thermo Fisher Scientific Catalog No. 35050-061

Wnt-C59 Tocris Bioscience Catalog No. 5148

RPMI without glucose Thermo Fisher Scientific Catalog No. 11879

L-Ascorbic acid 2-phosphate 

sesquimagnesium salt

Santa Cruz Biotechnology Catalog No. sc228390

Human Recombinant Albumin Sigma-Aldrich Catalog No. A0237

HEPES (L(+)Lactic acid sodium Sigma-Aldrich Catalog No. L7022

Trypsin-EDTA Corning Catalog No. 25–053 Cl

DMEM without glucose Thermo Fisher Scientific Catalog No. A1443001

FBS Genemate Catalog No. S1200-500

Galactose Sigma-Aldrich Catalog No. G5388

Sodium pyruvate Thermo Fisher Scientific Catalog No. 11360–070

FOXP3/Transcription Factor Staining Buffer Set Thermo Fisher Scientific Catalog No. 00–5523

autoMACS® Buffer Miltenyi Biotec Catalog No. 130-091-221

Doxorubicin Sigma-Aldrich Catalog No. D1515

Hoechst 33342 nucleic acid stain Thermo Fisher Scientific Catalog No. PI62249

Tris(2-carboxyethyl) phosphine Thermo Fisher Scientific Catalog No. 77720

Trypsin Promega Catalog No. V5280

Critical commercial assays

Zombie Violet Fixable Viability Kit BioLegend Catalog No. 423113

BCA Protein Assay kit Thermo Fisher Scientific Catalog No. 23227

Nanoflow liquid chromatography-tandem 

mass spectrometry and analysis

UltiMate 3000 RSLCnano, Dionex N/A

Quantitative Fluorometric Peptide Assay ThermoFisher Scientific Catalog No. 23290

Deposited data

Mass Spectrometry data MassIVE database 

(https://massive.ucsd.edu/ 

ProteoSAFe/static/massive.jsp)

MassIVE: MSV000094446

Code GitHub GitHub: https://github.com/mward-lab/ 

Johnson_DNA_damage_DOX_2025

Experimental models: Cell lines

Human iPSCORE iPSC line: UCSD143i-87-1 University of California San Diego & 

the WiCell Research Institute

https://www.wicell.org/home/stem-cells/ 

catalog-of-stem-cell-lines/ucsd143i-87- 

1.cmsx?closable=true
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human induced pluripotent stem cell (iPSC) lines

Three human iPSC lines were used in this study. All lines were derived from skin fibroblasts of healthy female donors with no prior 

history of cardiac disease.

(1) Individual 1 (UCSD131i-77-1): An iPSC line derived from a 21-year-old Asian-Chinese female donor that is part of the iPSCORE 

collection at the University of California San Diego. The cell line was generated by Dr. Kelly A. Frazer as part of the National 

Heart, Lung and Blood Institute Next Generation Sequencing Consortium85 and is available through the biorepository at WiCell 

Research Institute (Madison, WI, USA), or through contacting Dr. Kelly A. Frazer at the University of California, San Diego.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human iPSCORE iPSC line: UCSD131i-77-1 University of California San Diego & 

the WiCell Research Institute

https://www.wicell.org/home/stem-cells/ 

catalog-of-stem-cell-lines/ucsd131i-77- 

1.cmsx?closable=true

Human HipSci iPSC line: WTSIi048-A EBiSC & ECACC https://www.ebi.ac.uk/ena/browser/ 

view/ERZ368931?show=analyses

Software and algorithms

MSConvert Command line software Version 3

DIA-NN Github Version 1.9

ImageJ National Inst. Of Health Version 1.54i

Cytoscape Open source Version 3.10.0

AnnotationDbi R package Version 1.66.0

biomaRt R package Version 2.60.1

BioNERO R package Version 1.12.0

clusterProfiler R package Version 4.12.6

dynamicTreeCut R package Version 1.63–1

edgeR R package Version 4.2.1

ggraph R package Version 2.2.1

igraph R package Version 2.0.3

impute R package Version 5.1–3

limma R package Version 3.60.4

org.Hs.e.g.,.db R package Version 3.19.1

pheatmap R package Version 1.0.12

ruv R package Version 0.9.7.1

stats R package Version 4.4.1

SummarizedExperiment R package Version 1.34.0

tidygraph R package Version 1.3.1

WGCNA R package Version 1.72–5

Proteome Discoverer Thermo Fisher Scientific Version 2.2.0388

Other

LSRFortessa Cell Analyzer BD Bioscience https://www.bdbiosciences.com/en-us/ 

products/instruments/flow-cytometers/ 

research-cell-analyzers/bd-lsrfortessa

nano-LC chromatography system Thermo Fisher Scientific 

(UltiMate 3000 RSLCnano, Dionex)

https://www.thermofisher.com/order/ 

catalog/product/ULTIM3000RSLCNANO

Orbitrap Eclipse Tribrid Mass Spectrometer Thermo Fisher Scientific https://www.thermofisher.com/us/en/ 

home/industrial/mass-spectrometry/ 

liquid-chromatography-mass-spectrometry- 

lc-ms/lc-ms-systems/orbitrap-lc-ms/ 

orbitrap-tribrid-mass-spectrometers/ 

orbitrap-eclipse-tribrid-mass- 

spectrometer.html
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(2) Individual 2 (UCSD143i-87-1): An iPSC line derived from a 23-year-old Asian-Chinese female donor that is part of the iPSCORE 

collection at the University of California San Diego. The cell line was generated by Dr. Kelly A. Frazer as part of the National 

Heart, Lung and Blood Institute Next Generation Sequencing Consortium85 and is available through the biorepository at WiCell 

Research Institute (Madison, WI, USA), or through contacting Dr. Kelly A. Frazer at the University of California, San Diego.

(3) Individual 3 (WTSIi048-A): An iPSC line derived from a 72-year-old White British female donor that is part of the HipSci project, 

funded by the Wellcome Trust and Medical Research Council.86 The cell line is available from the European Bank of induced 

pluripotent Stem Cells (EBiSC) and the European Collection of Authenticated Cultures (ECACC).

All iPSC lines were maintained in feeder-free culture conditions with mTeSR1 medium on Matrigel-coated plates. Cells were 

cultured at 37◦C in 5% CO2 and 95% humidity and routinely passaged using EDTA-based dissociation. All iPSC lines were tested 

and confirmed negative for mycoplasma contamination prior to experimentation.

Ethical approvals and consent

(1) The iPSCORE lines (UCSD131i-77-1 and UCSD143i-87-1) were generated with informed written consent from donors and 

approval by the Institutional Review Boards of the University of California San Diego and The Salk Institute (IRB protocol: 

110776ZF).

(2) The HipSci line (WTSIi048-A) was generated with donor consent and approved by the East of England - Cambridge Central 

Research Ethics Committee (REC 15/EE/0049).

Sex and gender consideration

This study used iPSC lines derived from female donors. As such, the influence of biological sex on gene expression and phenotype 

could not be evaluated across sexes. This represents a limitation in terms of generalizability of our findings to male-derived cardio-

myocytes. Future studies including male donor-derived iPSC lines are needed to address potential sex-specific effects in the 

observed phenotypes.

Sample size and allocation to experimental groups

This study included three human iPSC lines from three donors. The sample size was determined based on proteomics benchmarks 

and established molecular responses to DOX. Cardiomyocytes from each individual were treated with DOX or Vehicle. The treatment 

was replicated three times for Individual 3, allowing for modeling of technical variation in the experimental process. 10 samples in 

total were generated. Cardiomyocytes from each individual were randomly assigned to the DOX or Vehicle treatment groups. Protein 

was extracted from all samples in one batch.

METHOD DETAILS

iPSC culture

Feeder-independent iPSCs were cultured in mTESR1 (85850, Stem Cell Technology, Vancouver, BC, Canada) media with 1% 

Penicillin/Streptomycin (30-002-Cl, Corning, Bedford, MA. USA) on hESC-qualified Matrigel Matrix (354277, Corning, Bedford, 

MA, USA) at a dilution of 1:100. iPSCs were passaged with dissociation reagent (0.5 mM EDTA, 300 mm NaCl in PBS) when they 

attained 70–80% confluency, approximately every 3–5 days.

Cardiomyocyte differentiation

Cardiomyocyte differentiations were performed as previously described.26 Briefly, iPSC lines were seeded in Matrigel-coated culture 

dishes (Days − 6/-5) and cultured until 85–90% confluent. Differentiations were initiated (Day 0) by adding 12 μM of the GSK3 inhibitor, 

CHIR99021 trihydrochloride (4953, Tocris Bioscience, Bristol, UK) in Cardiomyocyte Differentiation Media (CDM) [500 mL RPMI 1640 

(15-040-CM, Corning), 10 mL B-27 minus insulin (A1895601, ThermoFisher Scientific, Waltham, MA, USA), 5 mL GlutaMAX (35050- 

061, ThermoFisher Scientific), and 5 mL of Penicillin/Streptomycin (100X) (30-002-Cl, Corning)]. After 24 h (Day 1), the media was 

replaced with fresh CDM. On Day 3 (after 48 h) media was replaced with CDM containing 2 μM of the Wnt signaling inhibitor Wnt- 

C59 (5148, Tocris Bioscience) in CDM. CDM was replaced on Day 5, 7, 10 and 12. We observed spontaneously beating cells between 

Day 7–10. iPSC-CMs were purified by metabolic selection with glucose-free, lactate-containing media [500 mL RPMI without glucose 

(11879, ThermoFisher Scientific), 106.5 mg L-Ascorbic acid 2-phosphate sesquimagnesium salt (sc228390, Santa Cruz Biotech-

nology, Santa Cruz, CA, USA), 3.33 mL 75 mg/mL Human Recombinant Albumin (A0237, Sigma-Aldrich, St Louis, MO, USA), 

2.5 mL 1 M lactate in 1 M HEPES (L(+)Lactic acid sodium (L7022, Sigma-Aldrich)), and 5 mL Penicillin/Streptomycin] added on 

Day 14, 16 and 18. On Day 20, iPSC-CMs were detached with 0.05% Trypsin-EDTA solution (25–053 Cl, Corning), and a single 

cell suspension was generated by straining. iPSC-CMs were counted with a Countess 2 machine. 1.5 million iPSC-CMs were plated 

per well of a 0.1% Gelatin-coated 6-well plate in 3 mL Cardiomyocyte Maintenance Media (CMM) [500 mL DMEM without glucose 

(A1443001, ThermoFisher Scientific), 50 mL FBS (S1200-500, Genemate), 990 mg Galactose (G5388, Sigma-Aldrich), 5 mL 100 mM 
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sodium pyruvate (11360–070, ThermoFisher Scientific), 2.5 mL 1 M HEPES (SH3023701, ThermoFisher Scientific), 5 mL Glutamax 

(35050–061, ThermoFisher Scientific), 5 mL Penicillin/Streptomycin]. The iPSC-CMs were matured in culture for 10 days, with CMM 

replaced on Day 23, 25, 27, 28, and 30.

iPSC-CM purity determination using flow cytometry

After differentiation of iPSCs from Individuals 2 & 3, the iPSC-CM purity was determined using flow cytometry. Between Day 25–27 of 

differentiation the iPSC-CMs were dissociated with 0.05% Trypsin-EDTA solution and strained to generate a single cell suspension. 

One million cells were stained with Zombie Violet Fixable Viability Kit (423113, BioLegend) for 30 min at 4◦C prior to fixation and per-

meabilization (FOXP3/Transcription Factor Staining Buffer Set, 00–5523, ThermoFisher Scientific) for 30 min at 4◦C. Cells were 

stained with 5 mL PE Mouse Anti-Cardiac Troponin T antibody (564767, clone 13–11, BD Biosciences, San Jose, CA, USA) for 

45 min at 4◦C. Cells were washed three times in permeabilization buffer and re-suspended in autoMACS Running Buffer (130- 

091-221, Miltenyi Biotec, Bergisch Gladbach, Germany). We used several negative controls in each flow cytometry experiment: 1) 

iPSCs, which should not express TNNT2, 2) an iPSC-CM sample that has not been labeled with viability stain or TNNT2 antibody, 

3) an iPSC-CM sample that is only labeled with the viability stain and 4) an iPSC-CM sample that is only labeled with TNNT2. 

10,000 cells were captured and profiled on the BD LSRFortessa Cell Analyzer. Multiple gating steps were performed to determine 

the proportion of TNNT2-positive cells: 1) Cellular debris was removed by gating out cells with low granularity on FSC versus 

SSC density plots, 2) From this population, live cells were identified as the violet laser-excitable, Pacific Blue dye-negative popula-

tion, 3) TNNT2-positive cells were identified within the set of live cells and any cells that overlap the profiles of the negative control 

samples were excluded. iPSC-CM purity is reported as the proportion of TNNT2-positive live cells.

Drug treatment of iPSC-CMs

On Day 29, iPSC-CMs were treated with 0.5 μM of Doxorubicin (D1515, Sigma-Aldrich) or vehicle (Molecular Biology grade water) in 

fresh CMM media for 24 h. The treatment for Individual 3 was replicated two additional times yielding 10 samples in total across three 

individuals. Post-treatment, cells were washed twice and scraped in ice-cold PBS. iPSC-CMs were flash-frozen and stored at − 80◦C 

prior to further processing.

γH2AX immunofluorescence staining and quantification of DNA double-strand breaks

300,000 iPSC-CMs were seeded per well of a 24-well plate in CMM media. Cells were treated with 0.5 μM DOX or vehicle (DMSO). 

The treated cells were fixed in 4% paraformaldehyde for 15 min and permeabilized with 0.25% DPBS-T for 10 min at room temper-

ature. Cells were incubated with 5% BSA:DPBS-T for 30 min at room temperature, then incubated with a 1:500 dilution of γ-H2AX 

primary antibody in BSA:DPBS-T overnight at 4◦C (Phospho-Histone H2A.X (Ser139) Rabbit mAb; NC1602516; Fisher Scientific). 

Cells were incubated with Fluorochrome-conjugated secondary antibody (Donkey anti-Rabbit Alexa Fluor 594, A-21207, Invitrogen) 

for 1 h at room temperature at a 1:1000 dilution in DPBS-T. Cell nuclei were counterstained with Hoechst 33342 nucleic acid stain 

(PI62249, Thermo Scientific) for 10 min in the dark. Stained cells were subjected to fluorescence microscopy. The total number of 

nuclei and γH2AX-positive nuclei were quantified using the cell counter plugin of ImageJ software.87 The number of γH2AX-positive 

nuclei were divided by the total number of nuclei to determine the percentage of γH2AX-positive nuclei in DOX- and vehicle-treated 

iPSC-CMs for three different individuals. The percentage of γH2AX-positive cells between vehicle- and DOX-treated iPSC-CM sam-

ples was compared by t test.

Protein isolation and quantification

Protein was isolated from iPSC-CMs by lysing the cells with RIPA buffer [1.5 mL 5 M NaCl, 1 mL Triton X-100, 1 g Na deoxycholate, 

1 mL 10% SDS, 1 mL 1 M Tris pH 7.4 and 45 mL dH2O] with protease inhibitor for 1 h at 4◦C. Isolated proteins were quantified by using 

the BCA Protein Assay kit (23227, Thermo Scientific) according to the manufacturer’s instructions.

Protein digestion

The samples were prepared similarly as previously described.88 Briefly, 15 μg of protein were solubilized with 60 μL of 50 mM Trie-

thylammonium bicarbonate (TEAB) pH 7.55. The proteins were then reduced with 10 mM Tris(2-carboxyethyl) phosphine (TCEP) 

(77720, Thermo) and incubated at 65◦C for 10 min. The sample was then cooled to room temperature and 1 μL of 500 mM iodoace-

tamide acid was added and allowed to react for 30 min in the dark. Then, 3.3 μL of 12% phosphoric acid was added to the protein 

solution followed by 200 μL of binding buffer (90% Methanol, 100mM TEAB pH 8.5). The resulting solution was added to S-Trap spin 

column (protifi.com) and passed through the column using a bench top centrifuge (60 s spin at 1,000 g). The spin column is washed 

with 150 μL of binding buffer and centrifuged. This is repeated two times. 30 μL of 20 ng/μL Trypsin is added to the protein mixture in 

50 mM TEAB pH 8.5, and incubated at 37◦C overnight. Peptides were eluted twice with 75 μL of 50% acetonitrile, 0.1% formic acid. 

Aliquots of 20 μL of eluted peptides were quantified using the Quantitative Fluorometric Peptide Assay (Pierce, Thermo Fisher Sci-

entific). Eluted volume of peptides corresponding to 5.5 μg of peptides are dried in a speed vac and resuspended in 27.5 μL 1.67% 

acetonitrile, 0.08% formic acid, 0.83% acetic acid, 97.42% water and placed in an autosampler vial.
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Nanoflow liquid chromatography mass spectrometry

Peptide mixtures were analyzed by nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) using a nano-LC 

chromatography system (UltiMate 3000 RSLCnano, Dionex), coupled on-line to a Thermo Orbitrap Eclipse mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA) through a nanospray ion source. Instrument performance was verified by analyzing a stan-

dard six protein mix digest before the sample set run, between each experimental block and at the end of the experiment. The six 

protein mix data files were analyzed to confirm that instrument performance remained consistent throughout the experiment. A direct 

injection method using 3 μL of digest onto an analytical column was used; Aurora (75 μm × 25 cm, 1.6 μm) from (IonOpticks). After 

equilibrating the column in 98% solvent A (0.1% formic acid in water) and 2% solvent B (0.1% formic acid in acetonitrile (ACN)), the 

samples (2 μL in solvent A) were injected (300 nL/min) by gradient elution onto the C18 column as follows: isocratic at 2% B, 0–5 min; 

2%–6%, 5–5.1 min; 6%–25% 5.1–105 min, 25%–50% B, 105–120 min; 50%–90% B, 120–122 min; isocratic at 90% B, 122–124 min; 

90%–5%, 124–125 min; isocratic at 5% B, 125–126 min; 5%–90% 126–128 min; isocratic for 1 min; 90%–2%, 129–130 min; and 

isocratic at 2% B, till 150 min.

NanoLC MS/MS analysis for DDA

All data were acquired using an Orbitrap Eclipse in positive ion mode using a top speed data-dependent acquisition (DDA) method 

with a 3 s cycle time and a spray voltage of 1600 V. The survey scans (m/z 375–2000) were acquired in the Orbitrap at 120,000 res-

olution (at m/z = 400) in profile mode, with a maximum injection time of 100 ms and an AGC target of 1,000,000 ions. The S-lens RF 

level was set to 30. Isolation was performed in the quadrupole with a 1.6 Da isolation window, and HCD MS/MS acquisition was per-

formed in profile mode using the orbitrap at a resolution of 15,000 using the following settings: parent threshold = 5,000; collision 

energy = 30%; AGC target at 125,000 using the default settings. Monoisotopic precursor selection (MIPS) and charge state filtering 

were on, with charge states 2–10 included. Dynamic exclusion was used to remove selected precursor ions, with a +/− 10 ppm mass 

tolerance, for 30 s after acquisition of one MS/MS spectrum.

NanoLC MS/MS analysis for DIA

All LC-MS/MS data were acquired using an Orbitrap Eclipse in positive ion mode using a data-independent acquisition (DIA) method 

with 16 Da windows from 400 to 1000 and a loop time of 3 s. The survey scans (m/z 350–1500) were acquired in the Orbitrap at 60,000 

resolution (at m/z = 400) in centroid mode, with a maximum injection time of 118 ms and an AGC target of 100,000 ions. The S-lens RF 

level was set to 60. Isolation was performed in the quadrupole, and HCD MS/MS acquisition was performed in profile mode using the 

orbitrap at a resolution of 30000 using the following settings: collision energy = 33%, IT 54 ms, AGC target = 50,000. A pooled sample 

was used to create spectral libraries that we search the individual samples against by injecting 5 times using narrow (4 Da), staggered 

windows over 100 m/z ranges from 400 to 900 m/z in a technique called gas phase fractionation as described in Searle et al.89

Database searching for DDA proteins

Tandem mass spectra were extracted and charge state deconvoluted using Proteome Discoverer (Thermo Fisher, version 2.2.0388). 

Deisotoping was not performed. All MS/MS spectra were searched against a Uniprot Human database using Sequest and the Minora 

node used to perform Label-Free Quan (LFQ) using the MS peak areas for each of the peptide-spectral matches (PSMs). Searches 

were performed with a parent ion tolerance of 5 ppm and a fragment ion tolerance of 0.02 Da. Trypsin was specified as the enzyme, 

allowing for two missed cleavages. Fixed modification of carbamidomethyl (C) and variable modifications of oxidation (M) and dea-

midation were specified in Sequest. Protein identities reported at 1% false discovery rate were considered for filtering and down-

stream analysis.

Database searching for DIA proteins

The raw data was demultiplexed to mzML with 10 ppm accuracy after peak picking in MSConvert.90 The resulting mzML files were 

searched in MSFragger91 and quantified via DIA-NN92 using the following settings: peptide length range 7–50, protease set to 

Trypsin, 2 missed cleavages, 3 variable modifications, clip N-term M on, fixed C carbamidomethylation, variable modifications of 

methionine oxidation and n-terminal acetylation, MS1 and MS2 accuracy set to 20 ppm, 1% FDR, and DIANN quantification strategy 

set to Robust LC (high accuracy). The files were searched against a database of human acquired from Uniprot (18th December, 2023). 

The gas-phase fractions were used only to generate the spectral library, which was used for analysis of the individual samples.

Abundance matrix filtering and imputation

We removed four non-human or uncharacterized proteins (UniProt: Q6ZSR9, P15252, P25691, P00761). Proteins that were missing 

across 50% or more of the samples were removed. For the remaining 246 proteins, missing values were imputed using k-Nearest 

Neighbors from the impute package knn. with, parameters k (number of neighbors to be used in the imputation) and rowmax (the 

maximum percent missing data allowed in any row).30 Using k = 10 in the impute.knn function leverages all available samples to 

impute missing values, given the small sample size of our dataset. The rowmax = 0.4 parameter allows for imputing rows with up 

to 40% missing values, balancing the need to retain as much data as possible while maintaining the quality of the imputations. These 

steps led to a total of 4,178 analyzable proteins across all samples.
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Removal of unwanted technical variation and normalization

To eliminate unwanted technical variation from the log2-transformed imputed abundance matrix, we adjusted the 10 sample data 

matrix using both negative controls and the replicate data with the RUV-III function in the ruv R package.93 Negative control proteins 

were defined as the 5% least variable proteins across all samples. The RUV-corrected abundance matrix and RUV factors were used 

in downstream analysis.

Comparison of the iPSC-CM proteome with the proteome across human tissues

Protein abundance values across 26 tissues was obtained from Jiang et al.20 We identified the set of proteins expressed across the 

26 tissues and our iPSC-CMs. We calculated the median abundance across individuals for the set of 26 tissues, as well as for our 

iPSC-CMs. The median abundance between our iPSC-CMs and each of the 26 tissues was correlated using Pearson correlation.

WGCNA network construction

We adopted the Weighted Gene Co-expression Network Analysis (WGCNA) methodology to investigate correlations between protein 

abundances in our RUV-corrected abundance matrix of DOX- and VEH-treated iPSC-CMs.32 The WGCNA framework, primarily uti-

lizing wrapper functions from BioNERO, was implemented for this analysis.94 We first established a scale-free network topology, 

achieved by determining the appropriate soft threshold power using the SFT_fit function. After iterating different soft power thresh-

olds (β), the linear regression of log10(k) versus log10(p(k)) indicates that by setting β = 20, the network is close to a scale-free network, 

where k is the whole network connectivity and p(k) is the corresponding frequency distribution. This setting resulted in our network 

attaining a scale-free fit index of 0.71 (quantification of how well the network approximates a scale-free topology), with a mean node 

connectivity of 65.4 and median connectivity of 53.6. We identified modules of co-expressed proteins using a modified workflow as 

previously described.32,94 The workflow was encapsulated in the exp2gcn2 function from the BioNERO package. We selected a 

signed network with a soft power threshold of 20, merging threshold of 0.85, and the pearson correlation method. We computed 

the Topological Overlap Matrix (TOM), a measure of network connectivity that emphasizes the shared neighbors between protein 

pairs to enhance the robustness and reliability of the calculated adjacency network. Using hierarchical clustering on the dissimilarity 

TOM (dissTOM), we identified initial modules of co-expressed proteins. The dynamic tree cut method using the cutreeDynamicTree 

function with maxTreeHeight of 3, minimum module sizes of 40 and no deep splitting was applied to the protein dendrogram to define 

these modules by modifying the exp2gcn2 function. The module eigenproteins (MEs), representing the first principal component for 

the module, were then calculated across modules with moduleEigengenes. These eigenproteins served as characteristic expression 

profiles of proteins within a module and were used to assess the interrelation between modules. Similar modules were merged based 

on the eigenprotein dissimilarity, ensuring that highly correlated modules were combined. Modules whose eigenproteins had a cor-

relation of 0.85 or greater were merged.

We used three types of connectivity metrics to describe how each node/protein in the network related to other nodes/proteins. 

Total connectivity was calculated by summing the weighted correlations between each protein and all other proteins in the network 

(kTotal). Intra-modular connectivity (kIN) was calculated by summing the weighted correlations between each protein and all other 

proteins in the assigned module. Extra-modular connectivity (kOut) was calculated by summing the weighted correlations between 

each protein and all other proteins outside the assigned module.

Identification of hub proteins

We identified hub proteins that might play central roles in the biological processes represented by each module. We used the 

get_hubs_gcn function to identify hub proteins within our protein abundance correlation network. Hub proteins within modules 

are defined as the proteins with the highest intra-modular connectivity (kIN) score (top 10%) and the highest pearson correlation value 

with the module eigenprotein (>0.8).

Module correlation to DOX treatment and individual

To assess the relationship between each module’s eigenprotein and the defined trait (DOX treatment or individual), we performed a 

pearson correlation analysis using the cor.test function from the stats package in R.95 This analysis provided a correlation coefficient 

for each module, indicating the strength and direction of the association between the module’s expression profile and the experi-

mental condition. The statistical significance of these correlations was determined by extracting p values for each module-trait cor-

relation using the cor.test function, where p values less than 0.01 were determined to be significant.

Hub protein correlation network visualization in DOX-correlated modules

The correlation network for hub proteins in DOX-correlated modules was visualized using the igraph package in R.96 Abundance cor-

relations between proteins were obtained using the get_edge_list function from BioNERO.94 Protein pairs with positive Pearson cor-

relations of 0.9 or more were selected for visualization.

Linear modeling to identify differentially abundant proteins

We utilized the limma package to fit protein abundances to a linear model across conditions.97,98 We randomly selected one technical 

replicate per treatment group from Individual 3 so as not to confound technical and biological variation in the linear modeling process. 
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The RUV-III corrected abundance matrix from six samples was quantile normalized using the normalizeBetweenArrays function. 

Drug treatment (DOX or VEH) was modeled as a fixed effect, whereas individual (IND) was treated as a random effect estimated using 

the duplicateCorrelation function. The linear model fitting was done using lmFit, which incorporated the block effect from the individ-

uals and the design matrix. This model was then passed through the empirical Bayes moderation in the eBayes function to obtain 

moderated t-statistics. We defined contrasts in the linear model to compare the differential expression between DOX and VEH con-

ditions such that positive log2-fold change values correspond to increased abundance in the DOX-treated group, and negative values 

correspond to decreased abundance in the DOX-treated group. The model was refitted with these contrasts, and empirical Bayes 

moderation was applied again to adjust the statistics. We performed multiple-testing correction with the Benjamini-Hochberg 

method and denoted those proteins that meet an adjusted p-value threshold of 0.05 as differentially abundant proteins (DAPs).

Comparison of the DIA and DDA datasets

We detected 4,501 proteins by DDA and removed all proteins containing at least one missing protein abundance value, resulting in 

3,384 measured proteins. We detected 4,261 proteins by DIA and removed all proteins containing at least one missing protein abun-

dance value, resulting in 3,934 measured proteins. We selected the 3,027 proteins shared between these two sets and calculated the 

mean log2 abundance for each protein across all samples. DDA and DIA protein log2 abundance were fit to a linear model using the 

lmFit function to determine the strength and significance of the correlation between datasets. We identified differentially abundant 

proteins in the DDA dataset as described above for DIA, using the same preprocessing and modeling parameters. We then compared 

the response effect sizes (log2 fold change) between proteins shared between the two datasets using the lmFit function to determine 

the strength and significance of the correlation between datasets.

Comparison of proteins elevated in heart tissue across modules

We sourced data on proteins whose expression is elevated in heart tissue compared to other tissue types from the Human Protein 

Atlas.33 Elevated proteins correspond to those with at least a 4-fold higher mRNA level in a particular tissue compared to any other 

tissue. Proteins identified as elevated in heart tissue were categorized into their respective modules within our correlation network. 

We then calculated their percentages relative to the total protein count within each respective module.

Comparison of heart ventricle tissue specificity scores across modules

Tissue specificity values for ’Heart.Ventricle’ were obtained for our 4,178 proteins.20 We tested for differences in tissue specificity 

across modules using a Wilcoxon rank-sum test for each module. We compared scores between all proteins in a given module, 

and all proteins not contained within that module, where significant differences were denoted when p < 0.05.

Cellular localization of module proteins

We retrieved lists of proteins classified as signal peptides, voltage-gated channels, secreted, intracellular, membrane-bound, or 

plasma proteins from the Human Protein Atlas database.33 We utilized the UniProt database34 to identify proteins experimentally 

shown to be located in subcellular structures including autophagosomes, membranes, cytoplasm, cytoskeleton, endoplasmic retic-

ulum, Golgi apparatus, lysosomes, mitochondria, nucleus, and sarcomere. We classified each protein in the correlation network ac-

cording to the above annotations, and performed a Fisher’s exact test to determine which modules were enriched for proteins from a 

particular classification. Fisher’s exact test p < 0.05 was considered significant.

Biological process enrichment across modules

To interpret the biological significance of the WGCNA-derived modules correlated with the DOX treatment, enrichment analysis was 

performed based on annotated Gene Ontologies (GO).99 The enrichGO function from the clusterProfiler R package was used to test 

the enrichment of terms associated with biological processes against the background of all network proteins.100 Enriched terms were 

those with a Benjamini-Hochberg adjusted p < 0.05.

Functional categorization of module proteins

We retrieved lists of proteins classified as human transcription factors,35 RNA binding proteins (RBPs),37 enzymes and transporter 

proteins,33 and mammalian stress granule (MSG) proteins.36 Enrichment of different protein categories within each module was 

determined by Fisher’s exact test. Enriched terms were those with a Benjamini-Hochberg adjusted p < 0.05.

Protein family enrichment amongst module proteins

We queried UniProt for protein family names for the set of network proteins.34 We assigned each protein to its set of families and 

performed a Fisher’s exact test to determine which modules were enriched for proteins from a particular family. Those with a 

Benjamini-Hochberg adjusted p < 0.05 were considered significant.

pQTL protein enrichment

We obtained plasma pQTL data from the UK Biobank.17 We selected pQTLs that were identified independent of genetic ancestry. 

pQTLs were further classified as cis-pQTLs or trans-pQTLs. For pQTL protein enrichment analysis, we collated the set of unique 
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pQTL proteins. We tested for enrichment of pQTL proteins among hub proteins, DOX-correlated proteins, and DOX-correlated hub 

proteins, compared to the set of proteins not contained within each of those sets using the Fisher’s exact test. A Fisher’s exact 

p < 0.05 was considered statistically significant.

Comparison of pQTL SNP effect sizes

From the aforementioned set of cis-pQTLs and trans-pQTLs, we selected the SNP with the highest effect size for each protein. We 

tested for differences in effect sizes between DOX-correlated and non-DOX-correlated proteins, hub proteins and non-hub proteins, 

and DOX-correlated hub proteins and non-DOX-correlated hub proteins using a Wilcoxon rank-sum test, where a p < 0.05 was 

considered statistically significant.

Proportion of pQTLs across network protein connectivity deciles

For each protein in the network, we calculated the normalized intra-modular connectivity by taking the kIN of each protein and 

dividing it by one less than the number of module connections. Proteins were assigned to one of two groups based on their DOX- 

correlation status, and stratified into deciles based on their normalized intra-modular connectivity. We then calculated the proportion 

of proteins in each decile that were pQTLs (either cis- or trans-pQTLs).

pLI, pHaplo and pTriplo comparisons across modules

We obtained probability of loss-of-function intolerance (pLI) scores101 and probability of Haploinsufficiency (pHaplo) and Triplosen-

sitivity (pTriplo) scores.44 We tested whether the set of scores for each metric was different for each module compared to all proteins 

in the network outside the module using the Wilcoxon rank-sum test. p < 0.05 was considered to be significant.

Comparisons between pLI scores and network connectivity

Proteins with a pLI ≥0.9 are considered intolerant to mutation, while proteins with a pLI ≤0.1 are considered tolerant to mutation. We 

compared the normalized kIN values of mutation-intolerant proteins to mutation-tolerant proteins using the Wilcoxon rank-sum test. 

p < 0.05 was considered to be significant.

We used three types of connectivity metrics to describe how each protein in the network related to pLI scores across connectivity 

deciles. Total connectivity was calculated by summing the weighted correlations between each protein and all other proteins in the 

network (kTotal). Normalized kIN was used as described above. Extra-modular connectivity (kOut), the correlation between proteins 

within each module to all proteins outside the module, was normalized by dividing kOut by the number proteins outside the target 

protein’s module. Proteins were assigned into two groups based on their DOX-correlation status, and deciles generated for each 

aforementioned type of connectivity.

To ascertain enrichment for mutation-tolerant or intolerant proteins among hub proteins, DOX-correlated proteins, and DOX-corre-

lated hub proteins, the Fisher’s exact test was conducted. A Fisher’s exact p < 0.05 was considered statistically significant.

CVD GWAS enrichment testing

We obtained GWAS summary statistics from the GWAS catalog.50 We downloaded summary statistics for ‘‘heart disease’’ 

(EFO_0003777) to obtain risk proteins for ‘‘atrial fibrillation’’ and ‘‘heart failure’’. As per the catalog’s metadata, each trait is associated 

with a set of SNPs and each SNP is associated with a ‘mapped gene’. If the SNP is located in a chromosomal region that falls within a 

gene, then that gene is considered the mapped gene. For intergenic SNPs, SNPs are mapped to the nearest gene upstream or down-

stream of its chromosomal location. These 333 mapped AF genes and 115 mapped HF genes were intersected with our set of iPSC- 

CM expressed proteins yielding 70 AF and 20 HF proteins to interrogate for enrichment across modules. Module-wise enrichment 

testing was then performed by comparing to the set of all proteins not contained within the module of interest. This analysis involved 

constructing contingency tables for each module-gene set pair and conducting Fisher’s exact tests to determine the overlap.

CVD risk protein interactor enrichment testing

Using the set of ‘heart disease’ CVD risk proteins as mentioned above, protein UniProt IDs were uploaded to STRINGdb and PPI 

networks were generated.102 We focused on proteins with experimental interaction evidence (confidence score ≥0.9). The protein 

interactors for CVD risk proteins were denoted ‘‘CVD protein interactors’’. To ascertain enrichment for CVD proteins and CVD protein 

interactors among hub proteins, DOX-correlated proteins, and DOX-correlated hub proteins, the Fisher’s exact test was conducted. 

A Fisher’s exact p < 0.05 was considered statistically significant.

pLI comparison between CVD proteins and CVD protein interactors

Using the set of CVD proteins and CVD protein interactors as mentioned above, we assigned each protein their pLI score as previ-

ously described. We compared the pLI values between the two groups using the Wilcoxon rank-sum test. p < 0.05 was considered to 

be significant.

We also generated a degree-randomized PPI network with resampling to ensure robustness of results. We utilized the set of CVD 

proteins and their physical protein-protein interaction partners, as determined by STRINGdb with confidence scores above 0.9. The 

degree of each GWAS protein within the physical PPI network was calculated, resulting in a degree distribution for the CVD proteins. 
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This distribution highlighted the percentage of proteins with varying degrees of interaction. CVD proteins were assigned group names 

based on their degree, and we subsequently calculated the degree for every protein in the entire network. Proteins in the network with 

degrees similar to those of the CVD proteins were assigned to the same group, while those with degrees not captured by the CVD- 

proteins were assigned to the group with the nearest degree. Each protein in the network was thus assigned to a group reflective of 

the degree distribution of the GWAS proteins, ensuring comprehensive sampling without excluding proteins based on their degree. 

We resampled while maintaining a degree-based proportion comparable to that of the original CVD proteins. We simulated 10,000 

subnetworks among sampled proteins and their interactors, comparing pLI scores between CVD proteins and their physical inter-

actors using the Wilcoxon rank-sum test.

PPI network construction

UniProt IDs for all proteins in the iPSC-CM network were imported into Cytoscape103 to generate a PPI network. PPIs were deter-

mined using the STRINGdb application in Cytoscape. We selected the ‘physical subnetwork’ of PPIs with confidence scores 

>0.4, prior to later sub-setting PPIs with confidence scores >0.9 in R. The combination of both moderate and stringent cutoffs 

was used for sensitivity analysis of our results. We then annotated proteins in the network by whether they were DOX-correlated, 

hub proteins or CVD proteins, as well as by which module each protein belonged to. Edges in the network represent the 

WGCNA-derived weighted correlation between proteins. We next generated a subnetwork from the total network by selecting 

PPIs where at least one protein in the PPI was a CVD protein to center our analyses on the differences between CVD proteins 

and their direct physical protein interactors. We then used the tidygraph104 and ggraph105 packages in the R programming environ-

ment to visualize a network of CVD proteins and their physical protein interactors.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R version 4.4.1 unless otherwise noted. Analyses were performed using R 

packages including: WGCNA, limma, edgeR, clusterProfiler, ggplot2, igraph, AnnotationDbi, biomaRt, pheatmap, BioNERO, dynam-

icTreeCut, ggraph, ruv, impute, org.Hs.e.g.,.db, stats, SummarizedExperiment, and tidygraph (see key resources table). Statistical 

details—including test types, n values, p values and adjusted p values are provided in the figure legends, results and STAR Methods

sections, and Supplemental Tables.

For γH2AX immunofluorescence analysis (Figure 1C), n represents three biological replicates derived from three independent 

iPSC-CM lines (one per individual). For proteomics-based comparisons, n = 10 total samples, derived from iPSC-CMs generated 

from three individuals. Individuals 1 and 2 each contributed one sample per treatment group (DOX and VEH), while Individual 3 

contributed three technical replicates per treatment group. For network analyses and enrichment testing, n represents the number 

of proteins in each module or test set, as detailed in Table S2.

A two-tailed paired Student’s t test was used to compare γH2AX-positive nuclei percentages between DOX- and VEH-treated car-

diomyocytes (p < 0.05). Pearson correlation (via cor.test, R stats package) was used to assess relationships between module eigen-

proteins and traits (e.g., DOX treatment, individual), with p < 0.01 considered significant. Differential abundance analysis of proteins 

was performed using a linear model, and multiple testing correction was applied using the Benjamini-Hochberg method (adjusted 

p < 0.05). The Wilcoxon rank-sum test was used to compare distributions of tissue specificity scores across modules, SNP effect 

sizes in pQTL proteins, mutation tolerance metrics (pLI, pHaplo, pTriplo) across modules, and connectivity distributions of muta-

tion-tolerant vs. intolerant proteins. Fisher’s exact test was applied to assess enrichment of Gene Ontology (GO) terms and biological 

processes, protein family domains and subcellular localization categories, pQTL overlap and mutation intolerance across hub pro-

teins, GWAS gene/protein enrichment in modules or networks, and drug target enrichment in DOX-correlated modules.

Unless otherwise specified, p < 0.05 was considered statistically significant. Multiple testing was performed using Benjamini- 

Hochberg false discovery rate (FDR) control where applicable. Values are expressed as mean unless otherwise indicated. Error 

bars represent mean ± standard deviation (SD) as noted in Figure 1C.

ADDITIONAL RESOURCES

This study does not involve a clinical trial and is not registered in a clinical trial database.
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