
Ecology and Evolution. 2022;12:e8705.	 ﻿	   | 1 of 11
https://doi.org/10.1002/ece3.8705

www.ecolevol.org

Received: 9 August 2021  | Revised: 25 January 2022  | Accepted: 15 February 2022
DOI: 10.1002/ece3.8705  

R E S E A R C H  A R T I C L E

A pipeline for effectively developing highly polymorphic simple 
sequence repeats markers based on multi-sample genomic data

Hui Wang1 |   Shenghan Gao2 |   Yu Liu1  |   Pengcheng Wang3  |   Zhengwang Zhang1  |   
De Chen1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1MOE Key Laboratory for Biodiversity 
Science and Ecological Engineering, 
College of Life Sciences, Beijing Normal 
University, Beijing, China
2State Key Laboratory of Microbial 
Resources, Institute of Microbiology, 
Chinese Academy of Sciences, Beijing, 
China
3Jiangsu Key Laboratory for Biodiversity 
and Biotechnology, College of Life 
Sciences, Nanjing Normal University, 
Nanjing, China

Correspondence
De Chen, MOE Key Laboratory for 
Biodiversity Science and Ecological 
Engineering, College of Life Sciences, 
Beijing Normal University, 19 Xinjiekouwai 
Street, Beijing 100875, China.
Email: chende@bnu.edu.cn

Funding information
Ministry of Science and Technology of 
the People's Republic of China, Grant/
Award Number: 2016YFC0503200; 
National Natural Science Foundation of 
China, Grant/Award Number: 31872244; 
Ministry of Ecology and Environment, The 
People's Republic of China, Grant/Award 
Number: 2019HB2096001006

Abstract
Simple sequence repeats (SSRs) are widely used genetic markers in ecology, evolu-
tion, and conservation even in the genomics era, while a general limitation to their 
application is the difficulty of developing polymorphic SSR markers. Next-generation 
sequencing (NGS) offers the opportunity for the rapid development of SSRs; however, 
previous studies developing SSRs using genomic data from only one individual need 
redundant experiments to test the polymorphisms of SSRs. In this study, we designed 
a pipeline for the rapid development of polymorphic SSR markers from multi-sample 
genomic data. We used bioinformatic software to genotype multiple individuals using 
resequencing data, detected highly polymorphic SSRs prior to experimental valida-
tion, significantly improved the efficiency and reduced the experimental effort. The 
pipeline was successfully applied to a globally threatened species, the brown eared-
pheasant (Crossoptilon mantchuricum), which showed very low genomic diversity. The 
20 newly developed SSR markers were highly polymorphic, the average number of al-
leles was much higher than the genomic average. We also evaluated the effect of the 
number of individuals and sequencing depth on the SSR mining results, and we found 
that 10 individuals and ~10X sequencing data were enough to obtain a sufficient num-
ber of polymorphic SSRs, even for species with low genetic diversity. Furthermore, the 
genome assembly of NGS data from the optimal number of individuals and sequenc-
ing depth can be used as an alternative reference genome if a high-quality genome is 
not available. Our pipeline provided a paradigm for the application of NGS technology 
to mining and developing molecular markers for ecological and evolutionary studies.
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1  |  INTRODUC TION

Simple sequence repeats (SSRs), or microsatellites, are highly vari-
able genetic markers useful for a wide variety of applications in ge-
netic analysis, including genetic mapping, population structure and 
gene flow analysis, identification of conservation units, and kinship 
analysis (Gerber et al., 2000; Vashistha et al., 2020; Zamudio & 
Wieczorek, 2000). Since the first application of SSRs in the 1990s, 
they have been extensively and continuously used in evolutionary, 
ecological, and conservation research even in the genomics era (Ali 
et al., 2019; Allendorf, 2017; Shahabzadeh et al., 2020).

Despite the many advantages of SSR markers, a general lim-
itation to their application is the difficulty of developing polymor-
phic SSR markers (Squirrell et al., 2003). The development of new 
SSR markers can basically be divided into the following stages: 
(1)  identification of the sequences containing SSRs; (2) design of 
PCR primers from flanking regions; and (3) detection of polymor-
phisms among individuals (Andrés & Bogdanowicz, 2011; Vieira 
et al., 2016). Traditional approaches, consisting of cloning, cDNA 
library construction, and Sanger sequencing, are time-consuming, 
labor-intensive, and inefficient in the SSR identification and primer 
design stages (Zane et al., 2002). Next-generation sequencing (NGS) 
can largely overcome these shortcomings, providing effective ways 
to mine tens of thousands of SSR sequences with sufficient flanking 
regions. Therefore, NGS technologies are increasingly been applied 
to obtain novel SSR markers in non-model organisms (Abdelkrim 
et al., 2009; Gardner et al., 2011; Wang et al., 2017).

However, previous studies usually used genomic data from only 
one individual to mine SSR sequences and then randomly selected 
a few hundred SSRs for polymorphism detection in several individ-
uals through PCR experiments (McCulloch & Stevens, 2011; Zhou 
et al., 2016). As you can see, it needs to design a lot of primers to 
manually test their polymorphisms, which is still time consuming and 
inefficient. The rate of obtaining polymorphic SSR markers is still not 
high (Taheri et al., 2018), especially for threatened species in which 
among-individual genetic differences are subtle. Only a small per-
centage of randomly selected loci were highly polymorphic and easy 
to amplify (e.g., Hou et al., 2018; Yang et al., 2017). Thus, the limit-
ing step for SSR development through NGS technologies is no lon-
ger SSR identification or primer design, but instead, detection and 
screening of polymorphic loci. One strategy to break this limitation 
is to track SSR polymorphisms before PCR experiments, which can 
be done by sequencing multiple individuals. One idea is to develop 
primer sequences for every SSR loci from each individual, the primer 
sequences were then used to identify intersectional SSR loci, these 
SSR loci were extracted to evaluate their polymorphism (e.g., Cui 
et al., 2018; Fox et al., 2019). With the development of NGS soft-
ware, a more straightforward way is to align sequence reads from 
all individuals to a reference genome to identify polymorphic SSR 
loci before developing primers (e.g., Guo et al., 2020). This is still a 
rather new point of view, the effects of using different number of in-
dividuals, different sequence depth, and the quality of the reference 

genome on the yield of polymorphic SSR markers has rarely been 
explored, especially for threatened species.

The aim of this study is to develop an effective pipeline for the 
rapid development of highly polymorphic SSR markers from multi-
sample genomic data. We used a subset of the population genomic 
data from a global threatened galliform bird, the brown eared-
pheasant (Crossoptilon mantchuricum), which has very low genomic 
diversity (Wang et al., 2020). We showed that our pipeline can ef-
fectively discover polymorphic SSR markers from such a species and 
successfully estimate its population structure with the developed 
SSRs, which showed the same result from genomic data (Wang et al., 
2020). Furthermore, we evaluated the effect of different numbers of 
individuals and sequencing depth on the SSR mining results and as-
sembled a reference genome using multi-sample low-depth data in-
stead of single-sample high-depth data, which could be a reasonable 
strategy balancing the sampling and sequencing costs, especially for 
species without a reference genome.

2  |  MATERIAL S AND METHODS

2.1  |  Data and sample collection

For the in silico mining of polymorphic SSRs, we used the assembled 
genome of one individual and resequencing data (~20 X) of 20 indi-
viduals of C. mantchuricum downloaded from the National Genomics 
Data Center (BioProject number: PRJCA003284, https://bigd.big.
ac.cn/?lang=en), the sample information and accession number of 
each sample can be seen in Table S1. All the 20 individuals used in 
this study are not closely related (Wang et al., 2020).

For the experimental validation of the SSR markers, a total of 30 
wild individuals of C. mantchuricum were sampled from Hebei (n = 6), 
Beijing (n = 2), Shanxi (n = 15), and Shaanxi (n = 7) in China. The tissue 
or blood samples were preserved at −80°C for long-term storage. 
Genomic DNA was extracted using a DNA extraction kit (TianGen 
Biotech, Beijing, China) following the manufacturer's instructions.

2.2  |  In silico mining of polymorphic SSRs

We developed a pipeline using commonly used NGS software to 
identify polymorphic SSRs from resequencing data of multiple in-
dividuals (Figure 1). First, we identified tandem repeats in the refer-
ence genome of C. mantchuricum using Tandem Repeats Finder (TRF) 
v 4.09 (http://tandem.bu.edu/trf/trf.html) (Benson, 1999) using the 
following options: alignment score for match, mismatch, indel: 2, 7, 
7; PM: 80; PI: 10; minimum alignment score: 50; max period: 500. 
After tandem repeats identification, we obtained a BED file with our 
custom set of tandem repeats. Then, we used lobstr_index.py in lob-
STR v 4.0.6 (Gymrek et al., 2012) and the BED file to build a custom 
lobSTR reference for C. mantchuricum (http://lobstr.teame​rlich.org/
best-pract​ices-custo​m-refer​ence.html). Meanwhile, the raw reads of 

https://bigd.big.ac.cn/?lang=en
https://bigd.big.ac.cn/?lang=en
http://tandem.bu.edu/trf/trf.html
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http://lobstr.teamerlich.org/best-practices-custom-reference.html
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the 20 individuals of C. mantchuricum were filtered with Trim Galore v 
0.5.0 (Krueger, 2012) with default parameters, and clean reads were 
mapped to the C. mantchuricum reference genome with BWA-MEM 
v 0.7.17-r1188 (Li & Durbin, 2009) to generate BAM files. Then, we 
used these BAM files and the custom reference as input for lobSTR 
(Gymrek et al., 2012) to run allelotypes. After allelotyping, we used 
a custom Bash script (Appendix S1) to select polymorphic SSR loci 
from the VCF file generated by lobSTR.

We used a very strict criterion to select SSRs for subsequent 
experimental validation. First, we focused only on the “perfect” 
SSRs (uninterrupted run of repeats) (Sharma et al., 2007) that can 
be successfully genotyped across all individuals (NS = 20) to avoid 
PCR failure and null alleles. Second, we restricted the motif length 
to 3–5 bp to avoid genotyping error. Third, we selected SSRs with 
high polymorphism, that is, the number of alleles for each locus 
≥5 (see results), among which 34 potential polymorphic loci com-
prising different motif lengths were selected for downstream 
analyses.

2.3  |  SSR primer design and 
experimental validation

First, we used BEDTools v 2.26.0 (Quinlan & Hall, 2010) to extract 
350 bp flanking sequences on both ends of the 34 SSRs from the ref-
erence genome. Then, primers were designed in the flanking regions 
of each SSR locus using Primer Premier v 5 (Lalitha, 2000) with the 
following parameters: (1) primer lengths ranging from 18 to 27 bp; (2) 
product sizes ranging from 100 to 500 bp; (3) melting temperature 
(Tm) ranging from 55°C to 62°C and the differences of Tm between 
forward and reverse primers <2°C; and (4) GC content ranging from 
40 to 60%.

Next, trial polymerase chain reaction (PCR) was conducted in 4 
individuals of C. mantchuricum to test whether the newly designed 
SSR markers were amplifiable. PCR amplification was performed in 
a 10-μl reaction volume containing 0.5 µl of genomic DNA, 5 µl of 
TianGen Biotech Taq Master Mix, 4 µl of ddH2O, 0.25 µl of forward 
primer (10 µM) and 0.25 µl of reverse primer (10 µM). The PCR am-
plification programs were as follows: DNA initial denaturation at 
95°C for 5 min; 35 cycles of 94°C for 40 s, annealing temperature of 
specific primer (Table S2) for 30 s, 72°C for 30 s; and a final step at 
72°C for 5 min. The PCR products were detected by 2% agarose gel 
electrophoresis. As a result, we obtained 30 loci that were reliably 
amplified.

We randomly selected 20 of 30 SSR candidates to synthesize 
fluorescently labeled forward primers (5′-FAM, HEX, ROX·; Beijing 
Genomics Institute, Beijing, China) and performed PCR amplification 
of all 30 individuals of C. mantchuricum as described above. The PCR 
products were sent to Qingke Biotech (Beijing, China) for SSR geno-
typing detection. Allele scoring for each marker was performed with 
Genemarker v 2.2.0 (Holland & Parson, 2011).

2.4  |  Statistical and population structure analyses

Genetic parameters such as the number of alleles (Na), polymor-
phism information content (PIC), observed heterozygosity (Ho), 
and expected heterozygosity (He) were calculated by Cervus v3.0 
(Marshall et al., 1998). The frequency of null alleles was estimated 
using FreeNA (Chapuis & Estoup, 2007). Linkage equilibrium (LD) 
were tested using Genepop (Rousset, 2008) with the following pa-
rameters: dememorization =  10,000, batches =  20, iterations per 
batch = 5000. The Bonferroni correction for p value was done by 
Myriads v1.2 (Carvajal-Rodríguez, 2017).

F I G U R E  1 Workflow for in silico 
microsatellite mining, polymorphism 
discovery, and primer design using 
a series of commonly used software 
programs (shown in italics). The pipeline 
takes multi-sample resequencing data 
in FASTQ format and reference genome 
in FASTA format as input data (the 
reference genome can be generated with 
assembly software such as MaSuRCA 
from multi-sample resequencing data for 
species whose reference genomes were 
unavailable)



4 of 11  |     WANG et al.

Population structure analyses were performed using principal 
coordinate analysis (PCoA) in GenAlEx v6.5 (Peakall & Smouse, 
2006) and the model-based software program STRUCTURE v2.3.4 
(Pritchard et al., 2000). The number of subpopulations (K) was 
set to range from 1 to 10, and for each K, 10 replications were 
tested. For each run, a burn-in period was set to 100,000 with 
100,000 MCMC iterations. The log probability of the data (LnP(D)) 
was calculated to confirm the convergence. To determine the most 
likely value of K, the Evanno method (Evanno et al., 2005) was 
used via the online program STRUCTURE HARVESTER (http://
taylo​r0.biolo​gy.ucla.edu/struc​tureH​arves​ter/) (Earl & Vonholdt, 
2012). Genetic differentiation among the populations was calcu-
lated with the Weir and Cockerham (1984) estimator of the fixa-
tion index (Fst) using FSTAT v2.9.4 and 1,000 permutations were 
used to test for significant differences (Goudet, 1995; Weir & 
Cockerham, 1984).

2.5  |  Effects of the number of individuals and 
sequencing depth on SSR mining

To test the effect of the number of individuals on SSR mining, we 
randomly selected 2, 4, 6, 8, 10, 12, 14, 16, and 18 individuals from 
the 20 individuals (sequencing depth ~20X) to perform the same 
analyses as described above (Figure 1). Second, we fixed the number 
of individuals as 10 (the optimal number of individuals based on our 
results) to explore the effect of sequencing depth. The average se-
quencing depth of each sample was calculated by the tool “bamdst” 
(https://github.com/shiqu​an/bamdst). Then, we used SAMtools v1.9 
(Li et al., 2009) to randomly generate 2.5X, 5X, 7.5X, 10X, 12.5X, 
15X, 17.5X, and 20X resequencing data for each of the 10 individuals 
and performed the same analyses (Figure 1). For each analysis, we 
focused only on the SSR loci that existed in all selected individuals 
and exhibited at least two alleles. To evaluate the SSR mining results, 
we calculated two parameters: the number of polymorphic SSRs and 
the Na for each SSR locus. Then, we used R v4.0.2 (R Core Team, 
2020) to draw line charts and violin plots to visualize the increas-
ing trend of these two parameters to estimate the optimal values 
for the number of individuals and sequencing depth. The magnitude 
of change of the average Na between different individuals and se-
quencing depth was assessed using Cohen's d effect size analysis. 
A value of 0.20 is considered a small effect, 0.50 is considered a 
medium effect (Cohen, 1992).

2.6  |  SSR mining using multi-sample low-
depth resequencing data without a prior/known 
reference genome

Generally, a high-quality reference genome is necessary to map 
resequencing data and to develop SSR markers (Hou et al., 2018). 
However, the assembly of an eligible reference genome usually 

requires deep sequencing >100X from the same individual, which 
results in considerable additional cost (Desai et al., 2013). To fully 
utilize the multi-sample resequencing data and reduce the sequenc-
ing cost, we derived the idea used in pan-genome studies and tried 
to use multi-sample low-depth data to assemble a “consensus” refer-
ence genome of C.  mantchuricum. 10X resequencing data of each 
ten individual (100 X data in total, the optimal number of individuals 
and sequencing depth based on our results) were used for de novo 
assembly of the C. mantchuricum genome with MaSuRCA assembler 
v3.4.2 (Zimin et al., 2013). MaSuRCA is an overlap-layout-consensus 
(OLC) algorithm-based assembler that tolerates differences such as 
SNPs, heterozygotes, and sequencing errors to generate consensus. 
This feature enables it to generate a consensus assembly by integrat-
ing multi-sample low-depth data as conventional deep sequencing 
data. We used the assembled genome as a reference and carried out 
SSR mining using resequencing data following the designed pipeline 
(Figure 1). To test the validity of the assembled “consensus” genome 
on SSR mining results, we calculated the number of polymorphic 
SSRs and the Na for each SSR locus and compared these SSRs de-
veloped with the “consensus” genome to those SSRs developed with 
the high-quality genome. In addition, we also compared the ±350 bp 
flanking sequences on both ends of all the polymorphic SSRs with 
BLASTN v2.5.0+ (Altschul et al., 1990) to identify the intersection 
of polymorphic SSRs extracted from the two reference genomes. 
The SSR loci with >95% identity and >500 bp alignment length were 
considered the same loci.

3  |  RESULTS

3.1  |  Distribution of SSR types and allele number 
of Crossoptilon mantchuricum

Using our designed pipeline, we identified 228,728 tandem se-
quence repeats in the reference genome of C. mantchuricum. After 
genotyping 20 individuals with lobSTR, we found a total of 12,549 
“perfect” SSR loci (motif length from 2 to 6 bp) that could be suc-
cessfully genotyped across all samples. Among these SSRs, the most 
abundant repeat motifs were tetranucleotides (3947, 31.45%), fol-
lowed by dinucleotides (3120, 24.86%), pentanucleotides (2380, 
18.97%), trinucleotides (2000, 15.94%), and hexanucleotides (1102, 
8.78%; Figure 2, Table S3).

The average number of alleles (Na) for the 12,549 SSRs was only 
1.36, and 81.01% of the loci were monomorphic (Figure 2). The pro-
portion of polymorphic loci for dinucleotide repeats was higher than 
that for other types (Figure 2). However, dinucleotide microsatellites 
are easily subjected to mistyping due to polymerase slippage during 
PCR (Schlötterer & Tautz, 1992). To develop SSR markers with strong 
stability and a low genotyping error rate, we only focused on SSRs 
with motif lengths ranging from 3 to 5 bp in this exploratory study. 
We obtained 952, 228, 83, 34, and 10 loci when we restricted the 
minimum Na to 2, 3, 4, 5, and 6, respectively (Table S3). Based on the 

http://taylor0.biology.ucla.edu/structureHarvester/
http://taylor0.biology.ucla.edu/structureHarvester/
https://github.com/shiquan/bamdst
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above results, we selected the 34 SSRs with an Na ≥ 5 to perform 
downstream analyses.

The 34 candidate polymorphic SSR loci consisted of 22 trinu-
cleotide, seven tetranucleotide, and five pentanucleotide repeats, 

among which 30  loci were successfully amplified with designed 
primers (88.24%). We randomly selected 20 loci for polymorphism 
detection. Twenty SSR loci consisted of 14 trinucleotide, four tetra-
nucleotide, and two pentanucleotide repeats (Table S2).

F I G U R E  2 Distributions of SSR types and the number of alleles (Na) of 20 C. mantchuricum individuals. (a) All SSR loci. (b) Polymorphic 
SSR loci

No.
Marker 
Name Na N Ho He PIC

1 CM1 3 30 0.300 0.605 0.528

2 CM2 5 30 0.567 0.726 0.667

3 CM3 3 30 0.033 0.406 0.332

4 CM7 4 30 0.167 0.547 0.475

5 CM8 6 30 0.400 0.714 0.658

6 CM9 3 30 0.400 0.453 0.381

7 CM10 5 30 0.567 0.692 0.624

8 CM11 4 30 0.233 0.551 0.481

9 CM12 3 30 0.267 0.473 0.420

10 CM14 5 30 0.567 0.744 0.684

11 CM15 3 30 0.167 0.581 0.508

12 CM16 5 30 0.567 0.724 0.663

13 CM19 2 30 0.000 0.398 0.315

14 CM20 4 29 0.103 0.470 0.423

15 CM25 4 30 0.400 0.481 0.437

16 CM26 4 30 0.300 0.584 0.513

17 CM27 6 29 0.276 0.629 0.562

18 CM30 6 30 0.633 0.733 0.675

19 CM32 5 30 0.533 0.760 0.707

20 CM33 4 28 0.429 0.660 0.581

Mean 4.2 29.8 0.345 0.597 0.532

TA B L E  1 Summary of the observed 
allele number (Na), sample size (N), 
observed and expected heterozygosity 
(Ho and He), and polymorphism 
information content (PIC) for 30 
individuals of brown eared-pheasants
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3.2  |  Descriptive statistical and 
population structure

The PIC values of the 20 SSR loci ranged from 0.315 to 0.707 with 
an average of 0.532. The Na ranged from 2 to 6 with an average 
of 4.2, the Ho ranged from 0 to 0.633 with an average of 0.345, 
and the He ranged from 0.398 to 0.760 with an average of 0.597 
(Table 1).

PCoA divided the 30 brown eared-pheasants into three genetic 
clusters (Figure 3). The first two principal coordinates (PCos) ex-
plained 60.23% of the total variance (45.22% and 15.01%, respec-
tively). In our 10 independent structure analyses to estimate K, the 
values of LnP(D) increased sharply from K = 1 to K = 3, and delta 
K analysis revealed a peak at K = 2 (Figure S1), suggesting at least 
two clusters. When K = 3, the three populations of brown eared-
pheasant can also be separated very well (Figure 3), which is in 
accordance with the PCoA results. We identified the three brown 
eared-pheasant populations as CM-W (Shaanxi, n = 7), CM-C (Shanxi, 
n = 15), and CM-E (Hebei and Beijing, n = 8), which represented the 
western, central, and eastern populations, respectively. The pairwise 
Fst values among the three populations ranged from 0.364 to 0.742 
and all the pairwise Fst values were significantly greater than zero 
(Table S4).

The population structure analyses showed high genetic differen-
tiation among the three populations of the brown eared-pheasant, 
so we estimated null allele frequency of the 20 loci in three popu-
lation separately. The prevalence of null alleles for most loci is low 
(<0.05), except for loci CM27 and CM12 in the central and eastern 
populations, respectively (>0.2, Table S5). The average null allele fre-
quency of the 20 loci is low (<0.05) among three populations. Such 
a low frequency of null alleles only has slight impact on population 
genetic analyses (Carlsson, 2008; Chapuis & Estoup, 2007; Dakin & 
Avise, 2004). Only 2 out of 570 tests for LD were significant after 

Bonferroni correction (CM8–CM14 and CM11–CM25 in the central 
population). These four SSR loci located on different scaffolds, the 
observed LD might be caused by the low genomic diversity (Wang 
et al., 2020) and/or small sample size rather than true linkage.

3.3  |  Effect of the number of individuals and 
sequencing depth on mining SSRs

The number of individuals had a great influence on the calculated Na, 
while the sequencing depth had a great influence on the obtained 
number of polymorphic SSRs (Figure 4). When the number of indi-
viduals reached 10, the increasing trend of Na slows down (Cohen's 
d: Na2 vs. Na10: −0.61 (medium), Na10 vs. Na20: −0.12 (small)), and the 
number of polymorphic SSRs reached approximately 2,037 (85.48% 
compared to using 20 individuals; Figure 4a). Thus, we fixed the num-
ber of individuals to ten to explore the effect of sequencing depth. 
Our results showed that Na remained nearly stable with increasing 
depth (2.460–2.695; Cohen's d: Na2.5x vs. Na20x: −0.23 (small)), while 
the number of polymorphic SSR loci increased rapidly (from 50 to 
2022, Figure 4b, Table S6). The increase in the number of SSR loci 
slowed when the sequencing depth reached 10–12.5 X (Figure 4b), 
when sufficient (1539–1825) polymorphic SSR loci were identified.

3.4  |  SSR mining results using multi-sample low-
depth resequencing data without a prior/known 
reference genome

The draft “consensus” genome assembly based on resequencing data 
of ten individuals (~10X for each individual) comprised 73,187 scaf-
folds with a total length of 1.06  Gb. The genome sequence had 
41.8% GC content. The scaffold and contig N50 were 132.68  kb 

F I G U R E  3 Population structure and principal coordinate analysis (PCoA) of 30 brown eared-pheasants based on 20 SSR markers. (a) 
Population structure of K = 2 and K = 3 inferred by Bayesian clustering approaches. Samples of 30 brown eared-pheasants were from Shanxi 
(n = 15; 1–15), Shaanxi (n = 7; 16–22), Hebei and Beijing (Hebei: n = 6, Beijing: n = 2; 23–30). (b) Principal coordinate analysis (PCoA) of 30 
brown eared- pheasants. CM-C: Shanxi (n = 15; green); CM-W: Shaanxi (n = 7; blue); CM-E: Hebei and Beijing (Hebei: n = 6, Beijing: n = 2; red)
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and 100.00  kb, respectively. Using this assembled genome as the 
reference genome, we found a total of 9306 “perfect” SSR loci, of 
which 1590 (17.09%) were polymorphic. In comparison, the number 
of polymorphic SSR loci extracted from the canonical reference ge-
nome was 1,539, which was similar to the assembled genome (1590 
vs. 1539, Figure S2). The BLASTN analysis showed that nearly 80% 
(1216/1539) of these loci overlapped. The average Na of all the SSR 
loci from the assembled genome was 1.275, which showed no signif-
icant difference compared to that of the SSR loci obtained using the 
canonical reference genome (average Na = 1.271; t-test: T = 0.37, 
df = 18460, p = .71).

4  |  DISCUSSION

Although genome-wide SNPs have become more and more popu-
lar for studies of population genetics, SSRs are still valuable ge-
netic markers due to their high polymorphism, low DNA template 
demands, relatively easy application, along with well-developed 
and simple statistical analyses (Hodel et al., 2016; Zane et al., 
2002). There are several scenarios where SSRs are comparable with 
genome-wide SNPs. For example, studies require parentage and kin-
ship determination in behavioral ecology and genetic management 
do not require high marker density, but benefit more from large 
number of samples (de Deus et al., 2021). It is impractical and ex-
pensive to genotype thousands of individuals using genome-wide 
SNPs and it is hard to update the dataset if small numbers of new 
individuals are added. Conversely, once the SSR markers has been 
developed, it would be much easier and more economical to geno-
type additional individuals (Puckett, 2017). In addition, SSR is still 
the most widely used genetic marker in forensic identifications and 
noninvasive genetic studies of endangered species from degraded 
samples owing to its low quantity/quality DNA template demand 

and high reproducibility results (Lampa et al., 2013; Willows-Munro 
& Kleinhans, 2020). We can acquire sufficient DNA for SSR genotyp-
ing even in degraded samples such as eggshells, feathers, and feces 
(Baus et al., 2019). Furthermore, a strong background in computing 
skills and bioinformatics is needed to deal with the large quantity of 
SNPs, whereas researchers can complete SSR analyses with limited 
computing skills on a laptop computer (Hodel et al., 2016). For all 
these reasons, microsatellites remain a good choice for many sys-
tems and questions and they will continue to be used extensively in 
ecology, evolution, and conservation in the future.

In this study, we developed a pipeline to mine polymorphic SSR 
markers based on NGS data from multiple individuals of the target 
species. The pipeline was successfully applied to a globally threat-
ened species with very low genomic diversity (Wang et al., 2020). 
We further evaluated the effect of different numbers of individuals 
and sequence depths on the SSR mining results to suggest a reason-
able strategy balancing data generation and cost. Additionally, we 
showed that the pipeline worked well even without a high-quality 
reference genome, which further extended its application range 
and decreased the cost of developing applicable polymorphic SSR 
markers.

We found that the average Na was only 1.36 for the brown 
eared-pheasant at the genome scale, and less than 10% of SSRs 
had more than two alleles among 20 individuals (Figure 2, Table 
S3). Therefore, it will be rather inefficient to filter polymorphic 
SSR markers through experimental validation from randomly cho-
sen SSR loci, which is the commonly used SSR marker develop-
ment method using NGS data (Table 2) (Hou et al., 2018; Huang 
et al., 2015; Taheri et al., 2018). For example, Zhu (2014) used 
blood transcriptome from one male brown eared-pheasant to de-
velop SSR markers, he randomly selected 118 SSR loci to design 
primers, only 5% (6/118) are polymorphic (Table 2), the average 
Na was 2.17 among 24 individuals. Our pipeline took advantage 

F I G U R E  4 The increasing trends of the number of alleles (solid line) and the number of polymorphic SSRs (dotted line) depending on the 
number of individuals (a) and sequencing depth (b)
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of resequencing data from multiple individuals and detected 
highly polymorphic SSRs among these individuals prior to ex-
perimental validation, significantly improved the efficiency and 
reduced experimental effort in developing polymorphic SSR mark-
ers (Table 2). Except for the four SSR loci that failed to pass our 
trial PCR (which could be improved if we redesigned primers), the 
other 30 randomly selected SSR markers were very stable during 
PCR experiments. Our following test showed that all of the 20 
randomly selected SSR markers are polymorphic, the Na ranged 
from 2 to 6, with an average of 4.2 among 30 individuals, which 
was significantly higher than the average Na on the genome scale.

Our results showed that the increase trend of Na slows down 
after subsampling more than 10 individuals (Figure 4a). Given the 
extremely low genetic diversity of the brown eared-pheasant, 
fewer individuals should be sufficient for other species. For exam-
ple, we have already developed highly polymorphic SSR markers 
for the Daurian redstart (Phoenicurus auroreus) and the Chinese 
penduline tit (Remiz consobrinus) following the pipeline, both using 
resequencing data of eight individuals (in preparation). Although 
a higher sequencing depth can increase the number of polymor-
phic SSR loci, our results demonstrated that a low to medium depth 
(10X–12.5 X) can generate large numbers of highly polymorphic loci 
from such species with low genomic diversity (Figure 4b). For other 
species with larger population size, a 10X sequencing depth may 
be enough to obtain a sufficient number of polymorphic SSR loci.

Despite the rapid development of sequencing technology, there 
are still many species for which reference genomes are unavailable. 
Assembling a high-quality reference genome is usually a demand-
ing project requiring deep sequencing depth of a single individual 
(>100X). Since the total length of SSR markers is generally short, 
the development of SSRs does not require a high-quality reference 
genome. Previous studies usually used sequence reads from the 
sequenced individual to assembly a draft genome to mine SSR se-
quences (Koshiishi et al., 2021; Yang et al., 2017). As for the multi-
sample strategy, we used multi-sample low-depth data to generate 
a draft reference genome inspired by pan-genome strategies, The 
scaffold and contig N50 of the assembled genome were approx-
imately 134  kb and 100  kb, respectively, which are lower than 
those of the canonical high-quality genome (scaffold/contig N50: 

3,632.75 kb/112.76 kb; Wang et al., 2020). Although the quality of 
the assembled genome was lower than that of the canonical high-
quality genome, the numbers of polymorphic SSR loci mined with 
our pipeline were very similar, and approximately 80% of SSR loci 
overlapped, which might be higher if we lower the length standard 
of the flanking sequence. Furthermore, the average Na between 
SSR markers from the assembled genome and SSR markers from 
the canonical high-quality reference genome showed no signifi-
cant difference, which means that the distribution of SSRs in the 
“consensus” genome was highly consistent with the high-quality 
reference genome. Overall, the use of a reference genome by using 
a “consensus” genome strategy from multi-sample low-depth data 
can yield approximately the same number of polymorphic SSR loci, 
which can further reduce the cost of developing SSR markers. As 
the sequencing cost of NGS has dramatically declined since its in-
vention (https://www.genome.gov/about​-genom​ics/fact-sheet​s/
DNA-Seque​ncing​-Costs​-Data), the cost for resequencing 10X data 
from 10 individual of birds is about $1100. If we randomly design 
100 primers to detect polymorphism on 4 individuals (many stud-
ies used this strategy), the cost is about $550 for primer synthesis, 
and $1000 for sanger sequencing, which are similar or even slightly 
higher than the resequencing cost.

The brown eared-pheasant is a globally threatened species dis-
tributed in China (Zheng, 2015), and polymorphic SSR markers for 
this species are still unavailable. In this study, we developed 20 new 
SSR markers. The PIC indicated that 12 markers were highly infor-
mative (PIC >  0.5), and the other eight were reasonably informa-
tive (0.5 < PIC < 0.25) (Botstein et al., 1980). These SSR loci were 
successfully applied to the population structure analysis for the 
brown eared-pheasant. The PCoA and structure analysis revealed 
three populations across the range of the brown eared-pheasant 
(Figure 3), in accordance with the results from genomic SNP data 
(Wang et al., 2020). However, the structure analysis revealed a peak 
of delta K at K = 2, while it separated the three populations very well 
when K = 3 (Figure 3). Previous studies found that there was a strong 
bias toward selecting K = 2 using the delta K method (Cullingham 
et al., 2020). In addition, uneven sample sizes between subpop-
ulations may lead to the underestimation of delta K (Puechmaille, 
2016). Our Fst estimations also showed high genetic differentiation 

TA B L E  2 A comparison of different SSR marker develop methods, including species, SSR marker develop methods (Tra-NGS: Traditional 
NGS method based on one individual), number of PCR primers tested (Pri), number of amplifiable PCR primers (Amp), percentage of primers 
which were amplifiable (Amp/Pri), number of primers selected to test polymorphism (Amp-sel), number of polymorphic primers (Pol), 
percentage of amplifiable primers which were polymorphic (Pol/Amp-sel), percentage of primers which were amplifiable and polymorphic 
(Suc), literature reference (Ref)

Species Method Pri Amp Amp/Pri Amp-sel Pol Pol/Amp-sel Suc Ref

Crossoptilon 
mantchuricum

Tra-NGS 118 118 100% 118 6 5% 5% Zhu (2014)

Liocichla omeiensis Tra-NGS 600 99 17% 52 24 46% 8% Yang et al. (2017)

Dromaius 
novaehollandiae

Tra-NGS 144 143 99% 143 49 34% 34% Koshiishi et al. (2021)

Crossoptilon 
mantchuricum

This study 34 30 88% 20 20 100% 88% This study

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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among the three populations (Table. S4), which indicated that the 
brown eared-pheasant should be divided into three genetic pop-
ulations. Furthermore, our newly developed SSR markers can be 
used in various aspects of conservation genetics, such as genetic 
background analysis and genealogy establishment of captive brown 
eared-pheasants and individual identification in wild brown eared-
pheasant populations. In addition, we focused only on SSRs with 
motif lengths ranging from 3 to 5 bp in this exploratory research. 
Higher polymorphic dinucleotide SSRs can be easily obtained from 
our pipeline for further research.

5  |  CONCLUSION

In this study, we developed a pipeline for the rapid development 
of polymorphic SSR markers using multi-sample genomic data. Our 
pipeline can be easily applied in non-model species in which genomic 
information is unknown and in threatened species in which genetic 
diversity is extremely low. Our pipeline provided a paradigm for the 
application of NGS technology in mining molecular markers for eco-
logical and evolutionary studies.
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