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Abstract
Simple	sequence	repeats	 (SSRs)	are	widely	used	genetic	markers	 in	ecology,	evolu-
tion,	and	conservation	even	 in	the	genomics	era,	while	a	general	 limitation	to	their	
application	is	the	difficulty	of	developing	polymorphic	SSR	markers.	Next-	generation	
sequencing	(NGS)	offers	the	opportunity	for	the	rapid	development	of	SSRs;	however,	
previous	studies	developing	SSRs	using	genomic	data	from	only	one	individual	need	
redundant	experiments	to	test	the	polymorphisms	of	SSRs.	In	this	study,	we	designed	
a	pipeline	for	the	rapid	development	of	polymorphic	SSR	markers	from	multi-	sample	
genomic	data.	We	used	bioinformatic	software	to	genotype	multiple	individuals	using	
resequencing	data,	detected	highly	polymorphic	SSRs	prior	 to	experimental	valida-
tion,	significantly	improved	the	efficiency	and	reduced	the	experimental	effort.	The	
pipeline	was	successfully	applied	to	a	globally	threatened	species,	the	brown	eared-	
pheasant	(Crossoptilon mantchuricum),	which	showed	very	low	genomic	diversity.	The	
20	newly	developed	SSR	markers	were	highly	polymorphic,	the	average	number	of	al-
leles	was	much	higher	than	the	genomic	average.	We	also	evaluated	the	effect	of	the	
number	of	individuals	and	sequencing	depth	on	the	SSR	mining	results,	and	we	found	
that	10	individuals	and	~10X	sequencing	data	were	enough	to	obtain	a	sufficient	num-
ber	of	polymorphic	SSRs,	even	for	species	with	low	genetic	diversity.	Furthermore,	the	
genome	assembly	of	NGS	data	from	the	optimal	number	of	individuals	and	sequenc-
ing	depth	can	be	used	as	an	alternative	reference	genome	if	a	high-	quality	genome	is	
not	available.	Our	pipeline	provided	a	paradigm	for	the	application	of	NGS	technology	
to	mining	and	developing	molecular	markers	for	ecological	and	evolutionary	studies.
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1  |  INTRODUC TION

Simple	sequence	repeats	 (SSRs),	or	microsatellites,	are	highly	vari-
able	genetic	markers	useful	for	a	wide	variety	of	applications	in	ge-
netic	analysis,	including	genetic	mapping,	population	structure	and	
gene	flow	analysis,	identification	of	conservation	units,	and	kinship	
analysis	 (Gerber	 et	 al.,	 2000;	 Vashistha	 et	 al.,	 2020;	 Zamudio	 &	
Wieczorek,	2000).	Since	the	first	application	of	SSRs	in	the	1990s,	
they	have	been	extensively	and	continuously	used	in	evolutionary,	
ecological,	and	conservation	research	even	in	the	genomics	era	(Ali	
et	al.,	2019;	Allendorf,	2017;	Shahabzadeh	et	al.,	2020).

Despite	 the	 many	 advantages	 of	 SSR	 markers,	 a	 general	 lim-
itation	 to	 their	application	 is	 the	difficulty	of	developing	polymor-
phic	SSR	markers	 (Squirrell	et	al.,	2003).	The	development	of	new	
SSR	 markers	 can	 basically	 be	 divided	 into	 the	 following	 stages:	
(1)	 identification	 of	 the	 sequences	 containing	 SSRs;	 (2)	 design	 of	
PCR	 primers	 from	 flanking	 regions;	 and	 (3)	 detection	 of	 polymor-
phisms	 among	 individuals	 (Andrés	 &	 Bogdanowicz,	 2011;	 Vieira	
et	 al.,	 2016).	 Traditional	 approaches,	 consisting	 of	 cloning,	 cDNA	
library	 construction,	 and	 Sanger	 sequencing,	 are	 time-	consuming,	
labor-	intensive,	and	inefficient	in	the	SSR	identification	and	primer	
design	stages	(Zane	et	al.,	2002).	Next-	generation	sequencing	(NGS)	
can	largely	overcome	these	shortcomings,	providing	effective	ways	
to	mine	tens	of	thousands	of	SSR	sequences	with	sufficient	flanking	
regions.	Therefore,	NGS	technologies	are	increasingly	been	applied	
to	 obtain	 novel	 SSR	 markers	 in	 non-	model	 organisms	 (Abdelkrim	
et	al.,	2009;	Gardner	et	al.,	2011;	Wang	et	al.,	2017).

However,	previous	studies	usually	used	genomic	data	from	only	
one	individual	to	mine	SSR	sequences	and	then	randomly	selected	
a	few	hundred	SSRs	for	polymorphism	detection	in	several	individ-
uals	 through	PCR	experiments	 (McCulloch	&	Stevens,	2011;	Zhou	
et	al.,	2016).	As	you	can	see,	 it	needs	to	design	a	 lot	of	primers	to	
manually	test	their	polymorphisms,	which	is	still	time	consuming	and	
inefficient.	The	rate	of	obtaining	polymorphic	SSR	markers	is	still	not	
high	(Taheri	et	al.,	2018),	especially	for	threatened	species	in	which	
among-	individual	 genetic	 differences	 are	 subtle.	Only	 a	 small	 per-
centage	of	randomly	selected	loci	were	highly	polymorphic	and	easy	
to	amplify	(e.g.,	Hou	et	al.,	2018;	Yang	et	al.,	2017).	Thus,	the	limit-
ing	step	for	SSR	development	through	NGS	technologies	is	no	lon-
ger	SSR	 identification	or	primer	design,	but	 instead,	detection	and	
screening	of	polymorphic	loci.	One	strategy	to	break	this	limitation	
is	to	track	SSR	polymorphisms	before	PCR	experiments,	which	can	
be	done	by	sequencing	multiple	individuals.	One	idea	is	to	develop	
primer	sequences	for	every	SSR	loci	from	each	individual,	the	primer	
sequences	were	then	used	to	identify	intersectional	SSR	loci,	these	
SSR	 loci	were	 extracted	 to	 evaluate	 their	 polymorphism	 (e.g.,	 Cui	
et	al.,	2018;	Fox	et	al.,	2019).	With	the	development	of	NGS	soft-
ware,	a	more	straightforward	way	 is	 to	align	sequence	reads	from	
all	 individuals	 to	 a	 reference	genome	 to	 identify	polymorphic	SSR	
loci	before	developing	primers	(e.g.,	Guo	et	al.,	2020).	This	is	still	a	
rather	new	point	of	view,	the	effects	of	using	different	number	of	in-
dividuals,	different	sequence	depth,	and	the	quality	of	the	reference	

genome	on	 the	yield	of	polymorphic	SSR	markers	has	 rarely	been	
explored,	especially	for	threatened	species.

The	aim	of	this	study	is	to	develop	an	effective	pipeline	for	the	
rapid	development	of	highly	polymorphic	SSR	markers	from	multi-	
sample	genomic	data.	We	used	a	subset	of	the	population	genomic	
data	 from	 a	 global	 threatened	 galliform	 bird,	 the	 brown	 eared-	
pheasant	 (Crossoptilon mantchuricum),	which	has	very	 low	genomic	
diversity	 (Wang	et	al.,	2020).	We	showed	that	our	pipeline	can	ef-
fectively	discover	polymorphic	SSR	markers	from	such	a	species	and	
successfully	 estimate	 its	 population	 structure	with	 the	 developed	
SSRs,	which	showed	the	same	result	from	genomic	data	(Wang	et	al.,	
2020).	Furthermore,	we	evaluated	the	effect	of	different	numbers	of	
individuals	and	sequencing	depth	on	the	SSR	mining	results	and	as-
sembled	a	reference	genome	using	multi-	sample	low-	depth	data	in-
stead	of	single-	sample	high-	depth	data,	which	could	be	a	reasonable	
strategy	balancing	the	sampling	and	sequencing	costs,	especially	for	
species	without	a	reference	genome.

2  |  MATERIAL S AND METHODS

2.1  |  Data and sample collection

For	the	in	silico	mining	of	polymorphic	SSRs,	we	used	the	assembled	
genome	of	one	individual	and	resequencing	data	(~20	X)	of	20	indi-
viduals	of	C. mantchuricum	downloaded	from	the	National	Genomics	
Data	 Center	 (BioProject	 number:	 PRJCA003284,	 https://bigd.big.
ac.cn/?lang=en),	 the	 sample	 information	 and	 accession	number	of	
each	sample	can	be	seen	in	Table	S1.	All	the	20	individuals	used	in	
this	study	are	not	closely	related	(Wang	et	al.,	2020).

For	the	experimental	validation	of	the	SSR	markers,	a	total	of	30	
wild	individuals	of	C. mantchuricum	were	sampled	from	Hebei	(n =	6),	
Beijing	(n =	2),	Shanxi	(n =	15),	and	Shaanxi	(n =	7)	in	China.	The	tissue	
or	blood	samples	were	preserved	at	−80°C	 for	 long-	term	storage.	
Genomic	DNA	was	extracted	using	a	DNA	extraction	kit	(TianGen	
Biotech,	Beijing,	China)	following	the	manufacturer's	instructions.

2.2  |  In silico mining of polymorphic SSRs

We	 developed	 a	 pipeline	 using	 commonly	 used	 NGS	 software	 to	
identify	 polymorphic	 SSRs	 from	 resequencing	 data	 of	multiple	 in-
dividuals	(Figure	1).	First,	we	identified	tandem	repeats	in	the	refer-
ence	genome	of	C. mantchuricum	using	Tandem	Repeats	Finder	(TRF)	
v	4.09	(http://tandem.bu.edu/trf/trf.html)	(Benson,	1999)	using	the	
following	options:	alignment	score	for	match,	mismatch,	indel:	2,	7,	
7;	PM:	80;	PI:	10;	minimum	alignment	score:	50;	max	period:	500.	
After	tandem	repeats	identification,	we	obtained	a	BED	file	with	our	
custom	set	of	tandem	repeats.	Then,	we	used	lobstr_index.py	in	lob-
STR	v	4.0.6	(Gymrek	et	al.,	2012)	and	the	BED	file	to	build	a	custom	
lobSTR	reference	for	C. mantchuricum	(http://lobstr.teame	rlich.org/
best-	pract	ices-	custo	m-	refer	ence.html).	Meanwhile,	the	raw	reads	of	

https://bigd.big.ac.cn/?lang=en
https://bigd.big.ac.cn/?lang=en
http://tandem.bu.edu/trf/trf.html
http://lobstr.teamerlich.org/best-practices-custom-reference.html
http://lobstr.teamerlich.org/best-practices-custom-reference.html
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the	20	individuals	of	C. mantchuricum	were	filtered	with	Trim	Galore	v	
0.5.0	(Krueger,	2012)	with	default	parameters,	and	clean	reads	were	
mapped	to	the	C. mantchuricum	reference	genome	with	BWA-	MEM	
v	0.7.17-	r1188	(Li	&	Durbin,	2009)	to	generate	BAM	files.	Then,	we	
used	these	BAM	files	and	the	custom	reference	as	input	for	lobSTR	
(Gymrek	et	al.,	2012)	to	run	allelotypes.	After	allelotyping,	we	used	
a	custom	Bash	script	(Appendix	S1)	to	select	polymorphic	SSR	loci	
from	the	VCF	file	generated	by	lobSTR.

We	used	a	very	strict	criterion	to	select	SSRs	for	subsequent	
experimental	 validation.	 First,	we	 focused	 only	 on	 the	 “perfect”	
SSRs	(uninterrupted	run	of	repeats)	(Sharma	et	al.,	2007)	that	can	
be	successfully	genotyped	across	all	individuals	(NS	=	20)	to	avoid	
PCR	failure	and	null	alleles.	Second,	we	restricted	the	motif	length	
to	3–	5	bp	to	avoid	genotyping	error.	Third,	we	selected	SSRs	with	
high	polymorphism,	 that	 is,	 the	number	of	 alleles	 for	each	 locus	
≥5	(see	results),	among	which	34	potential	polymorphic	loci	com-
prising	 different	 motif	 lengths	 were	 selected	 for	 downstream	
analyses.

2.3  |  SSR primer design and 
experimental validation

First,	we	used	BEDTools	v	2.26.0	(Quinlan	&	Hall,	2010)	to	extract	
350	bp	flanking	sequences	on	both	ends	of	the	34	SSRs	from	the	ref-
erence	genome.	Then,	primers	were	designed	in	the	flanking	regions	
of	each	SSR	locus	using	Primer	Premier	v	5	(Lalitha,	2000)	with	the	
following	parameters:	(1)	primer	lengths	ranging	from	18	to	27	bp;	(2)	
product	sizes	ranging	from	100	to	500	bp;	(3)	melting	temperature	
(Tm)	ranging	from	55°C	to	62°C	and	the	differences	of	Tm	between	
forward	and	reverse	primers	<2°C;	and	(4)	GC	content	ranging	from	
40	to	60%.

Next,	trial	polymerase	chain	reaction	(PCR)	was	conducted	in	4	
individuals	of	C. mantchuricum	to	test	whether	the	newly	designed	
SSR	markers	were	amplifiable.	PCR	amplification	was	performed	in	
a	10-	μl	reaction	volume	containing	0.5	µl	of	genomic	DNA,	5	µl	of	
TianGen	Biotech	Taq	Master	Mix,	4	µl	of	ddH2O,	0.25	µl	of	forward	
primer	(10	µM)	and	0.25	µl	of	reverse	primer	(10	µM).	The	PCR	am-
plification	 programs	 were	 as	 follows:	 DNA	 initial	 denaturation	 at	
95°C	for	5	min;	35	cycles	of	94°C	for	40	s,	annealing	temperature	of	
specific	primer	(Table	S2)	for	30	s,	72°C	for	30	s;	and	a	final	step	at	
72°C	for	5	min.	The	PCR	products	were	detected	by	2%	agarose	gel	
electrophoresis.	As	a	result,	we	obtained	30	loci	that	were	reliably	
amplified.

We	 randomly	 selected	 20	 of	 30	 SSR	 candidates	 to	 synthesize	
fluorescently	 labeled	forward	primers	 (5′-	FAM,	HEX,	ROX·;	Beijing	
Genomics	Institute,	Beijing,	China)	and	performed	PCR	amplification	
of	all	30	individuals	of	C. mantchuricum	as	described	above.	The	PCR	
products	were	sent	to	Qingke	Biotech	(Beijing,	China)	for	SSR	geno-
typing	detection.	Allele	scoring	for	each	marker	was	performed	with	
Genemarker	v	2.2.0	(Holland	&	Parson,	2011).

2.4  |  Statistical and population structure analyses

Genetic	 parameters	 such	 as	 the	 number	 of	 alleles	 (Na),	 polymor-
phism	 information	 content	 (PIC),	 observed	 heterozygosity	 (Ho),	
and	 expected	 heterozygosity	 (He)	were	 calculated	 by	Cervus	 v3.0	
(Marshall	et	al.,	1998).	The	frequency	of	null	alleles	was	estimated	
using	 FreeNA	 (Chapuis	 &	 Estoup,	 2007).	 Linkage	 equilibrium	 (LD)	
were	tested	using	Genepop	(Rousset,	2008)	with	the	following	pa-
rameters:	 dememorization	=	 10,000,	 batches	=	 20,	 iterations	 per	
batch	=	5000.	The	Bonferroni	correction	for	p	value	was	done	by	
Myriads	v1.2	(Carvajal-	Rodríguez,	2017).

F I G U R E  1 Workflow	for	in	silico	
microsatellite	mining,	polymorphism	
discovery,	and	primer	design	using	
a	series	of	commonly	used	software	
programs	(shown	in	italics).	The	pipeline	
takes	multi-	sample	resequencing	data	
in	FASTQ	format	and	reference	genome	
in	FASTA	format	as	input	data	(the	
reference	genome	can	be	generated	with	
assembly	software	such	as	MaSuRCA	
from	multi-	sample	resequencing	data	for	
species	whose	reference	genomes	were	
unavailable)
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Population	structure	analyses	were	performed	using	principal	
coordinate	 analysis	 (PCoA)	 in	 GenAlEx	 v6.5	 (Peakall	 &	 Smouse,	
2006)	and	the	model-	based	software	program	STRUCTURE	v2.3.4	
(Pritchard	 et	 al.,	 2000).	 The	 number	 of	 subpopulations	 (K)	 was	
set	 to	 range	 from	1	 to	 10,	 and	 for	 each	K,	 10	 replications	were	
tested.	 For	 each	 run,	 a	 burn-	in	 period	was	 set	 to	 100,000	with	
100,000	MCMC	iterations.	The	log	probability	of	the	data	(LnP(D))	
was	calculated	to	confirm	the	convergence.	To	determine	the	most	
likely	 value	 of	 K,	 the	 Evanno	method	 (Evanno	 et	 al.,	 2005)	was	
used	 via	 the	 online	 program	 STRUCTURE	 HARVESTER	 (http://
taylo	r0.biolo	gy.ucla.edu/struc	tureH	arves	ter/)	 (Earl	 &	 Vonholdt,	
2012).	Genetic	differentiation	among	the	populations	was	calcu-
lated	with	the	Weir	and	Cockerham	(1984)	estimator	of	the	fixa-
tion	 index	 (Fst)	using	FSTAT	v2.9.4	and	1,000	permutations	were	
used	 to	 test	 for	 significant	 differences	 (Goudet,	 1995;	 Weir	 &	
Cockerham,	1984).

2.5  |  Effects of the number of individuals and 
sequencing depth on SSR mining

To	test	 the	effect	of	 the	number	of	 individuals	on	SSR	mining,	we	
randomly	selected	2,	4,	6,	8,	10,	12,	14,	16,	and	18	individuals	from	
the	 20	 individuals	 (sequencing	 depth	 ~20X)	 to	 perform	 the	 same	
analyses	as	described	above	(Figure	1).	Second,	we	fixed	the	number	
of	individuals	as	10	(the	optimal	number	of	individuals	based	on	our	
results)	to	explore	the	effect	of	sequencing	depth.	The	average	se-
quencing	depth	of	each	sample	was	calculated	by	the	tool	“bamdst”	
(https://github.com/shiqu	an/bamdst).	Then,	we	used	SAMtools	v1.9	
(Li	 et	 al.,	 2009)	 to	 randomly	generate	2.5X,	5X,	7.5X,	10X,	12.5X,	
15X,	17.5X,	and	20X	resequencing	data	for	each	of	the	10	individuals	
and	performed	the	same	analyses	(Figure	1).	For	each	analysis,	we	
focused	only	on	the	SSR	loci	that	existed	in	all	selected	individuals	
and	exhibited	at	least	two	alleles.	To	evaluate	the	SSR	mining	results,	
we	calculated	two	parameters:	the	number	of	polymorphic	SSRs	and	
the	Na	for	each	SSR	 locus.	Then,	we	used	R	v4.0.2	 (R	Core	Team,	
2020)	 to	draw	 line	charts	and	violin	plots	 to	visualize	 the	 increas-
ing	 trend	of	 these	 two	parameters	 to	estimate	 the	optimal	 values	
for	the	number	of	individuals	and	sequencing	depth.	The	magnitude	
of	change	of	the	average	Na	between	different	individuals	and	se-
quencing	depth	was	assessed	using	Cohen's	d	effect	size	analysis.	
A	 value	 of	 0.20	 is	 considered	 a	 small	 effect,	 0.50	 is	 considered	 a	
medium	effect	(Cohen,	1992).

2.6  |  SSR mining using multi- sample low- 
depth resequencing data without a prior/known 
reference genome

Generally,	 a	 high-	quality	 reference	 genome	 is	 necessary	 to	 map	
resequencing	data	and	 to	develop	SSR	markers	 (Hou	et	al.,	2018).	
However,	 the	 assembly	 of	 an	 eligible	 reference	 genome	 usually	

requires	deep	 sequencing	>100X	 from	 the	 same	 individual,	which	
results	 in	considerable	additional	cost	 (Desai	et	al.,	2013).	To	 fully	
utilize	the	multi-	sample	resequencing	data	and	reduce	the	sequenc-
ing	cost,	we	derived	the	idea	used	in	pan-	genome	studies	and	tried	
to	use	multi-	sample	low-	depth	data	to	assemble	a	“consensus”	refer-
ence	 genome	of	C. mantchuricum.	 10X	 resequencing	 data	 of	 each	
ten	individual	(100	X	data	in	total,	the	optimal	number	of	individuals	
and	sequencing	depth	based	on	our	results)	were	used	for	de	novo	
assembly	of	the	C. mantchuricum	genome	with	MaSuRCA	assembler	
v3.4.2	(Zimin	et	al.,	2013).	MaSuRCA	is	an	overlap-	layout-	consensus	
(OLC)	algorithm-	based	assembler	that	tolerates	differences	such	as	
SNPs,	heterozygotes,	and	sequencing	errors	to	generate	consensus.	
This	feature	enables	it	to	generate	a	consensus	assembly	by	integrat-
ing	multi-	sample	 low-	depth	data	as	conventional	deep	sequencing	
data.	We	used	the	assembled	genome	as	a	reference	and	carried	out	
SSR	mining	using	resequencing	data	following	the	designed	pipeline	
(Figure	1).	To	test	the	validity	of	the	assembled	“consensus”	genome	
on	 SSR	mining	 results,	 we	 calculated	 the	 number	 of	 polymorphic	
SSRs	and	the	Na	for	each	SSR	locus	and	compared	these	SSRs	de-
veloped	with	the	“consensus”	genome	to	those	SSRs	developed	with	
the	high-	quality	genome.	In	addition,	we	also	compared	the	±350	bp	
flanking	sequences	on	both	ends	of	all	the	polymorphic	SSRs	with	
BLASTN	v2.5.0+	(Altschul	et	al.,	1990)	to	identify	the	intersection	
of	 polymorphic	 SSRs	 extracted	 from	 the	 two	 reference	 genomes.	
The	SSR	loci	with	>95%	identity	and	>500	bp	alignment	length	were	
considered	the	same	loci.

3  |  RESULTS

3.1  |  Distribution of SSR types and allele number 
of Crossoptilon mantchuricum

Using	 our	 designed	 pipeline,	 we	 identified	 228,728	 tandem	 se-
quence	repeats	in	the	reference	genome	of	C. mantchuricum.	After	
genotyping	20	individuals	with	lobSTR,	we	found	a	total	of	12,549	
“perfect”	SSR	 loci	 (motif	 length	from	2	to	6	bp)	that	could	be	suc-
cessfully	genotyped	across	all	samples.	Among	these	SSRs,	the	most	
abundant	 repeat	motifs	were	 tetranucleotides	 (3947,	31.45%),	 fol-
lowed	 by	 dinucleotides	 (3120,	 24.86%),	 pentanucleotides	 (2380,	
18.97%),	trinucleotides	(2000,	15.94%),	and	hexanucleotides	(1102,	
8.78%;	Figure	2,	Table	S3).

The	average	number	of	alleles	(Na)	for	the	12,549	SSRs	was	only	
1.36,	and	81.01%	of	the	loci	were	monomorphic	(Figure	2).	The	pro-
portion	of	polymorphic	loci	for	dinucleotide	repeats	was	higher	than	
that	for	other	types	(Figure	2).	However,	dinucleotide	microsatellites	
are	easily	subjected	to	mistyping	due	to	polymerase	slippage	during	
PCR	(Schlötterer	&	Tautz,	1992).	To	develop	SSR	markers	with	strong	
stability	and	a	low	genotyping	error	rate,	we	only	focused	on	SSRs	
with	motif	lengths	ranging	from	3	to	5	bp	in	this	exploratory	study.	
We	obtained	952,	228,	83,	34,	and	10	loci	when	we	restricted	the	
minimum	Na	to	2,	3,	4,	5,	and	6,	respectively	(Table	S3).	Based	on	the	

http://taylor0.biology.ucla.edu/structureHarvester/
http://taylor0.biology.ucla.edu/structureHarvester/
https://github.com/shiquan/bamdst
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above	results,	we	selected	the	34	SSRs	with	an	Na	≥	5	to	perform	
downstream	analyses.

The	 34	 candidate	 polymorphic	 SSR	 loci	 consisted	 of	 22	 trinu-
cleotide,	 seven	 tetranucleotide,	 and	 five	 pentanucleotide	 repeats,	

among	 which	 30	 loci	 were	 successfully	 amplified	 with	 designed	
primers	(88.24%).	We	randomly	selected	20	loci	for	polymorphism	
detection.	Twenty	SSR	loci	consisted	of	14	trinucleotide,	four	tetra-
nucleotide,	and	two	pentanucleotide	repeats	(Table	S2).

F I G U R E  2 Distributions	of	SSR	types	and	the	number	of	alleles	(Na)	of	20	C. mantchuricum	individuals.	(a)	All	SSR	loci.	(b)	Polymorphic	
SSR	loci

No.
Marker 
Name Na N Ho He PIC

1 CM1 3 30 0.300 0.605 0.528

2 CM2 5 30 0.567 0.726 0.667

3 CM3 3 30 0.033 0.406 0.332

4 CM7 4 30 0.167 0.547 0.475

5 CM8 6 30 0.400 0.714 0.658

6 CM9 3 30 0.400 0.453 0.381

7 CM10 5 30 0.567 0.692 0.624

8 CM11 4 30 0.233 0.551 0.481

9 CM12 3 30 0.267 0.473 0.420

10 CM14 5 30 0.567 0.744 0.684

11 CM15 3 30 0.167 0.581 0.508

12 CM16 5 30 0.567 0.724 0.663

13 CM19 2 30 0.000 0.398 0.315

14 CM20 4 29 0.103 0.470 0.423

15 CM25 4 30 0.400 0.481 0.437

16 CM26 4 30 0.300 0.584 0.513

17 CM27 6 29 0.276 0.629 0.562

18 CM30 6 30 0.633 0.733 0.675

19 CM32 5 30 0.533 0.760 0.707

20 CM33 4 28 0.429 0.660 0.581

Mean 4.2 29.8 0.345 0.597 0.532

TA B L E  1 Summary	of	the	observed	
allele	number	(Na),	sample	size	(N),	
observed	and	expected	heterozygosity	
(Ho	and	He),	and	polymorphism	
information	content	(PIC)	for	30	
individuals	of	brown	eared-	pheasants
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3.2  |  Descriptive statistical and 
population structure

The	PIC	values	of	the	20	SSR	loci	ranged	from	0.315	to	0.707	with	
an	average	of	0.532.	The	Na	ranged	from	2	to	6	with	an	average	
of	4.2,	 the	Ho	 ranged	from	0	to	0.633	with	an	average	of	0.345,	
and	the	He	ranged	from	0.398	to	0.760	with	an	average	of	0.597	
(Table	1).

PCoA	divided	the	30	brown	eared-	pheasants	into	three	genetic	
clusters	 (Figure	 3).	 The	 first	 two	 principal	 coordinates	 (PCos)	 ex-
plained	60.23%	of	the	total	variance	(45.22%	and	15.01%,	respec-
tively).	In	our	10	independent	structure	analyses	to	estimate	K,	the	
values	of	LnP(D)	 increased	sharply	from	K = 1 to K =	3,	and	delta	
K	analysis	revealed	a	peak	at	K =	2	(Figure	S1),	suggesting	at	 least	
two	clusters.	When	K =	3,	 the	 three	populations	of	brown	eared-	
pheasant	 can	 also	 be	 separated	 very	 well	 (Figure	 3),	 which	 is	 in	
accordance	with	 the	PCoA	results.	We	 identified	 the	 three	brown	
eared-	pheasant	populations	as	CM-	W	(Shaanxi,	n =	7),	CM-	C	(Shanxi,	
n =	15),	and	CM-	E	(Hebei	and	Beijing,	n =	8),	which	represented	the	
western,	central,	and	eastern	populations,	respectively.	The	pairwise	
Fst	values	among	the	three	populations	ranged	from	0.364	to	0.742	
and	all	 the	pairwise	Fst	values	were	significantly	greater	 than	zero	
(Table	S4).

The	population	structure	analyses	showed	high	genetic	differen-
tiation	among	the	three	populations	of	the	brown	eared-	pheasant,	
so	we	estimated	null	allele	frequency	of	the	20	loci	in	three	popu-
lation	separately.	The	prevalence	of	null	alleles	for	most	loci	is	low	
(<0.05),	except	for	loci	CM27	and	CM12	in	the	central	and	eastern	
populations,	respectively	(>0.2,	Table	S5).	The	average	null	allele	fre-
quency	of	the	20	loci	is	low	(<0.05)	among	three	populations.	Such	
a	low	frequency	of	null	alleles	only	has	slight	impact	on	population	
genetic	analyses	(Carlsson,	2008;	Chapuis	&	Estoup,	2007;	Dakin	&	
Avise,	2004).	Only	2	out	of	570	tests	for	LD	were	significant	after	

Bonferroni	correction	(CM8–	CM14	and	CM11–	CM25	in	the	central	
population).	These	four	SSR	loci	located	on	different	scaffolds,	the	
observed	LD	might	be	caused	by	the	low	genomic	diversity	(Wang	
et	al.,	2020)	and/or	small	sample	size	rather	than	true	linkage.

3.3  |  Effect of the number of individuals and 
sequencing depth on mining SSRs

The	number	of	individuals	had	a	great	influence	on	the	calculated	Na,	
while	the	sequencing	depth	had	a	great	 influence	on	the	obtained	
number	of	polymorphic	SSRs	(Figure	4).	When	the	number	of	indi-
viduals	reached	10,	the	increasing	trend	of	Na	slows	down	(Cohen's	
d:	Na2	vs.	Na10:	−0.61	(medium),	Na10	vs.	Na20:	−0.12	(small)),	and	the	
number	of	polymorphic	SSRs	reached	approximately	2,037	(85.48%	
compared	to	using	20	individuals;	Figure	4a).	Thus,	we	fixed	the	num-
ber	of	individuals	to	ten	to	explore	the	effect	of	sequencing	depth.	
Our	results	showed	that	Na	remained	nearly	stable	with	increasing	
depth	(2.460–	2.695;	Cohen's	d:	Na2.5x	vs.	Na20x:	−0.23	(small)),	while	
the	number	of	polymorphic	SSR	 loci	 increased	rapidly	 (from	50	to	
2022,	Figure	4b,	Table	S6).	The	increase	in	the	number	of	SSR	loci	
slowed	when	the	sequencing	depth	reached	10–	12.5	X	(Figure	4b),	
when	sufficient	(1539–	1825)	polymorphic	SSR	loci	were	identified.

3.4  |  SSR mining results using multi- sample low- 
depth resequencing data without a prior/known 
reference genome

The	draft	“consensus”	genome	assembly	based	on	resequencing	data	
of	ten	individuals	(~10X	for	each	individual)	comprised	73,187	scaf-
folds	 with	 a	 total	 length	 of	 1.06	 Gb.	 The	 genome	 sequence	 had	
41.8%	GC	 content.	 The	 scaffold	 and	 contig	 N50	were	 132.68	 kb	

F I G U R E  3 Population	structure	and	principal	coordinate	analysis	(PCoA)	of	30	brown	eared-	pheasants	based	on	20	SSR	markers.	(a)	
Population	structure	of	K =	2	and	K =	3	inferred	by	Bayesian	clustering	approaches.	Samples	of	30	brown	eared-	pheasants	were	from	Shanxi	
(n =	15;	1–	15),	Shaanxi	(n =	7;	16–	22),	Hebei	and	Beijing	(Hebei:	n =	6,	Beijing:	n =	2;	23–	30).	(b)	Principal	coordinate	analysis	(PCoA)	of	30	
brown	eared-		pheasants.	CM-	C:	Shanxi	(n =	15;	green);	CM-	W:	Shaanxi	(n =	7;	blue);	CM-	E:	Hebei	and	Beijing	(Hebei:	n =	6,	Beijing:	n =	2;	red)
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and	100.00	 kb,	 respectively.	Using	 this	 assembled	 genome	 as	 the	
reference	genome,	we	found	a	total	of	9306	“perfect”	SSR	loci,	of	
which	1590	(17.09%)	were	polymorphic.	In	comparison,	the	number	
of	polymorphic	SSR	loci	extracted	from	the	canonical	reference	ge-
nome	was	1,539,	which	was	similar	to	the	assembled	genome	(1590	
vs.	1539,	Figure	S2).	The	BLASTN	analysis	showed	that	nearly	80%	
(1216/1539)	of	these	loci	overlapped.	The	average	Na	of	all	the	SSR	
loci	from	the	assembled	genome	was	1.275,	which	showed	no	signif-
icant	difference	compared	to	that	of	the	SSR	loci	obtained	using	the	
canonical	 reference	genome	 (average	Na = 1.271; t- test: T =	0.37,	
df =	18460,	p =	.71).

4  |  DISCUSSION

Although	genome-	wide	SNPs	have	become	more	and	more	popu-
lar	 for	 studies	 of	 population	 genetics,	 SSRs	 are	 still	 valuable	 ge-
netic	markers	due	 to	 their	high	polymorphism,	 low	DNA	 template	
demands,	 relatively	 easy	 application,	 along	 with	 well-	developed	
and	 simple	 statistical	 analyses	 (Hodel	 et	 al.,	 2016;	 Zane	 et	 al.,	
2002).	There	are	several	scenarios	where	SSRs	are	comparable	with	
genome-	wide	SNPs.	For	example,	studies	require	parentage	and	kin-
ship	determination	in	behavioral	ecology	and	genetic	management	
do	 not	 require	 high	 marker	 density,	 but	 benefit	 more	 from	 large	
number	of	samples	 (de	Deus	et	al.,	2021).	 It	 is	 impractical	and	ex-
pensive	 to	 genotype	 thousands	 of	 individuals	 using	 genome-	wide	
SNPs	and	it	 is	hard	to	update	the	dataset	 if	small	numbers	of	new	
individuals	are	added.	Conversely,	once	the	SSR	markers	has	been	
developed,	it	would	be	much	easier	and	more	economical	to	geno-
type	additional	 individuals	 (Puckett,	 2017).	 In	 addition,	 SSR	 is	 still	
the	most	widely	used	genetic	marker	in	forensic	identifications	and	
noninvasive	genetic	 studies	of	endangered	species	 from	degraded	
samples	 owing	 to	 its	 low	 quantity/quality	 DNA	 template	 demand	

and	high	reproducibility	results	(Lampa	et	al.,	2013;	Willows-	Munro	
&	Kleinhans,	2020).	We	can	acquire	sufficient	DNA	for	SSR	genotyp-
ing	even	in	degraded	samples	such	as	eggshells,	feathers,	and	feces	
(Baus	et	al.,	2019).	Furthermore,	a	strong	background	in	computing	
skills	and	bioinformatics	is	needed	to	deal	with	the	large	quantity	of	
SNPs,	whereas	researchers	can	complete	SSR	analyses	with	limited	
computing	 skills	on	a	 laptop	computer	 (Hodel	et	 al.,	 2016).	For	all	
these	 reasons,	microsatellites	 remain	a	good	choice	 for	many	 sys-
tems	and	questions	and	they	will	continue	to	be	used	extensively	in	
ecology,	evolution,	and	conservation	in	the	future.

In	this	study,	we	developed	a	pipeline	to	mine	polymorphic	SSR	
markers	based	on	NGS	data	from	multiple	individuals	of	the	target	
species.	The	pipeline	was	successfully	applied	to	a	globally	threat-
ened	species	with	very	 low	genomic	diversity	 (Wang	et	al.,	2020).	
We	further	evaluated	the	effect	of	different	numbers	of	individuals	
and	sequence	depths	on	the	SSR	mining	results	to	suggest	a	reason-
able	 strategy	balancing	data	generation	and	cost.	Additionally,	we	
showed	that	 the	pipeline	worked	well	even	without	a	high-	quality	
reference	 genome,	 which	 further	 extended	 its	 application	 range	
and	decreased	 the	cost	of	developing	applicable	polymorphic	SSR	
markers.

We	 found	 that	 the	 average	Na	was	 only	 1.36	 for	 the	 brown	
eared-	pheasant	at	 the	genome	scale,	and	 less	 than	10%	of	SSRs	
had	more	 than	 two	alleles	among	20	 individuals	 (Figure	2,	Table	
S3).	 Therefore,	 it	 will	 be	 rather	 inefficient	 to	 filter	 polymorphic	
SSR	markers	through	experimental	validation	from	randomly	cho-
sen	 SSR	 loci,	which	 is	 the	 commonly	 used	 SSR	marker	 develop-
ment	method	using	NGS	data	 (Table	2)	 (Hou	et	al.,	2018;	Huang	
et	 al.,	 2015;	 Taheri	 et	 al.,	 2018).	 For	 example,	 Zhu	 (2014)	 used	
blood	transcriptome	from	one	male	brown	eared-	pheasant	to	de-
velop	SSR	markers,	he	randomly	selected	118	SSR	 loci	 to	design	
primers,	 only	 5%	 (6/118)	 are	 polymorphic	 (Table	 2),	 the	 average	
Na	was	2.17	among	24	 individuals.	Our	pipeline	 took	advantage	

F I G U R E  4 The	increasing	trends	of	the	number	of	alleles	(solid	line)	and	the	number	of	polymorphic	SSRs	(dotted	line)	depending	on	the	
number	of	individuals	(a)	and	sequencing	depth	(b)
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of	 resequencing	 data	 from	 multiple	 individuals	 and	 detected	
highly	 polymorphic	 SSRs	 among	 these	 individuals	 prior	 to	 ex-
perimental	 validation,	 significantly	 improved	 the	 efficiency	 and	
reduced	experimental	effort	in	developing	polymorphic	SSR	mark-
ers	 (Table	2).	Except	for	the	four	SSR	 loci	 that	 failed	to	pass	our	
trial	PCR	(which	could	be	improved	if	we	redesigned	primers),	the	
other	30	randomly	selected	SSR	markers	were	very	stable	during	
PCR	 experiments.	 Our	 following	 test	 showed	 that	 all	 of	 the	 20	
randomly	 selected	SSR	markers	 are	polymorphic,	 the	Na	 ranged	
from	2	to	6,	with	an	average	of	4.2	among	30	 individuals,	which	
was	significantly	higher	than	the	average	Na	on	the	genome	scale.

Our	results	showed	that	the	increase	trend	of	Na	slows	down	
after	subsampling	more	than	10	individuals	(Figure	4a).	Given	the	
extremely	 low	 genetic	 diversity	 of	 the	 brown	 eared-	pheasant,	
fewer	individuals	should	be	sufficient	for	other	species.	For	exam-
ple,	we	 have	 already	 developed	 highly	 polymorphic	 SSR	markers	
for	 the	 Daurian	 redstart	 (Phoenicurus auroreus)	 and	 the	 Chinese	
penduline	tit	(Remiz consobrinus)	following	the	pipeline,	both	using	
resequencing	 data	 of	 eight	 individuals	 (in	 preparation).	 Although	
a	 higher	 sequencing	 depth	 can	 increase	 the	 number	 of	 polymor-
phic	SSR	loci,	our	results	demonstrated	that	a	low	to	medium	depth	
(10X–	12.5	X)	can	generate	large	numbers	of	highly	polymorphic	loci	
from	such	species	with	low	genomic	diversity	(Figure	4b).	For	other	
species	with	 larger	population	 size,	 a	10X	sequencing	depth	may	
be	enough	to	obtain	a	sufficient	number	of	polymorphic	SSR	loci.

Despite	the	rapid	development	of	sequencing	technology,	there	
are	still	many	species	for	which	reference	genomes	are	unavailable.	
Assembling	a	high-	quality	reference	genome	is	usually	a	demand-
ing	project	requiring	deep	sequencing	depth	of	a	single	individual	
(>100X).	Since	the	total	 length	of	SSR	markers	is	generally	short,	
the	development	of	SSRs	does	not	require	a	high-	quality	reference	
genome.	 Previous	 studies	 usually	 used	 sequence	 reads	 from	 the	
sequenced	individual	to	assembly	a	draft	genome	to	mine	SSR	se-
quences	(Koshiishi	et	al.,	2021;	Yang	et	al.,	2017).	As	for	the	multi-	
sample	strategy,	we	used	multi-	sample	low-	depth	data	to	generate	
a	draft	reference	genome	inspired	by	pan-	genome	strategies,	The	
scaffold	and	contig	N50	of	 the	assembled	genome	were	approx-
imately	 134	 kb	 and	 100	 kb,	 respectively,	 which	 are	 lower	 than	
those	of	the	canonical	high-	quality	genome	(scaffold/contig	N50:	

3,632.75	kb/112.76	kb;	Wang	et	al.,	2020).	Although	the	quality	of	
the	assembled	genome	was	lower	than	that	of	the	canonical	high-	
quality	genome,	the	numbers	of	polymorphic	SSR	loci	mined	with	
our	pipeline	were	very	similar,	and	approximately	80%	of	SSR	loci	
overlapped,	which	might	be	higher	if	we	lower	the	length	standard	
of	 the	 flanking	 sequence.	Furthermore,	 the	average	Na	between	
SSR	markers	 from	the	assembled	genome	and	SSR	markers	 from	
the	 canonical	 high-	quality	 reference	 genome	 showed	 no	 signifi-
cant	difference,	which	means	that	the	distribution	of	SSRs	in	the	
“consensus”	 genome	was	 highly	 consistent	with	 the	 high-	quality	
reference	genome.	Overall,	the	use	of	a	reference	genome	by	using	
a	“consensus”	genome	strategy	from	multi-	sample	low-	depth	data	
can	yield	approximately	the	same	number	of	polymorphic	SSR	loci,	
which	can	further	reduce	the	cost	of	developing	SSR	markers.	As	
the	sequencing	cost	of	NGS	has	dramatically	declined	since	its	in-
vention	 (https://www.genome.gov/about	-	genom	ics/fact-	sheet	s/
DNA-	Seque	ncing	-	Costs	-	Data),	the	cost	for	resequencing	10X	data	
from	10	individual	of	birds	is	about	$1100.	If	we	randomly	design	
100	primers	to	detect	polymorphism	on	4	individuals	(many	stud-
ies	used	this	strategy),	the	cost	is	about	$550	for	primer	synthesis,	
and	$1000	for	sanger	sequencing,	which	are	similar	or	even	slightly	
higher	than	the	resequencing	cost.

The	brown	eared-	pheasant	is	a	globally	threatened	species	dis-
tributed	 in	China	 (Zheng,	2015),	and	polymorphic	SSR	markers	for	
this	species	are	still	unavailable.	In	this	study,	we	developed	20	new	
SSR	markers.	The	PIC	indicated	that	12	markers	were	highly	infor-
mative	 (PIC	>	 0.5),	 and	 the	 other	 eight	were	 reasonably	 informa-
tive	(0.5	<	PIC	<	0.25)	(Botstein	et	al.,	1980).	These	SSR	loci	were	
successfully	 applied	 to	 the	 population	 structure	 analysis	 for	 the	
brown	eared-	pheasant.	 The	PCoA	and	 structure	 analysis	 revealed	
three	 populations	 across	 the	 range	 of	 the	 brown	 eared-	pheasant	
(Figure	3),	 in	 accordance	with	 the	 results	 from	genomic	 SNP	data	
(Wang	et	al.,	2020).	However,	the	structure	analysis	revealed	a	peak	
of	delta	K	at	K =	2,	while	it	separated	the	three	populations	very	well	
when	K =	3	(Figure	3).	Previous	studies	found	that	there	was	a	strong	
bias	 toward	selecting	K =	2	using	 the	delta	K	method	 (Cullingham	
et	 al.,	 2020).	 In	 addition,	 uneven	 sample	 sizes	 between	 subpop-
ulations	may	 lead	 to	 the	 underestimation	 of	 delta	K	 (Puechmaille,	
2016).	Our	Fst	estimations	also	showed	high	genetic	differentiation	

TA B L E  2 A	comparison	of	different	SSR	marker	develop	methods,	including	species,	SSR	marker	develop	methods	(Tra-	NGS:	Traditional	
NGS	method	based	on	one	individual),	number	of	PCR	primers	tested	(Pri),	number	of	amplifiable	PCR	primers	(Amp),	percentage	of	primers	
which	were	amplifiable	(Amp/Pri),	number	of	primers	selected	to	test	polymorphism	(Amp-	sel),	number	of	polymorphic	primers	(Pol),	
percentage	of	amplifiable	primers	which	were	polymorphic	(Pol/Amp-	sel),	percentage	of	primers	which	were	amplifiable	and	polymorphic	
(Suc),	literature	reference	(Ref)

Species Method Pri Amp Amp/Pri Amp- sel Pol Pol/Amp- sel Suc Ref

Crossoptilon 
mantchuricum

Tra-	NGS 118 118 100% 118 6 5% 5% Zhu	(2014)

Liocichla omeiensis Tra-	NGS 600 99 17% 52 24 46% 8% Yang	et	al.	(2017)

Dromaius 
novaehollandiae

Tra-	NGS 144 143 99% 143 49 34% 34% Koshiishi	et	al.	(2021)

Crossoptilon 
mantchuricum

This	study 34 30 88% 20 20 100% 88% This	study

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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among	 the	 three	populations	 (Table.	 S4),	which	 indicated	 that	 the	
brown	 eared-	pheasant	 should	 be	 divided	 into	 three	 genetic	 pop-
ulations.	 Furthermore,	 our	 newly	 developed	 SSR	 markers	 can	 be	
used	 in	 various	 aspects	 of	 conservation	 genetics,	 such	 as	 genetic	
background	analysis	and	genealogy	establishment	of	captive	brown	
eared-	pheasants	and	individual	 identification	 in	wild	brown	eared-	
pheasant	 populations.	 In	 addition,	 we	 focused	 only	 on	 SSRs	with	
motif	 lengths	 ranging	 from	3	 to	5	bp	 in	 this	exploratory	 research.	
Higher	polymorphic	dinucleotide	SSRs	can	be	easily	obtained	from	
our	pipeline	for	further	research.

5  |  CONCLUSION

In	 this	 study,	we	 developed	 a	 pipeline	 for	 the	 rapid	 development	
of	polymorphic	SSR	markers	using	multi-	sample	genomic	data.	Our	
pipeline	can	be	easily	applied	in	non-	model	species	in	which	genomic	
information	is	unknown	and	in	threatened	species	in	which	genetic	
diversity	is	extremely	low.	Our	pipeline	provided	a	paradigm	for	the	
application	of	NGS	technology	in	mining	molecular	markers	for	eco-
logical	and	evolutionary	studies.
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